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Small Area Estimation via Generalized Linear Models

Alasdair Noble', Stephen Haslet’, and Greg Arnold’

Marker (1999) proposed a general linear regression model framework for small area esti-
mation. This framework included most methods that have been used for small area estimation
except structure-preserving estimation (SPREE) which was not included because it was non-
linear. Marker noted that SPREE can be expressed instead as a log-linear model. This article
considers a generalized linear model in the sense of Nelder and Wedderburn (1972). All of the
small area estimation methods discussed by Marker, as well as SPREE, are formulated in this
more general setting, and a range of further extensions is considered.

Using an explicit log-linear model for SPREE allows an alternative approach to the estima-
tion of the small area estimates. That is: model the census data with a log-linear model, fix the
parameters for the main effects and interactions that are held constant and reestimate the other
effects using the new margins from the survey data. This method is illustrated using New
Zealand unemployment data for nine North Island regions by two sexes and three age groups.

The advantage of using generalized linear models is that the range of models can be
extended beyond log-linear models fitted via SPREE. Models that contain any mix of discrete,
interval, or continuous variables are possible, as is illustrated by an example.
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1. Introduction

In recent years small area estimation has emerged as an important area of statistics as
organisations try to extract the maximum information from sample survey data. The
increasing costs of collecting sample survey data and the decreasing costs of computer
power have combined with improved methodology to allow more sophisticated methods
to be used to estimate statistics for small geographic areas or small domains of interest.
The sample sizes for the survey data used in these small areas are rarely large enough
to construct accurate direct estimators of any use. Good reviews of the various methods
have been written by Ghosh and Rao (1994) and updating this by Rao (1999).

Marker (1999) reviewed nine methods and organised them into what he called a gener-
alized linear regression framework which we shall refer to simply as linear regression. His
linear regression framework includes models with normally distributed responses and
various variance-covariance matrices including those of the form o’V, where V could
be a diagonal matrix with unequal entries, or a block diagonal matrix. Symptomatic
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accounting techniques which simply add or subtract variables as births and deaths to an old
census estimate are not stochastic, and so do not strictly fit his framework except as linear
models with no error term. The remaining eight techniques, vital rates, symptomatic
regression, sample regression, components of variance regression, synthetic estimation,
the base unit method, synthetic regression and structure-preserving estimation (SPREE),
are discussed in Marker (1999) and the first seven are shown there to fit into the linear
regression framework.

This article will extend the linear model to a generalized linear model as defined by
Nelder and Wedderburn (1972) and McCullagh and Nelder (1983) by including a link
function and allowing random response variables with distributions from the exponential
family. As the linear regression models are a subset of this broader classification, the seven
linear model methods above can also be classified within this wider framework. It will be
shown that SPREE can be included in this extended classification, as a special case, and
that the restriction in SPREE that only categorical variables can be used can be relaxed by
using the generalized linear model. This allows an alternative approach to the problem of
finding small area estimates given appropriate data.

2. Notation

Small area estimates are statistics estimated from sample survey data at a level of dis-
aggregation too small for the survey alone to furnish estimates of adequate precision.
Information from some other source is used to lend strength to the survey data. The ‘‘small
areas’’ may be geographic entities. Alternatively they may be domains within a popula-
tion, for example 20- to 25-year-old females of a particular ethnic group. The specific esti-
mates required may be these individual domains or some larger aggregation of them. In

3

this article we will use the term ‘‘small area’’ in a general sense but where it is clear
that we are referring to a domain of interest, or to subgroups within an area, these will
be explicitly stated.

Many of the models used below have the structure
Y=XB+e

where Y is a vector which is (some function of) a set of observations.

In some circumstances each element of Y corresponds to each small area or domain. In
others there is one element for each subgroup in each small area, or even for each observa-
tion in each small area. For random or mixed parameter models, Y includes expected
values of random parameters (see Schall 1991, for example). Generally Y will be defined
to be n x 1. In particular models, n will be defined explicitly.

3. The Generalized Linear Model Approach

Marker (1999) has shown that the majority of the methods for small area estimation men-
tioned in the introduction can be classified in a linear regression framework.
The model for a linear regression is

Y=XB+e 3.1)

where Y is a vector of continuous variables
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X variables are assumed known predictor variables
B is a vector of regression coefficients
€ s the error vector with mean zero and variance covariance matrix X which would
be o°I for a simple linear regression. In general X has to be a positive definite sym-
metric matrix but in practice it is most likely to be block diagonal.
Symptomatic accounting techniques fit the model by omitting the error term and using a
known B vector. The values of 8 are simply 1 or —1 depending on whether the variable is
added or subtracted. The other methods shown to fit Model (3.1) are

— Vital rates — Symptomatic regression
— Sample regression — Components of variance regression
— Synthetic estimation — Composite estimators

— Empirical Bayes, superpopulation, and other Bayesian approaches using
linear models.

3.1. Structure-preserving estimates

Structure-preserving estimates, via SPREE (Purcell and Kish 1980), update the cells in a
contingency table formed from previous census data so that they sum to the margins found
from new sample survey data. It uses the iterative proportional fitting (IPF) algorithm
(Deming and Stephan 1940), which is essentially raking, to fit the new margins. This
method does not fit the structure of the linear regression model, as noted by Marker
(1999). The contingency table can be written as a log-linear model but it cannot be
expressed directly as a linear regression model.

The concept which underpins SPREE is that of a log-linear model with all parameters
estimated from the census data. The new margins will change some of those parameters.
The assumption is that the remaining parameters (usually higher order interactions) stay
the same, and thus a new model, with higher order effects than can be fitted using survey
data alone, is found to estimate the small area counts. There are very clear data require-
ments which have to be fulfilled for this approach to work. First, census data are required
for the variable under consideration, or a variable to which it is closely related. Second,
sample survey data are needed for the variable of interest with values for the same explan-
atory variables and using the same categorisation as used in the census. In the traditional
SPREE method the census information will be from a recent census, and the variable of
interest will be the same as the one recorded in that census for a more recent period.
Sample survey data need to be collected not only for the same variable of interest but
also for the same categorical explanatory variables. An extension to this structure using
related rather than the same variables is given in Green, Haslett, and Zingel (1998).
The essential requirement is that the census and survey variables have the same cross-
product ratios for all (interaction) terms not refitted using the survey data. Green et al. con-
sider two differently defined measures of unemployment, and allow for measurement of
survey errors in both variables.

3.2. The Generalized linear model

The wider class of models which includes the linear regression models discussed in the
first part of this section is the generalized linear model (GLM). As the linear regression
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models are a subset of this wider class, those methods discussed earlier can also be
included in this generalized linear model framework. We will show that SPREE is impli-
citly a fitting procedure for a log-linear model, and so can also be included in this
wider class of models. We also will show how the general concept underlying SPREE
can be applied to other situations such as occur when explanatory variables are not
categorical.

The generalized linear model as defined by McCullagh and Nelder (1983) is briefly
introduced in this section. The model is

g(Yp) =XB+e (3.2)
where:

g() 1is a possibly composite (Thompson and Baker 1981), monotonic differentiable,
link function, which allows a wide variety of functions including the identity,
log, logit, probit, powers, etc. (Nelder and Wedderburn 1972). It is applied to
each element of Y, and g(Y,) like Y, is (nx 1)

Y, isa vector (nx 1) of values for the response variable, possibly supplemented by a
set of random parameter equations. These will have a distribution which may be
any member of the exponential family of distributions. (Note Y, = Y for the linear
regression model)

X isaknown (n X p) matrix of values each column of which is either a categorical or
continuous explanatory variable

B is a vector (p x 1) of parameters to be estimated

€ is a (transformed) vector (n X 1) of errors, or residuals.

The model as formulated above is linear in the parameters, 8, and the variance-
covariance matrix of e requires iterative fitting but, as for linear regression, powers or other
functions of the explanatory variables are allowed in the X matrix. Thus although the
model (3.2) describes a non-linear relationship between Y, and 8, the least squares or
maximum likelihood solution to (3.2) can be achieved by iterated generalized least
squares, where at each iteration a generalized least squares algorithm is applied to a linear
(rather than non-linear) model. The underlying variance-covariance metric changes at
each iteration and depends not only on Var(Y,) but also on the partial derivatives of
XB with respect to w = E(Y,). The estimation procedure iterates until convergence
between estimating the parameters 8 (and hence W) and estimating X. It has been shown
(del Pino 1989) that this results in maximum likelihood estimates of the parameters both
for a generalized linear model and for the wider class of linearisable non-linear models and
that the dependent variable in the generalized least squares algorithm both at each iteration
and at convergence is an affine function of Y. For ease of notation we can thus, in general,
set Y = g(Y,) so that Equation (3.2) can be written as

Y=XB+e (3.3)

provided we understand that the solution needs to be iterative because the variance-
covariance structure of the error process changes at each iteration.

The example which we will consider later is a nine by three by two contingency table of
count data with a Poisson distribution for the individual cells. It has been shown (for
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example in Bishop, Fienberg, and Holland (1975), Chapter 2) that such a table can be
modeled by a log-linear model and hence will fit the GLM framework. The log-linear
model is equivalent to a SPREE model

log(m) = XB + € (3.4

where mis a vector of counts with one count for each subgroup within each small area
a, i.e., for each of the n cells in the table, so that » = AS where A is the number
of small areas and S is the number of subgroups
X is the (n X p) design matrix
B is the (p x 1) vector of parameters
€ is a random error, as defined in Equations (3.2) or (3.3).
In SPREE as used in small area estimation we are generally fitting a saturated model, so
there is no error term.

More generally a generalized linear model will be fitted to census data and then some of
the lower order parameters in the model will be adjusted in line with sample survey data.
We can partition the design matrix and the vector of parameters into two parts, the
parameters that are estimated by the survey data and those that are not. Hence the two
models can be written as:

Y. =XBi. +X2B5. + € for the census data (3.5)
and
Y, = XiBi;, + XoBy + € for the survey data (3.6)

However, the survey data are not sufficiently detailed to estimate X,8,, so in SPREE we
assume that

X585 = XoBoy 3.7

Finally the cell estimates and hence small area estimates are predicted from the new
model. An explicit example is given in Section 5.

Green, Haslett, and Zingel (1998) note that the data from the census and survey do not
have to be for the same variable, and they suggest high correlation can be a useful but not
sufficient indicator of equal higher order interactions. The same comment applies even if
census and survey data are for the same variable from different time points.

From Equations (3.5), (3.6), and (3.7) it can be seen that while high correlation may
be a reasonable criterion to use the actual requirement is Equation (3.7), and this could
be true even if Y, and Y, are not highly correlated. If Y, and Y| are correlated then it is
still possible for Equation (3.7) to not hold if correlation between X; ;. and X, 3, pro-
vides the only basis of the correlation between Y. and Y. On the other hand if the cor-
relation of X,B,. and X;B;, is lower than of Y. and Y, then there must also be
correlation between X, 8,. and X, 8,, and the algorithm should produce useful estimates.
Essentially the same issue arises in all other methods of fitting small area estimates.
In SPREE it is hidden because the log-linear model is not explicit and the fitting is
carried out using iterative proportional fitting rather than by fitting an explicit log-linear
model.

One benefit, then, of the model using Equation (3.2) is that assumptions and model are
considerably more explicit.
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4. An Algorithm for SPREE Using the GLM

Traditionally SPREE models have been fitted using the IPF algorithm to fit a new margin,
or margins, to a census table. The census table data have generally been for the survey
variable but at an earlier time and the new margins have typically come from a sample
survey that is more recent than the census. All of those census-based main effects and
interactions that are not changed by the new sample margins must be sufficiently accurate
(unless replicate census data are available) for them to be assumed error free.

An extension discussed earlier is that the census table is not from an earlier census for
the same variable, but may be a previous or even more current census of a variable
strongly enough related to the variable of interest. The actual requirement is that it can
be assumed that in the generalized linear model (that is equivalent to the SPREE model),
the census and sample have the same non-main effects and interactions for all effects that
are not going to be re-estimated using the survey data. A further extension involves using
balanced repeated replicates for the sample data, and a range of census estimates under a
superpopulation model as projections, to provide sound variance estimates both for
parameters and small area estimates. The joint superpopulation-design variance for indi-
vidual cell estimates (or sums of cell estimates) can be decomposed into two conditional
variance components. The first of these can be estimated from the variation with the
margins fixed at the survey estimates and initial cell entries determined from a sequence
of census values for the cells. The second can be estimated by fixing the cell values at the
appropriate census figures and varying the margins based on balanced repeated replicates.
A more complete exposition can be found in Green et al. (1998). As an alternative to
balanced repeated replicates, jacknife estimates could be used for estimating variance
due to sampling error in the survey margins.

We now describe heuristically a simple alternative method for fitting the traditional
SPREE model.

A — Fit a log-linear model to the census data.

B — Decide on which effects/interactions will stay the same.

C — Constrain those parameters to be the same as for the model for the census data by
estimating the offset, X,f,., from Equation (3.6) for each cell in the table and sub-
tracting that from the data values.

D — Refit the model using the new margins from the survey. These may need to be
expressed in a table of the same order as the census data with only the new effects
and interactions present.

E — Predict the new cell values from the new model.

Details of how to apply this method in various statistical packages are given in the
Appendix.

5. Example

In New Zealand, Statistics New Zealand carries out a Household Labour Force Survey
(HLFS) quarterly and the Department of Work and Income (which was previously called
the Department of Labour, DoL, and Work and Income New Zealand, WINZ) collects
monthly data on registered unemployed. The New Zealand population was 3,618,300 at
5 March 1996 and the sample size for the HLFS is approximately 19,000 per quarter.
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The definitions of unemployed used by the two organisations differ. The two unemploy-
ment variables are highly correlated and this allows the association structure generated by
the Department of Work and Income data to be used for a SPREE approach to estimating
unemployment rates under the Statistics New Zealand definition (Green et al. 1998).
Statistics New Zealand uses the International Labour Organisation definition of unemploy-
ment. The Department of Work and Income has a more restricted administrative definition
of unemployment. Statistics New Zealand is interested in producing estimates of ILO
unemployment at Regional (16 nationally) and even Territorial Authority (74) level.
The sample sizes in the HLFS are too small for a number of Territorial Authorities for
Statistics New Zealand to publish direct estimates. Even some Regional Authorities
have larger errors than Statistics New Zealand would like. Thus the census data are pro-
vided by the Department of Work and Income and the sample survey data are the HLFS
from Statistics New Zealand.

For the example below, the data detailed here are restricted to the North Island of New
Zealand which includes nine of the sixteen national Regional Authorities. The unemploy-
ment counts are divided into the three age groups 15 to 24, 25 to 49 and 50 or over, and the
two sexes male and female.

The design matrix for the model is written with a constant term; sex is +1 for males and
—1 for females; for ages 15 to 24 Age 1 is +1 and Age 2 is 0, for ages 25 to 49 Age 1is 0
and Age 2 is +1, and for ages 50 and over both Age 1 and Age 2 are —1. Similarly, for the
nine regions, so that the parameter estimate for the last (and most southern) region, Well-
ington, is the negative of the sum of the parameter estimates of the other eight regions. The
interaction terms in the design matrix, which are all categorical, are simply products of the
appropriate main effects.

Letting the subscript ‘1’ denote sex, ‘2’ and ‘3’ denote age groups and ‘@’ =1,2,...A
denote area, the model fitted to the census data is:

log(m23,) = Bo + X181 + X208, + x363 + x(la)B(la) +.. .xEX)_l)BEZ)_U + interaction terms

where (3, is an intercept term. In this example the parameters denoted as 8.* to BEZ)_]) and

those denoted as interaction terms are not re-estimated from the survey data. Only (3, the

intercept, and (3, 8, and (33, which correspond to the margins for sex and the two age

groups, are to be re-estimated.

The data from the Department of Work and Income, in Table 5.1, are used to form the
census association structure for a saturated log-linear model and the fit for that model is
shown below. The data are for the quarter ending December 1996.

The HLFS survey data are contained in the marginal entries in Table 5.2.

Applying the algorithm described earlier:

Step A Estimate the log-linear model for the census data. The estimated parameters are
shown in Table 5.3.

Step B Select those parameters which remain the same, and those which will be changed.
These parameters have been selected because the new margins only give informa-
tion about the two age effects and the sex effect as well as a different population
size. Hence these effects and the constant term will change in the refitted model.
There are four independent new pieces of information and so four parameters will
change in the model. (Note that the survey data might also have been used to refit
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Table 5.1. Department of Work and Income census data: Counts of unemployed for the quarter ending
December 1996

Region Age groups
15to 24 25 to 49 50 and over
Northland Male 1,794.4 4,386.6 632.2
Female 1,060.3 2,555.0 465.0
Auckland Male 7,233.1 16,542.7 2,324.7
Female 5,040.4 8,104.5 1,796.9
Waikato Male 2,924.9 4,955.0 792.0
Female 2,047.8 2,849.2 654.0
Bay of Plenty Male 2,552.5 5,169.5 755.0
Female 1,862.4 1,681.2 601.0
Gisborne Male 680.0 1,511.0 203.0
Female 438.0 1,011.0 120.0
Hawkes Bay Male 1,819.9 3,470.9 550.0
Female 1,137.0 1,109.1 377.0
Taranaki Male 1,295.9 1,982.1 332.2
Female 896.0 1,530.7 277.1
Manawatu-Wanganui Male 2,552.7 4,287.6 752.0
Female 1,693.3 2,220.2 538.5
Wellington Male 4,073.4 6,911.3 1,145.7
Female 2,555.7 2,395.0 753.3

the Sex*Age 1 and Sex*Age?2 effects, if sufficiently accurate survey estimates
were available for these sub-populations.)

Step C Constrain parameters that stay constant to be the same as they were under the
census-based log-linear model.

Step D Refit the model using the new sample-based marginals from the HLFS. To do this
we need to build a new table from marginal data using only the effects that will
change, i.e., in this case construct the independent 3 X 2 table for the new age
and sex margins as in Table 5.2.

The elements in Table 5.2 are then divided by nine to give preliminary estimates for the nine

regions. Each of these values is then repeated nine times to generate the new data. This new

data includes information from the survey to estimate the constant term and the sex and two
age effects. The region effect and all interaction terms are estimated from the census data.

Refit the model to the new data with the necessary parameters constrained. The
parameter estimates are in Table 5.3. The 8, from Equation (3.5), are given in the top sec-
tion. The values from the census data are discarded, and replaced by the new estimates
from the survey data. The next section of the table are the coefficients which remain con-

stant, B, from Equation (3.5), from Step A.

Table 5.2. Independent 3 X 2 table of unemployed constructed from new margins from the HLFS survey data

Age groups
15t024 25to49 50 and over New margin for sex
Female 19,078 22,503 5,534 47,116
Male 25,156 29,671 7,296 62,125

New margin for age groups 44,235 52,175 12,831 109,241




Table 5.3. Table of coefficients for the full model with categorical variables for region, sex, and two age groups

Taranaki

—0.580

—0.106

0.040

0.020

0.083

Manawatu-Wanganui
0.097
—0.007

0.040

—0.065

0.006

B, Effects Constant Sex Agel Age?2
Estimated from census data 7.300 0.240 0.223 0.723
Estimated from survey data 7.226 0.105 0.374 0.505

B, Effects and interactions that are estimated from the census data and used in the final model. Main effects for Regions.
Northland Auckland Waikato Bay of Plenty Gisborne Hawkes Bay
—0.086 1.262 0.238 —0.308 1.142 0.077
Two-way interactions Sex*Age 1 —0.034 Sex*Age 2 0.118
Two-way interactions, Regions with Sex

—0.012 —0.018 —0.057 0.037 —0.013 0.091
Two-way interactions, Regions with Age 1

—0.207 -0.079 0.042 0.068 —0.078 0.057
Two-way interactions, Regions with Age 2

0.179 0.072 —-0.029 —0.130 0.239 —0.133
Three-way interactions, Regions with Sex and Age 1

0.068 —0.007 0.029 —0.086 0.026 —0.062
Three-way interactions, Regions with Sex and Age 2

—0.077 0.017 —0.025 0.166 —0.145 0.121

—0.123

—0.023
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Table 5.4. New estimates of counts for unemployment in each sex by age category for the nine regions

Region Age groups
15 to 24 25 to 49 Over 50
Northland Male 1,693.7 2,861.9 547.8
Female 1,312.3 2,185.7 528.4
Auckland Male 6,827.2 10,792.7 2,014.4
Female 6,238.3 6,933.1 2,041.7
Waikato Male 2,760.8 3,232.7 686.3
Female 2,534.5 2,437.4 743.1
Bay of Plenty Male 2,409.2 3,372.6 654.2
Female 2,305.0 1,438.2 682.9
Gisborne Male 641.8 985.8 175.9
Female 542.1 864.8 136.4
Hawkes Bay Male 1,717.8 2,264.4 476.6
Female 1,407.2 948.8 428.3
Taranaki Male 1,223.2 1,293.1 287.9
Female 1,108.9 1,309.4 314.9
Manawatu-Wanganui Male 2,409.4 2,797.3 651.6
Female 2,095.7 1,899.3 611.9
Wellington Male 3,844.8 4,509.0 992.8
Female 3,163.1 2,048.8 855.9

Step E Predict the new values for the table from the revised model parameters from Step D
(Table 5.4).

An iterative proportional fit for the same original table and the new margins yields the
same result but without estimating the log-linear model parameters.

The advantage of the explicit use of a generalized linear model is that the algorithm is not
then restricted to categorical data. Continuous variables may be incorporated and, via a care-
ful respecification of the model detailed for example in Goldstein (1995), random effects as
well as fixed effects may be fitted. The next section will demonstrate this greater flexibility.

6. A Quadratic Model for Age

The most detailed data that Statistics New Zealand collects is in five-yearly categories,
which makes 11 age categories for each region by sex. With the new algorithm we are
able to model this in a more parsimonious way using a quadratic term for the age groups.
In general the counts follow a curve which may be approximated by a quadratic. Additional
polynomial or other terms could be included but the purpose of this article is not to find the
best model, but simply to demonstrate that the new algorithm opens up a much wider range
of possible small area models than available in regression and SPREE.

Using the same algorithm as in Section 4 and the data in Tables 6.1 and 6.2 we estimate
the parameters in the model, in Table 6.3, and hence the predicted values in Table 6.4
below.

Table 6.1. The new unemployment marginals for the five-yearly age groups. The magin for sex stays as before

Age 175 225 275 325 375 425 475 525 575 625 675
Margin 24,760 19,475 14,254 11,325 9,965 9,067 7,564 5,214 3,654 3,269 694




Table 6.2. Counts for unemployment from Department of Work and Income data in five-yearly intervals
Census data in five-yearly age groups. Column headings are the centre of the age range for that group

Region 17.5 22.5 27.5 325 375 42.5 47.5 52.5 57.5 62.5 67.5
Northland M 882 912 968 954 918 869 678 402 180 50 0
F 525 535 540 535 511 485 484 235 178 52 0
Auckland M 3603 3630 3690 3666 3476 3032 2679 1520 631 174 0
F 2572 2468 2148 1863 1598 1386 1110 789 523 396 89
Waikato M 1523 1402 1298 1156 1008 893 600 459 263 68 2
F 1096 952 774 683 551 476 365 307 215 132 0
Bay of Plenty M 1302 1251 1219 1176 1077 927 771 451 231 73 0
F 953 909 534 382 270 261 234 220 186 143 52
Gisborne M 347 333 328 327 312 298 246 121 69 13 0
F 221 217 220 224 218 187 162 64 47 9 0
Hawkes Bay M 924 896 843 791 703 601 533 306 195 49 0
F 675 462 376 249 213 143 128 123 106 83 65
Taranaki M 690 606 554 485 397 326 220 176 116 40 0
F 470 426 406 355 308 256 206 142 93 39 3
Manawatu- M 1357 1196 1073 986 861 704 664 362 225 165 0
Wanganui F 911 782 683 555 427 316 239 201 158 100 80
Wellington M 2263 1810 1664 1513 1380 1268 1086 732 321 93 0
F 1413 1143 796 546 405 365 283 251 204 189 109

S]PPO ADIUYT PI2NDIUIL) DIA UOYDULLST DALY [JDULS :PJOULY PUD ‘NIISDY D]GON
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Table 6.3. Table of coefficients for the full model with categorical variables for region and sex, and linear and quadratic terms for Age

9¢

B, Effects Constant Sex Age Age squared
Estimated from census data 6.20135 —0.41529 0.05591 —0.00131
Estimated from survey data 7.50247 —0.54423 —0.02632 —0.00029
B, Effects and interactions that are estimated from the census data and used in the final model. Main effects for Regions.
Northland Auckland Waikato Bay of Plenty Gisborne Hawkes Bay Taranaki Manawatu-Wanganui
—1.54162 0.72169 0.41673 0.69281 —2.42406 0.53471 —0.53682 0.68335
Two-way interactions Sex by Age 0.04182 Sex by Age squared —0.00055
Two-way interactions, Regions with Sex

0.53136 —0.16852 0.17345 —0.76242 0.69340 —0.72056 0.69263 0.04976
Two-way interactions, Regions with Age

0.07943 0.02992 —0.00755 —0.03641 0.07922 —0.05184 0.00277 —0.03603
Two-way interactions, Regions with Age squared
—0.00091 —0.00035 0.00006 0.00046 —0.00100 0.00066 —0.00009 0.00045
Three-way interactions, Regions with Sex and Age
—0.03027 0.00867 —0.01273 0.04885 —0.04633 0.04922 —0.04676 —0.00479
Three-way interactions, Regions with Sex and Age squared

0.00035 —0.00011 0.00015 —0.00062 0.00061 —0.00062 0.00057 0.00008

soysuvis (01O Jo puinor



Table 6.4. Predictions for unemployment in five-yearly intervals

Predictions in five-yearly age groups. Column headings are the centre of the age range for that group

Region 17.5 22.5 27.5 325 37.5 42.5 47.5 52.5 57.5 62.5 67.5
Northland M 775 810 789 718 608 481 355 244 157 94 52
F 598 602 576 524 454 374 293 218 154 108 66
Auckland M 3177 3219 3057 2723 2274 1781 1308 900 581 352 200
F 3368 2675 2126 1691 1347 1074 857 684 547 437 350
Waikato M 1439 1239 1033 835 654 496 365 260 179 120 78
F 1393 1052 800 614 475 371 292 232 185 150 122
Bay of Plenty M 1182 1115 1001 855 696 539 397 278 186 118 71
F 1371 830 537 371 274 216 182 164 158 162 179
Gisborne M 299 299 281 248 206 161 119 82 54 33 19
F 149 254 241 214 177 138 100 68 43 25 14
Hawkes Bay M 858 781 683 575 464 361 269 193 133 88 56
F 906 528 332 225 165 131 111 103 102 110 127
Taranaki M 669 540 429 334 255 192 142 103 73 51 35
F 583 490 404 326 258 200 152 114 83 59 42
Manawatu- M 1281 1062 868 698 553 432 332 251 187 138 100
Wanganui F 1256 867 618 455 346 271 219 183 158 141 129
Wellington M 1976 1694 1415 1151 912 704 529 388 277 192 130
F 1976 1166 738 501 365 286 240 216 208 216 240
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From Table 6.1 the independent table can be generated (cf. Table 5.2) to use as data for
Step D.

We can compare these predictions with the predictions for the saturated model either
from SPREE using iterative proportional fitting, or via the generalized linear model algo-
rithm outlined in Section 5.

7. Discussion

We have shown that all of the traditional methods of small area estimation can be simply
expressed as members of the class of generalized linear models, and are thus closely
related. This modeling approach provides explicit parameter estimates, and explicit model
specification which ensures that the model assumptions are more transparent and amen-
able to checking.

We have introduced an alternative algorithmic approach to the traditional iterative
proportional fit for SPREE models to reestimate cell values in a contingency table
when new margins from sample survey data are available. This new approach has
been to model the contingency table explicitly as a log-linear model, estimate all of
the parameters for census data, and then adjust the parameters which can be accurately
estimated from the new survey data via revised parameter estimates from fitting the new
survey margins.

There are two distinct advantages to this approach. The first is that the log-linear
model used to model the contingency table and the assumptions of this model are expli-
citly stated. The approach also allows extensions into problems which the iterative pro-
portional fit cannot solve, since the new algorithm as outlined can be applied to any
generalized linear model, not only log-linear models. An iterative proportional fit solu-
tion is only possible for categorical variables which can be described by a contingency
table, while the generalized linear model can be used with continuous variables. With
this new approach the general concept underlying SPREE can be extended. Any census
data which can be modeled by a generalized linear model, and for which there exists sur-
vey data to adjust some of the parameter estimates initially determined from the census
data, is amenable to this method.

Although variance estimation has not been discussed in this article in detail, by using
replication methods such as balanced repeated replicates or the jacknife to provide a set
of alternative survey margins, and a range of census values to allow for census variation
over time, it is also possible to estimate parameter variances in the generalized linear mod-
els detailed in the earlier part of the article. (See Green et al. 1998 for further detail.) By
extension variance estimates for estimated means are also possible. Such variance esti-
mates by allowing for complexities in the survey design and for uncertainty in the census
values are much better than variances and standard errors available in standard statistical
packages from fitting the generalized linear model to a single set of census data and overall
survey estimates as new margins.
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Appendix
Computing in M1Win, Splus and SAS

M1Win

Set-up data: — Census data
— Design matrix
— Dummy variables for constants etc. These are required to set up
a hierarchical model with no variation at the higher levels. A
constant is used so that all of the data is nested in the same
higher level, since M1Win generally fits multilevel models.
— New data from the survey repeated the appropriate number of
times.
Model data — Run IGLS estimation using the census data.
Enter constraints — In the constraints window. Enter 1 by the variable and the value
of the coefficient for that variable at the bottom of the column.
Re-estimate new model
— Using the new data and the constraints.
Predict the new cells — Using the prediction window.

Splus

The data can be modeled in Splus using the glm function and a poisson distribution. Splus
includes the constant term by default so the design matrix does not need the constant term.
The census data is easily modeled:

census «— glm (y ~ X, family = poisson)

This gives the coefficients for those terms which will remain the same. They are then used
to produce an ‘‘offset’” for each y value by multiplying those coefficients by the columns
of the design matrix for those effects and interactions. Using the sample data, a design
matrix for the effects which will change and the offset, the new coefficients are estimated.

sample < glm (sampledata ~ Xa + offset(offsets), family = poisson)
The new coefficients are estimated and predicted cell counts can be calculated from the
full model.
SAS

SAS can be used in a similar way to Splus except it will not allow data to be negative or
non-integer. This causes a small rounding problem with the sample data as the predicted
cell counts are not whole numbers and the census data may also require some interpolation
if regional boundaries for the census and sample data do not match exactly.
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