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A multivariate binomial/multinomial model is proposed for estimating poverty and housing-
unit characteristics of small areas. The methodology for producing estimates is presented,
along with several evaluations using data from the American Community Survey. In one of
these evaluations, it is demonstrated that the model produces predicted samples whose within
small area design-based estimates of variance are in concordance with the original design-
based estimates. It is concluded that this approach can be a viable way to make small area
estimates without needing to assume that the design-based estimates of within-small area
variance are fixed (as in most area-level models) or that the design-based estimates
themselves, are normally distributed. The model introduced proposes a way to incorporate
both housing unit information and person level information and may be of use in similar
contexts.
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1. Introduction

In an effort to provide accurate estimates for census-type aggregations such as tracts on a

yearly basis from the American Community Survey (ACS), small area methods can be

employed. A hierarchical logistic model of both persons and housing units within-tracts is

proposed for making tract-level estimates. Besides providing a model that can be extended

to include both person-level and housing-unit covariates, this approach directly accounts for

the uncertainty of within-tract variability, a component whose estimate is often regarded as

fixed in other small area estimation methods. The “borrowing strength” of an estimate,

defined as the degree to which data outside of a small area is used to make a small area

estimate, depends crucially on the within and between small area variability. Since within-

tract variability is a component that affects “borrowing strength,” this approach

automatically accounts for the additional uncertainty of unknown within-tract variability

in the magnitude of “borrowing strength.”
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A typical assumption used in small area estimation is that the direct small area estimates

are normally distributed with unknown mean but with the corresponding estimated

variance treated as fixed and known (see e.g., Rao 1999, Eq. 2.2). This type of small area

estimation falls under the more general approach of directly modeling design-based

statistics aggregated up to the small area level. This approach has been termed the

“aggregate level model” or “area level model” (see Rao 2003, p. 76). In general, any

number of aggregate statistics, such as the sample mean and sample variance, could be

modeled jointly. However, in practice, the sample variance is often treated as fixed and

only the sample mean is modeled. An additional level of modeling linking the unknown

small area means together is then used to produce final estimates.

Due to small sample sizes in a small area, variance estimates of the direct estimates may

be imprecise and in that case should not be treated as known. The effect of the assumption

of error-free direct estimates of small area variance has been of interest for a while. For

example, the effect of misspecification of composite estimator weights (which can be

functions of variance components) was empirically evaluated by Schaible (1979). There, it

was demonstrated that the mean squared error was fairly robust to misspecification of the

composite estimator weights. The effects of misspecification of weights on estimates of

variance were not evaluated, however. In order to reduce the variability of the within small

area estimated variances, Isaki et al. (1991) used models similar to variance curves across

small areas to smooth the estimates. However, these smoothed estimates were then treated

as fixed in the subsequent small area estimation, ignoring both the new estimate’s

variability and bias due to the model. By assuming the estimated within small area

covariance matrices are distributed approximately Wishart and assuming that some of the

parameters of the model can be estimated with negligible error, Otto and Bell (1995)

smooth the small area variances using a model that includes a term accounting for small

area variability of the true covariance. Instead of modeling the within small area variances

with the aim of improving the small area estimates, Wang and Fuller (2003) start with the

usual empirical best linear unbiased predictors (EBLUP) and their inherent assumption of

fixed variance. Their aim, however, is to provide valid estimates of MSE for an EBLUP by

subsequently accounting for the fact that the within small area variances use plug-in

estimates.

In addition, the direct small area estimates may not have a distribution near normality.

By definition, the small areas have small samples and the usual practice of appealing to

normality through large sample asymptotics may not apply.

An alternative approach to accounting for the variance of the direct small area estimates

is to model below the small area level. This approach is often referred to as using a “unit

level model” (see, Rao (2003), p. 76). Due to the use of within small area models,

individual-level data can be used, and error due to an unknown within small area

variability can be accounted for and estimates of the finite population parameter with

accompanying variances can be made. This last point can be contrasted with the aggregate

level approach which assumes that small area finite populations parameters are fixed with

no inherent internal variability. The unit level model approach has been shown to be

readily applied when one can use hierarchical models of independent distributions. In a

Bayesian context, models which correctly account for the unknown variability of within

small areas are similar to that proposed by Gelfand et al. (1990). Although normal
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hierarchical distributions are often used for location parameters and the inverse gamma

distribution for scale, the unit level model allows one, for example, to incorporate

generalized linear models to account for discrete data with any variety of hierarchical

distributions. A difficulty with the unit level model approach is in selecting a model that

accurately accounts for the sample selection process as well as the underlying population

distribution. There have been few attempts of using unit level models when the design is

informative. Arora and Lahiri (1997) model a sample weighted average of unit level

measurements; however, the underlying model is based on the observations being

independently, normally distributed.

The model to be used here is a unit level model of both individual and housing unit

characteristics. It is a unit level model, devised to account for within housing unit

clustering and the discrete, (nonnormal) nature of the observations. This type of model

avoids the need to assume that within tract variance estimates are measured without error.

This model also avoids making assumptions that tract-level summary statistics are

normally distributed. In addition, this model automatically incorporates clustering effects

due to the ACS sample selection of entire housing units and may be useful for other

cluster-based surveys that have no other sample design components that are informative.

Estimates, and their estimated precision, are produced using Markov chain Monte Carlo

(MCMC) methods via a nonsubjective Bayesian approach. The aim of this work is to use a

unit level model to provide a small area estimation method that acknowledges the fact that

within tract-level sampling error is unknown and is dependent on the clustered sample

selection while incorporating this source of error into the inferential framework.

A secondary aim is to compare the model and resulting estimates to a close competitor that

is based on normal approximations. The resulting model is developed in Section 3. If the

normal approximations used are benign, inferences should be the same between the two

models. In this case, the approximate model would be preferred on computational grounds.

While still requiring MCMC methods, estimation from the approximate model is not as

computationally intensive; it requires only Gibbs sampling instead of Gibbs sampling with

an additional proposal distribution.

The model used here accounts for possibly different poverty rates for family members in

a housing unit (who are either all in poverty or not) and unrelated persons (who have an

individual poverty index) living in the same housing unit. The model includes a provision

that the poverty status of unrelated individuals may depend on the poverty status of the

housing unit’s family. In order to account for the sampling variability and to make

estimates at the tract level, a hierarchical multinomial model of housing unit

characteristics is used. It is shown that the model is good enough to reproduce estimates

for within tract variances comparable to a standard jackknife approach while additionally

accounting for the model-based variability of these estimates. Model-based (indirect)

tract-level estimates of poverty rate, persons per housing unit and occupancy rate are of

interest here.

The same ACS test site dataset, used by Chand and Alexander (1999), will be used here.

It consists of a sample containing 163 census tracts in Multnomah County, Oregon,

collected in 1996. A sampling fraction of 15% was used for this sample. The distribution

of the number of sampled housing units varied considerably across tracts. The median
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sample size is 192 housing units. About 5% of the sampled tracts have 47, or fewer,

housing units in the sample and about 95% have at least 351.

1.1. The American Community Survey (ACS)

The American Community Survey has been developed by the U.S. Census Bureau as a

way to obtain information throughout the decade like that obtained in the once-a-decade

decennial census long-form. The data collected on the decennial census long-form is in

demand and used repeatedly throughout the decade, in spite of its degrading timeliness.

The ACS is planned to fill the timeliness gap and provide more up-to-date information on

social, economic, housing, and financial characteristics for both the nation and for small

geographic areas, such as census tracts. The ACS will be fielded continuously throughout

the year via monthly samples. Sampling will be spread, continuously, across the country

via a systematic sample of housing unit addresses (with a group quarter component added)

obtained from an up-to-date address list. The initial contact to a sampled unit is by mail.

Nonresponse followup is by telephone, when a telephone number can be linked to an

address. Otherwise, those nonrespondents without a linked telephone number or who do

not respond by telephone are subsampled (to defray costs) and followed up by face-to-face

interview. The basic sample design is relatively straightforward, resembling the long-form

sample but on a smaller scale. As in the long-form, housing units are stratified by

governmental units, with housing units in smaller governmental units being oversampled.

A systematic sample of housing units, spread over the United States, is then taken. Full

implementation for persons not living in group quarters began in January of 2005. At that

time, the sampling rate was approximately three million addresses per year. Group Quarter

residents will be added to the sampling frame in 2006. Test sites for the ACS have been

fielded since 1996. In that first year, four test sites were chosen. This number was

expanded to 31 test sites in 36 counties in 1999. In addition, a nationally representative

sample, in about 1,200 counties has been taken since 2000, partly as a comparison with the

2000 decennial census long-form results. More details on the ACS design and

implementation can be found at the U.S. Census Bureau’s web site: http://www.census.

gov/acs/. More details on the concept of a continuous measurement survey and its

application are provided by Alexander (2002).

1.2. Small area estimation for the American Community Survey

Consisting of a sample of approximately three million housing units annually that are

geographically spaced, the size and breadth of the ACS give a new meaning to small area

estimation. By executing the continuous measurement concept of Leslie Kish’s, as stated in

Alexander (1998), the ACS can produce estimates made by accumulating samples over

years or across domains. Direct state estimates can be made from the ACS for areas

(or domains) that are usually thought of as small areas with respect to the sample sizes in

other national surveys. For example, Alexander (1998) recommends that direct annual

estimates can be made precisely for areas with a population of 65,000 or larger, and direct

estimates can be made for areas with a population between 30,000 and 65,000 by averaging

two years of data. He also states that areas with a population less that 15,000 such as census

tracts, will require five years of data to make precise direct estimates. Although much can
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be done using only direct estimates there may still be a need for indirect estimates of

small areas, for example annual estimates of census tracts. To this end, the U.S. Census

Bureau has supported a research effort of indirect small area estimation.

Methods for indirect, small area estimation from the ACS began about the same time as

the survey began being field tested. As an aid to improve small area estimates of tract-level

unemployment rates as measured in the CPS, Chand and Alexander (1995) apply a

regression model with an additional random effect for each small area to the arcsine

squared root transformation of CPS direct estimates of the unemployment rate. Here, the

ACS measurement of the unemployment rate is used as one of the regression variables.

(For this article, there was no ACS data available and simulated data was used.) The

sampling variances are treated as fixed and known but actually estimated using the

standard CPS variance curve formula. Estimates are compared and contrasted using

several criteria. An adjustment is made that forces the small area estimates to sum up to

one selected larger area design based estimate. Standard diagnostics were applied to the

residuals from the model. This basic model and approach are continued in Chand and

Alexander (1996) for estimation of ACS tract level estimates of the proportion of persons

below poverty. A logistic link function is used in addition to the arcsine squared root link

function. Regression variables used are tract-level data from the 1990 census and

(simulated) tax filer data. Results using simulated data from the ACS in Alameda County,

California are presented. In Chand and Alexander (1999), actual ACS data from three of

the four 1996 test sites along with IRS tract level regression variables such as median

income and per capita income are used to make estimates using an arcsine squared root

link. The within small area variances are estimated by jackknifing the transformed sample

proportion by placing one housing unit in its own jackknife cell. These variance estimates

are subsequently treated as fixed. In addition to a comparison of four different estimates

from the model, small area estimates are made from a subsample and compared with the

more precise direct estimates obtained from the whole sample. Limited results of residuals

are presented for Brevard County, Florida.

Chand and Malec (2001) subsequently modified the basic arcsine squared root model to

include a unit level component in order to model the within tract-level variance. The aim

of this work was to determine whether the model was adequate enough to account for the

within tract variances, and whether use of the model produced estimates that were

different from the estimates produced from the aggregate level model. Both approaches

were implemented using Bayesian methods and posterior means were used as estimates.

Estimates were made for tract-level poverty rates in Multnomah County, Oregon. Using

one housing unit per jackknife cell, as in Chand and Alexander (1999), it was

demonstrated that replicate samples produced entirely from the model resembled the

actual sample, in terms of its within small area jackknife estimates of variance. However,

there were differences between the resulting estimates when using the aggregate or unit

level approach. For large sample sizes, the unit level model estimates tended to be closer to

the direct estimates than to those from the aggregate model, exhibiting less borrowing

from outside the areas but comparable posterior variance. Although there is no gold

standard with which to compare the two estimates, the aggregate level model can be

viewed as a special case of the unit model since the unit level model was able to reproduce

the within variance estimates.
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The present work extends Chand and Malec (2001) in several ways. First, a logistic

model is used. The arcsine squared root model was difficult to implement because the

transformed sample proportions (and transformed parameters) are constrained. A logistic

model is much easier to implement. The model was used to produce new, predicted,

samples used to help validate the model by comparing the predicted samples to the

observed samples. For each predicted sample, direct estimates of the within-tract variance

as well as tract level estimates of poverty rate can be made. By predicting a large number

of these new samples, confidence intervals of these direct estimates can be made from the

model. If these intervals are consistent with the observed data, there is no serious bias that

can be observed relative to the amount of error present. To avoid the possibility that the

model has just incorporated too much error so that the confidence intervals are large

enough to include anything, the gain in the precision in the small area estimates is also

evaluated. If the model does not exhibit any serious biases with respect to direct estimates

of population moments and if the resulting small area estimates adequately reduce

precision we consider the estimates as good candidates for use. Lastly, this work contains a

more focused evaluation of the use of the normality assumption employed at the small area

level. The model and procedures used are identical except for the use of normal

likelihoods instead of binomial and multinomial likelihoods.

2. The Population Model

The American Community Survey is a systematic sample of housing units. It is assumed

that the sample of housing units can adequately be approximated by a simple random

sample. There may be a selection bias within housing units; e.g., persons within a housing

unit may have correlated responses. An extreme example of this is in measuring poverty

because poverty is assigned to an entire family, resulting in a perfect correlation among

persons in the same family.

Since person characteristics tend to cluster within households, a model that treats

individuals as independent observations is inappropriate. A model that can account for

some degree of within-housing-unit correlation will be used here to circumvent this

problem. Since “borrowing strength” is directly related to the amount of within and

between variance, not accounting for this error could bias the results. The housing unit

model will automatically adjust borrowing based on the uncertainty of the variance

estimates.

Within a state, a two-stage model is employed. A model of housing unit characteristics

is postulated. Then, within a housing unit, a model of individual characteristics within a

housing unit is provided. In this preliminary development, housing unit size and

composition into family members and unrelated housing unit residents are modeled.

Subfamilies are considered part of the family and share family characteristics. In this

application persons below poverty are of interest. The salient feature of the model is that

all members of a family are either in or out of poverty. Unrelated individuals will have

their own unique poverty status. However, a model is employed which will account for

possible correlation between family poverty status and the poverty status of unrelated

individuals within the same housing unit. Further modeling of family characteristics as a

function of housing size, demographic characteristics, and so on could be investigated in
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the future. As in Chand and Alexander (1995), administrative records are employed to

model tract variability of poverty rates.

2.1. Notation and distributional assumptions

In order to utilize tract-level data to estimate possible unique tract-level features, the above

models will all have tract-level-specific parameters. A hierarchical model across tracts,

within a state, will be specified in order to increase the sample size while estimating

common features across tracts.

2.1.1. The housing unit composition model

For each housing unit, h, in tract i, both the housing unit composition and the poverty status

of all individuals within the housing unit can be measured. Housing unit composition

consists of family size and the number of unrelated persons living in the housing unit. For

housing unit (i,h), denote these two counts by cfih and cuih, respectively. This includes

vacant housing units ðcfih; cuihÞ ¼ ð0; 0Þ. By convention, occupied housing units will always

have one, and only one, family. This definition of housing unit composition represents the

most basic description of a housing unit’s inhabitants needed to define person-level

poverty, since an entire family is either in poverty or not and each unrelated individual has

his or her own poverty status. The poverty status for all persons in housing unit (i,h), can be

described by indicator variables of family composition and of poverty status.

Denote the type of composition of the household by the multiple-valued indicator dih

dih ¼ k if ðcfih; cuihÞ ¼ ðgk; ukÞ

where it is assumed that the T unique types of housing unit composition pairs, ðgk; ukÞ,

k ¼ 1; : : : ; T , are identifiable from the sample (or enough are identifiable to be used to

approximate the collection of unique types). For the illustration using the 163 census tracts

in Multnomah County, Oregon T ¼ 54, 0 # gk # 17, and 0 # uk # 9.

The distribution of housing unit composition within tract is:

Pðdih ¼ kjpikÞ ¼ pik {dih}h independent given {pik}k

The Bayesian convention of using the “conditioning line” to show when model parameters

are considered fixed is followed here.) Conditional on the pik,

h[s

X
I½dih¼k� ¼ aik ð1Þ

form sufficient statistics.

The joint distribution of _ai ¼ ðai1; : : : ; aiT Þ is multinomialðai:;pi1; : : : ;piT Þ

Conditional on ai: the total number of sampled housing units in tract i (ai: ¼
PT

k¼1 aik).

Define the transformations:

uik ¼ ln
pikPT

l¼kþ1 pil

 !
; k ¼ 1: : : T 2 1 ð2Þ

As a result, given the number of sampled housing units in tract i and, when the parameters

ðui1 : : : ; ui;T21Þ are fixed, the likelihood of the housing unit parameters can be obtained
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from the joint distribution of _ai, i.e.:

pð_aijai:Þ /
YT21

k¼1

euikaik ð1þ euik Þ2
PT

l¼k
ail

n o
ð3Þ

Completing the hierarchical model, specify:

uik , Nðmk; g
2
kÞ; independent; i; k ¼ 1: : : T 2 1 ð4Þ

Note that a model allowing for some dependence between the uik may be more

appropriate. Further modeling to discern this was not attempted here. However, as will be

shown, the independence model employed appears to be adequate for predicting the

attributes of interest in this article.

The Housing Unit Composition model is defined by (3) and (4). Once a prior is provided

for m1; g
2
1; : : : ;mT21; g

2
T21, Bayesian methods can be employed.

As shownbyHobert andCasella (1996), the use of improper priorsmay result in improper

posteriors when using hierarchical models. Strategies for avoiding this problem while still

using diffuse priors have mostly centered on the use of uniform shrinkage priors

as demonstrated by Strawderman (1971), Christiansen and Morris (1997) and others.

Natarajan andKass (2000) apply these techniques to a generalizedmixedmodel, and hence,

can be readily adopted to the setting here. Specifically, a uniform improper priorwill be used

for mk. In addition, an approximate uniform shrinkage prior will be used for g2k of the form:

prðg2kÞ / 1þ g2k ~pðzkÞð12 ~pðzkÞÞ
i[s

XXT
l¼k

ail=ai:

24 3522

where, the sample counts, ail, are defined in (1), zk are any given known constants (to be

specified shortly), and

~pðzÞ ¼ e z=ð1þ e zÞ

Natarajan and Kass (2000) show that the class of priors, in which this prior belongs, are all

proper for any zk. In addition, they suggest substituting the MLE of mk, based on a fixed

effect model (i.e., assuming g21 ¼ : : : ¼ g2T21 ¼ 0), into zk. It is recognized that basing

any prior on even a part of the data in the likelihood precludes the direct use of Bayes

theorem for posterior inference. However, Natarajan and Kass state that treating zk as if it

does not depend on the data appears to only have a minor effect on the posterior. Their

suggestion is followed here.

2.1.2. The poverty status model

Given the housing unit composition, poverty status (i.e., 1 for being in poverty and 0

otherwise) will be defined for the family as a whole using the indicator xFih. Specifically,

xFih equals 1 if the family is in poverty and equals 0, otherwise. Similarly, all unrelated

family members (if any) requires their own indicator, xUih1, xUih2, : : : to denote their

poverty status. The set of indicators, _xih ¼ ðxFih; xUih1 : : : ; xUihudih Þ denotes the poverty

status of the entire housing unit.
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The distribution of family poverty is defined as independent Bernoulli:

PðxFih ¼ 1jp0iÞ ¼ p0i

The poverty status of the unrelated individuals within a housing unit is also independent

Bernoulli, given the associated family’s poverty status. Specifically, the probability that an

unrelated individual is in poverty, given that the housing unit’s family is in poverty is

denoted by pPi. Similarly, the probability that an unrelated individual is in poverty, given

that the housing unit’s family is not in poverty is denoted by pNi. Similarly,

PðxUihj ¼ 1jxFih; pPi; pNiÞ ¼
pPi; if xFih ¼ 1

pNi; if xFih ¼ 0

(

Completing the model between tracts, define the logits:

ln
p0i

12 p0i

� �
¼ _z0i _bþ ti

ln
pPi

12 pPi

� �
¼ _z0i _bþ ti þ nP and

ln
pNi

12 pNi

� �
¼ _z0i _bþ ti þ nN

where _zi are tract-level covariates available for all tracts and

ti , Nð0;s2Þ

The _zi are the known tract-level IRS covariates used by Chand and Alexander (1995) in

modeling poverty status:

zi1 ¼ 1

zi2 ¼ ln ðmedian incomeÞ

zi3 ¼ ln ðper capita incomeÞ

zi4 ¼ ln ðQLÞ

zi5 ¼ lnðQU)

zi6 ¼ 2sin21
ffiffiffiffiffiffi
PV

p
, where QL, QU, and PV are respectively, the lower quartile income, the

upper quartile income, and the proportion of persons below poverty level in the tract.

Functionally independent uniform, improper priors are used for _b, nP, and nN . As with

the housing unit model, an approximate uniform shrinkage prior, see Natarajan and Kass

(2000), is used for s2. In this case,

prðs2
kÞ / 1þ s2

k
i[s

X
{n0i ~p0ið12 ~p0iÞ nPi ~pPið12 ~pPiÞ nNi ~pNið12 ~pNiÞ}=nHi

24 3522

Here,

~p0i ¼ e _z
0i_b=ð1þ e _z

0
i _bÞ

~pPi ¼ e _zi _bþ ~nP=ð1þ e _z
0
i _bþ ~nP

Þ and

~pNi ¼ e _z
0
i _bþ ~nN=ð1þ e _z

0
i _bþ ~nN

Þ
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where _
~b, ~np, and ~nN are the MLE estimates of the person level model with all ti ¼ 0.

Lastly, n0i, nPi, and nNi are the number of sampled families, the number of unrelated

persons in sampled housing units of families in poverty, and the number of unrelated

persons in sampled housing units of families not in poverty, respectively.

Given n0i, the number of sampled families in tract i (i.e., the number of occupied

sampled housing units), sufficient statistics for the joint distribution of {_xih}h[s are:

m0i ¼
h[s

X
xFih

nPi ¼
h[s

X
xFihudih

mPi ¼
h[s

X
xFih
Xudih
j¼1

xUihj

nNi ¼
h[s

X
ð12 xFihÞudih

mNi ¼
h[s

X
ð12 xFihÞ

Xudih
j¼1

xUihj

The likelihood of the person level model parameters can be obtained from the joint

distribution of m0i, mPi, mNi, nPi, and nNi, i.e.:

pm0i

0i ð12 p0iÞ
n0i2m0i pmPi

Pi ð12 pPiÞ
nPi2mPipmNi

Ni ð12 pNiÞ
nNi2mNi ð5Þ

The complete likelihood is the product of the two likelihoods in (3) and (5), since the

distribution of person level outcomes was specified conditionally on the housing unit

characteristic outcomes.

3. An Approximate Model

As stated in the introduction, a normality assumption based on an appeal to large sample size

is often applied to the direct estimates in each small area, even though these sample sizes are

small. To evaluate the effects of this assumption, empirically, for this example, the closest

normal approximation to the model used here, will be employed and evaluated.

The following model uses the two approximations repeatedly.

Approximation 1. For a sample proportion p̂ ¼ m=n, where m , binomialðn; pÞ,

approximately

sin21
ffiffiffî
p

p
, Nðsin21 ffiffiffi

p
p

; 1=4nÞ

Approximation 2. When pðmÞ ¼ em=ð1þ emÞ and m̂ is a consistent estimator of m, the

Taylor linearization of pðmÞ provides an adequate approximation:

sin21
ffiffiffiffiffiffiffiffiffi
pðmÞ

p
< sin21

ffiffiffiffiffiffiffiffiffi
pðm̂Þ

p
2 m̂ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm̂Þð12 pðm̂ÞÞ

p
þ m 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm̂Þð12 pðm̂ÞÞ

p

Applying these approximations to the housing unit composition model, define ~mk to be the

MLE from the fixed effect model specified by uik ¼ mk instead of assuming uik has a

distribution as in (2).

Journal of Official Statistics420



Define gij ¼ sin21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aij=
PT

l¼j ail

q
j ¼ 1; : : : ; T 2 1. Using the two approximations one

may infer that

gij , N cj þ bjuij; 1

,
4
XT
l¼j

ail

 ! !
where bj ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð ~mjÞð12 pð ~mjÞÞ

p
, cj ¼ sin21

ffiffiffiffiffiffiffiffiffiffi
pð ~mjÞ

p
2 ~mjbj, and pð ~mjÞ ¼ e ~mj=ð1þ e ~mjÞ.

The resulting housing unit component of the likelihood is approximated by the normal

distribution:

pðgi1; : : : ; giðT21Þjui1; : : : ; uiðT21ÞÞ /
YT21
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ail

h i
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Expanding around theMLE estimates _
~b, ~np, and ~nN of the person levelmodel with all ti ¼ 0,

one has the following approximation to the joint distribution of the person level model:
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where g0i ¼ sin21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0i=n0i

p
, gPi ¼ sin21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mPi=nPi

p
, gNi ¼ sin21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNi=nNi

p
and

b0i ¼
1
2
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q
c0i ¼ sin21
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q
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bPi ¼
1
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q
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~bþ ~nPÞbPi

bNi ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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q

2 ð _z0i _
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The distributions of the remaining parameters of the model are specified identical to the

exact model given in Section 2.

4. Finite Population Parameters of Interest

For tract i, estimates of the per capita poverty rate, the average number of persons per

household and the occupancy rate can be estimated using the model and accompanying

data. These three population characteristics can be expressed in terms of the model in the

previous section.

Let k0 be the vacant household composition indicator (i.e., ðgk0 ; uk0Þ ¼ ð0; 0Þ). The

population housing unit occupancy rate is defined as:

OCRi ¼ 12

PHi

h¼1 I½dih¼k0�

Hi
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The number of persons per housing unit in tract i can be written as:

PPHi ¼

PHi

h¼1 ðgdih þ udihÞ

Hi

Lastly, the per capita poverty rate in tract i can be described as:

POVRi ¼
POViPHi

h¼1 ðgdih þ udihÞ

where the total number of persons in poverty in tract i is defined as:

POVi ¼
XHi

h¼1

xFihgdih þ
Xudih
j¼1

xUihj

5. Estimation

Estimates of both location and scale will be made using Bayesian predictive inference.

Briefly, the predictive distribution of all unsampled indicators that make up OCRi, PPHi,

and POVRi is obtained based on the model assumptions and the posterior distribution of

the model parameters. The posterior distributions are obtained using one block at a time

MCMC algorithm (Chib and Greenberg 1995) with either Metropolis/Hastings steps or

Gibbs sampling steps within blocks.

Specifically, variates from the full conditional posterior of the uik’s and the ti’s are

obtained one at a time using a normal proposal function with mean and variance

corresponding to the posterior mode andHessian of the posterior and aMetropolis/Hastings

rejection step. Variates from the joint, full conditional posterior distribution of _b, nP, and nN
are obtained in a similar manner using their posterior mode and corresponding Hessian.

The conditional posterior distribution of mk is normal and can be sampled from directly.

As in Natarajan andKass, the conditional posterior of the variance components are sampled

by using an inverse gamma proposal distribution obtained by replacing the approximate

uniform shrinkage prior with Jeffreys’ prior (i.e., where the prior of log of the variance

component is constant). This is followed by a Metropolis/Hastings rejection step.

Gibbs samplers are used for the new features in the approximate model. The computational

burden on developing estimates from the approximate model is much less than that of the

exact model. For both models inference was possible after discarding the first 500,000

iterations and using the next 700,000 for estimation. One long chain was run. The burn-in

period (i.e., the iteration number in which the MCMC variates are treated as actual samples

from the posterior) was assessed visually by plotting the posterior parameters versus the

MCMC iteration number. Posterior means were estimated by averaging all iterations

together after the burn-in period. To reduce the effects of correlated data, posterior variances

were obtained by calculating the sample variance based on every 100-th observation.

The resulting 100 sample variances, each based on 7,000 data values, were then averaged to

make the final estimate. There is a variety ofmethods for assessing both burn-in time and the

MCMCsample size needed; each has apparent limitations. In a production setting, a number

of these methods (including assessing multiple runs, Gelman and Rubin (1992)) should be
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presented. In addition, more efficient methods such as the use of “Rao-Blackwellization”

could be employed to speed up the estimation.

Due to the priors used, specialized software in Fortran was developed. However, the

procedure could have been implemented in SAS IML or Matlab. Using other priors,

WinBugs could be used.

5.1. Assessment of the model using the observed and predicted sample

Since a novel model for within tract variance that incorporates both housing unit level and

person level characteristics is being advocated, the first assessment is how well the model

describes the within tract variances. One way of assessment is to examine how well the

model can reproduce the original estimates derived from the observed data (e.g., see

Gelman et al. (1995), Section 6.3) By using the model to generate a new set of sample data,

the distribution of a jackknife estimate of the variance of the arcsine squared root

transformation of the tract sample poverty rate can be empirically estimated. The jackknife

used is based on housing units to account for within housing unit correlation. Specifically,

the variance of the arcsine squared root of the sample proportion of persons in poverty, in a

tract, is obtained for each sampled tract. This is accomplished by first randomly grouping

housing units (the sampling unit) into jackknife cells. The arcsine squared root

transformation is used because of its variance stabilizing property. Figure 1 compares 95%

simultaneous coverage intervals, Besag et al. (1995), from the model-based predictive

distribution of the jackknife standard deviation with the actual jackknife standard

deviations from the original sample. (Note: since many tracts have nearly the same sample

Fig. 1. Observed jackknifed estimates of variances vs. 95% simultaneous prediction intervals for each sampled

tract (ordered uniformly by sample size)
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size, their confidence sets become obscured. The following four plots are spread out to

reveal each confidence set. An (identical) key, at the base of each plot, is included to

enable the reader to assess each tract’s sample size.) As can be seen, the model provides

good coverage of the observed jackknife estimates, indicating that the model can replicate

the within tract variances well. One can conclude that the model used is at least consistent

with the within tract variation observed. This figure also shows the degree of error of the

jackknife estimate of variance, as measured with the model. This is one example of error

that is often completely ignored and unaccounted for in aggregate-level small area

estimation modeling. In this example, this error can be sizable. The model presented here

both accounts for this error and automatically incorporates it into the final small area

estimates. The tracts are ordered by sample sizes and the increase in error as the within

tract sample size decreases is apparent.

The design-based estimates of tract-level poverty rate per person (povr), number of

persons per housing unit (pph) and occupied housing unit rate (occr) are similarly

compared to their model-based predictive distribution in Figures 2, 3, and 4, respectively.

As can be seen, each tract-level design-based estimate is, at least, comfortably covered by

the 95% simultaneous coverage intervals. As can be seen in Figures 2 and 3 there are tracts

which exhibit outlying estimates of poverty and of persons per housing unit, which the

model is still able to predict. It should be noted that, under full implementation, the ACS

will contain a nonzero sample size for every tract. Hence, the assessment in this section

should be adequate. However, other surveys may require estimates for small areas with no

sample size. In this situation, cross-validation leaving entire small areas out, should be

carried out. By including cross validation, one can assess how well the model can predict

for small areas that are outliers but have no sample size at all.

Fig. 2. Direct estimates of poverty vs. 95% simultaneous prediction intervals for each sampled tract (ordered

uniformly by sample size)
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Although this type of assessment does not rule out better models (with smaller

confidence intervals), it is a way to rule out serious model failures. This assessment does

not rule out the possibility that the model used is over-parameterized and produces large

probability intervals due to a poorly estimated model. As will be seen in Section 6, this is

Fig. 3. Direct estimates of persons per HU vs. 95% simultaneous prediction intervals for each sampled tract

(ordered uniformly by sample size)

Fig. 4. Direct estimates of HU occupation rate vs. 95% simultaneous prediction intervals for each sampled tract

(ordered uniformly by sample size)
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not the case; the posterior variances and posterior coefficients of variation (CV)

accompanying the key small area estimates are reasonably small.

6. Small Area Estimates

The purpose of modeling this data is to provide small area estimates at the tract-level with

accompanying precision. Figures 5, 6, and 7 provide posterior means of tract-level poverty

rate, tract-level persons per housing unit, and tract-level occupancy rate, respectively.

These tract-level estimates are ordered by tract housing unit sample size and sample

estimates are included as a reference. As typically seen with hierarchical models, the

model based estimates deviate less from the sampled estimates as the within tract sample

size increases, a product of decreased borrowing as the sample size increases. In all three

graphs, the exact model and the approximate model estimates are closer together for large

sample sizes. This illustrates that the approximation holds well for the large tracts coupled

with the fact that any differences due to borrowing outside of the tract from different

models is minimized for large samples. Although differences are apparent between the two

models for the smaller tracts, agreement is relatively close. The average absolute relative

error due to using the approximate model for estimates are 6.2% for estimated poverty

rate, 1.1% for estimated persons per housing unit and .2% for estimated occupancy rate.

The differences between the posterior variances from the approximate and the exact

model are more apparent, as seen in Figures 8, 9, and 10. The approximate model tends to

underestimate the accuracy of the poverty rate but overestimate the accuracy for both

average persons per housing unit and occupancy rate. It is not surprising that the

approximate model can overestimate the variance because the approximation, while based

on large sample theory, does not ignore any source of error. Using the approximate model

Fig. 5. Tract estimates of poverty rate
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to provide estimates of accuracy can be problematic, as evidenced in this example.

The average absolute relative error due to using the approximate model for variance

estimates are 57.9% for estimated poverty rate variance, 109.6% for estimated persons per

housing unit variance, and 36.3% for estimated occupancy rate variance.

Now that it is seen that estimates of variability are different between the exact and

approximate model, there is still the question of which model is better. By some lucky

Fig. 6. Tract estimates of the average persons per housing unit

Fig. 7. Tract estimates of occupancy rate
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combination of errors it is possible that the approximate model actually improves on

deficiencies in the exact model. Although models that are better than either the exact or

approximate model outlined here are possible, a comparison of the fit of these two models

will still be informative. As a model fitting criterion, the Bayesian predictive model

selection approach of Laud and Ibrahim (1995) is used. In particular, their “L-criterion” is

Fig. 8. Posterior variances of tract poverty rate

Fig. 9. Posterior variances of average persons per housing unit
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used which is a measurement of the squared root of the expected sum of squared

differences between observed tract-level sample statistics and their predictions from the

respective models. This criterion reflects the mean squared error of the predictions but

other criteria can be used. As seen in Table 1, the exact model provides a better fit than the

approximate model for sampled estimates of dOCROCRi, dPPHPPHi and dPOVRPOVRi, which are defined as

the sample-based counterparts to the finite population parameters of Section 4:

dOCROCRi ¼ 12

P
h[s I½dih¼k0�

nHi

dPPHPPHi ¼

P
h[s gdih þ udih

nHi

and

dPOVRPOVRi ¼
POViP

h[s gdih þ udih
where

dPOVPOVi ¼
XHi

h[s

xFihgdih þ
Xudih
j¼1

xUihj

Fig. 10. Posterior variances of occupancy rate

Table 1. L-criteria for comparing models

Sample statistic Exact model Approximate model Percent difference

dOCROCRi .26175 .27553 25.3%dPPHPPHi 2.59695 2.81266 28.3%dPOVRPOVRi .68389 .75263 210.1%cSDSDi 1.55288 1.53563 1.1%
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For estimating the within tract sampled standard error, SD̂i, as measured by the squared

root of the tract-level sample size times the jackknife tract variance, it can be seen that the

approximate model does slightly better but that the percent difference is small relative to

the other comparisons. Overall, the exact model appears to provide a much better fit to the

observed data. Other models (and even other approximations) may provide a better fit than

the two used here. However, the exact model used here does appear to capture the salient

features of the data. Also, the approximate model may produce estimates of precision,

which are very different from the exact model.

For most tracts and most estimates, the exact model provides estimates with adequate

precision for many purposes. Figure 11 lists the posterior CV’s (i.e., the squared root of the

posterior variance divided by the posterior mean) for the key estimates and tracts. Most

poverty rate estimates have a CV between 20% and 30% with a few exceptions. Estimates

of occupation rate and of persons per housing unit generally have a CV below 10%.

7. Conclusions

In general, a model and a method of validating the model that does not require knowing the

actual population values of the small areas is presented. Modeling allows one to make

more efficient estimates, if the model is correct. Here, the correctness of the model is

assessed by comparing predicted sampled quantities with those actually observed.

If developed further, more evaluations could be made, however. For example, through

simulation from known population models, the frequentist properties of the estimates

should be reasonable. In addition, the model used here has assumed that data is missing at

random within a census tract.

Fig. 11. Posterior CV of estimates

Journal of Official Statistics430



A model describing housing unit composition and person level outcomes was

formulated using a joint multinomial/binomial model. The primary goal of providing a

methodology to provide estimates of both level and accuracy for small areas, without

making restrictive assumptions about the within small area variance, was achieved. The

approximate model, while still requiring MCMC methods for estimation, is much simpler

to work with and estimates can be made via Gibbs sampling, as opposed to the

Metropolis/Hastings proposal for the complete model. As demonstrated, the

approximation provides relatively accurate estimates of location but poor estimates of

scale. In general, the exact model also provides a better fit to the sampled data.

The multinomial/binomial logistic hierarchical model used here could be adapted to

many of the outcomes from the American Community Survey. This model framework can

be extended to include more covariates. For example, more dependence between

household composition and person-level outcomes could be built in. Housing unit

composition such as demographics could be included. Such models could provide for

small area estimates of demographic groups. As mentioned in Section 1, correlation

among household composition within a tract could be included. Because of the relatively

simple design of the ACS, the only major deviation of the sample collection from simple

random sampling has been accounted for in the model. In addition the multinomial and

binomial models with logistic link functions lend themselves to data modeling due to the

variety of software available.

As demonstrated, the exact model provides an adequate fit to the observed data (based

on the posterior predictions of sampled statistics), and generally provides precise small

area estimates (based on posterior CV’s). Satisfying both of these requirements suggests

that the model and methodology may be developed to produce defensible small area

estimates.
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