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This article discusses the post randomisation method (PRAM) as a method for disclosure
control. PRAM protects the privacy of respondents by misclassifying specific variables before
data are released to researchers outside the statistical agency. Two variants of the initial idea
of PRAM are discussed concerning the information about the misclassification that is given
along with the released data. The first variant concerns calibration probabilities and the second
variant concerns misclassification proportions. The article shows that the distinction between
the univariate case and the multivariate case is important. Additionally, the article discusses
two measures for disclosure risk when PRAM is applied.
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1. Introduction

The post randomisation method (PRAM) is discussed in Gouweleeuw et al. (1998) as a

method for statistical disclosure control (SDC). When survey data are released by

statistical agencies, SDC protects the identity of respondents. SDC tries to prevent that a

user of the released data can link the data of a respondent in the survey to a specific person

in the population. See Willenborg and De Waal (2001) for a general introduction to SDC

including PRAM.

There is a close link between PRAM and randomised response (Warner 1965), a method

to ask sensitive questions in a survey. An early version of PRAM based on randomised

response is discussed in Rosenberg (1979). Differences and similarities between

randomised response and PRAM are discussed by Sande (1998) and Van den Hout and

Van der Heijden (2002).

The idea of PRAM is to misclassify some of the categorical variables in the survey using

fixed misclassification probabilities and to release the partly misclassified data together

with those probabilities. For example, variable X, with categories {1; : : : ; J}, is

misclassified into variable X *. The survey containing X * but not X is released together

with conditional probabilities P ðX * ¼ kjX ¼ jÞ for k; j [ {1; : : : ; J}. In this way

PRAM introduces uncertainty into the data: the user of the released data cannot be sure

that the information is original or perturbed due to PRAM and it becomes harder to
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establish a correct link between a respondent in the survey and a specific person in the

population. Since the user has the misclassification probabilities his or her analysis can be

adjusted by taking into account the perturbation due to PRAM.

When SDC is used, there will always be a loss of information. This is inevitable since

SDC tries to determine the information in the data that can lead to the disclosure of the

identity of a respondent, and eliminates this information before data are released. It is not

difficult to prevent disclosure, but it is difficult to prevent disclosure and release data that

are still useful for statistical analysis. Applying SDC means searching for a balance

between disclosure risk and information loss.

When the information in the data that can lead to a disclosure is contained in categorical

variables, PRAM is an alternative to SDC techniques such as global recoding (see

Willenborg and De Waal 2001, Section 1.8) and data swapping (see Dalenius and Reiss

1982 and Fienberg and McIntyre 2005).

This article discusses two ideas to make PRAM more efficient with respect to the

balance between disclosure risk and information loss. First, the article discusses the use of

calibration probabilities

P ðtrue category is jjcategory i is releasedÞ ð1Þ

in the analysis of released data and compares this with using misclassification probabilities

P ðcategory i is releasedjtrue category is jÞ ð2Þ

The idea of using calibration probabilities is discussed by De Wolf et al. (1997), who refer

to the discussion of calibration probabilities in the misclassification literature; see e.g.,

Kuha and Skinner (1997). We will elaborate the discussion and show that the advantage of

calibration probabilities is limited to the univariate case. Secondly, the article shows that

information loss can be reduced by providing misclassification proportions along with the

released data. These proportions inform about the actual change in the survey data due to

the application of PRAM. (Probabilities (1) and (2) inform about the expected change.)

Additionally, the article discusses two measures for disclosure risk when PRAM is

applied. The first is a general measure presented in Elamir and Skinner (2003) as an

extension of the measure introduced by Skinner and Elliot (2002). The second measure

links up with the SDC practice at Statistics Netherlands. Simulation results are given to

illustrate the theory.

The outline of the article is as follows. Section 2 provides the framework and the

notation. In Section 3, two distinctions are made that are important when PRAM is

discussed. Section 4 summarises frequency estimation for PRAM data. Section 5 discusses

the use of calibration probabilities. In Section 6 we introduce the use of misclassification

proportions. Section 7 discusses measures for disclosure risk. Section 8 presents some

simulations, and Section 9 is the discussion.

2. Framework and Notation

In survey data we distinguish between identifying variables and nonidentifying variables.

Identifying variables are variables that can be used to reidentify individuals represented in

the data. These variables are assumed to be categorical, e.g., gender, race, place of
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residence. We assume that the sensitive information of respondents is contained in the

non-identifying variables, (see Bethlehem et al. 1990), and that we want to protect this

information by applying PRAM to (a subset of) the identifying variables.

The notation in this article is the same as in Skinner and Elliot (2002). Units are selected

from a finite population U and each selected unit has one record in the microdata sample

s , U. Let n denote the number of units in s. Let the categorical variable formed by cross-

classifying (a subset of) the identifying variables be denoted X with values in {1; : : : ; J}.

Let Xi denote the value of X for unit i [ U. The population frequencies are denoted

Fj ¼
i[U

X
IðXi ¼ jÞ; j [ {1; : : : ; J}

where Ið�Þ is the indicator function: IðAÞ ¼ 1 if A is true and IðAÞ ¼ 0 otherwise. The

sample frequencies are denoted

f j ¼
i[s

X
IðXi ¼ jÞ; j [ {1; : : : ; J}

In the framework of PRAM, we call the sample that is released by the statistical agency

the released microdata sample s*. Note that unit i [ s* if and only if i [ s. Let X *

denote the released version of X in s*. By misclassification of unit i we mean Xi – X*
i . The

released sample frequencies are denoted

f *
k ¼

i[s *

X
IðX*

i ¼ kÞ; k [ {1; : : : ; J}

Let PX denote the J £ J transition matrix that contains the conditional misclassification

probabilities pkj ¼ P ðX * ¼ kjX ¼ jÞ, for k; j [ {1; : : : ; J}. Note that the columns of PX

sum up to one. The distribution of X * conditional on s is the J-component finite mixture

given by

PðX*
i ¼ kji [ sÞ ¼

XJ
j¼1

P ðX*
i ¼ kjXi ¼ jÞP ðXi ¼ jji [ sÞ; k [ {1; : : : ; J}

where the component distributions are given by PX and the component weights are given

by the conditional distribution of X. The conditional distribution of X in sample s is

assumed to be multinomial with

pj ¼ P ðXi ¼ jji [ sÞ ¼
1

n
f j; j [ {1; : : : ; J} ð3Þ

This conditional distribution does not take into account possible correlations with non-

identifying variables.

3. When Discussing PRAM

When discussing PRAM, it is important to keep in mind two distinctions. The first

distinction is whether data perturbed by PRAM are discussed from the viewpoint of the

statistical agency or from the viewpoint of the user of the data. Note that the statistical
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agency has all the information, i.e., the original data, the perturbed data and the

misclassification probabilities. Using this information, the statistical agency can compute

the calibration probabilities, the misclassification proportions, and the calibration

proportions, as will be shown in Sections 5 and 6. It is for the statistical agency to decide

which information about the misclassification is released together with the perturbed data.

Taking the viewpoint of the user, analysing PRAM data means analysing misclassified

data where information about the misclassification is at hand. In the original idea of

PRAM, perturbed data are released together with the misclassification probabilities (see

Kooiman et al. 1997). It is important to realise that in this situation misclassification

probabilities can be considered as known parameters – a distinctive difference with

misclassification in for example social statistics where misclassification probabilities have

to be estimated (see e.g., Kuha and Skinner 1997). The same reasoning applies to the

release of calibration probabilities: if the statistical agency decides to release the

probabilities, the user can treat them as known parameters.

When this article discusses efficiency concerning the analysis of PRAM data it will be a

discussion from the viewpoint of the user: which kind of information about the

misclassification is the most efficient in the analysis of PRAM data? When this article

discusses measures of disclosure risk it will be a discussion from the viewpoint of the

statistical agency: how shall one measure disclosure risk when PRAM is applied?

The second important distinction when discussing PRAM is whether PRAM is applied

independently to a selection of variables or is applied to a Cartesian product. In the present

article, we choose to apply PRAM independently to a selection of identifying variables.

Information about the misclassification is released per variable. This procedure is not

without drawbacks, as will be described in the discussion.

When PRAM is applied independently and there is a transition matrix per variable, the

misclassification can be described with respect to Cartesian products. Both the statistical

agency and the user can construct transition matrices of Cartesian products. For instance,

consider identifying variables X1, with categories {1; : : :; J1} and X2, with categories

{1; : : :; J2}, and the cross-classification X ¼ ðX1;X2Þ, i.e., the Cartesian product of X1 and

X2. Since PRAM is applied independently, we have

P X * ¼ ðk1; k2ÞjX ¼ ð j1; j2Þ
� �

¼ P ðX*
1 ¼ k1jX1 ¼ j1ÞP ðX*

2 ¼ k2jX1 ¼ j2Þ ð4Þ

for k1; j1 [ {1; : : :; J1} and k2; j2 [ {1; : : :; J2}. In matrix notation, we have

PX ¼ PX1
^PX2

, where ^ is the Kronecker product. Note that when one of two variables

is not perturbed by PRAM, the transition matrix of that variable is the identity matrix.

For users, a transition matrix of a Cartesian product is important when estimating for

example a bivariate frequency distribution. For statistical agencies, transition matrices of

Cartesian products become important when disclosure risk is investigated.

4. Frequency Estimation for PRAM Data

When PRAM is applied and some of the identifying variables are misclassified, standard

statistical models do not apply to the released data since these models do not take into

account the perturbation. This section shows how the misclassification can be taken into
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account in frequency estimation. This section does not contain new material, but is

preliminary to the subsequent sections.

We have E½ _f
*j f � ¼ PXf , where f ¼ ð f 1; : : : ; f JÞ

t and _f
* ¼ ð _f

*

1
; : : : ; _f

*

J
Þt is the

stochastic vector of the released sample frequencies. An unbiased moment estimator of f is

given by

f̂ ¼ P21
X f * ð5Þ

(see Kooiman et al. 1997). In practice, assuming that PX is nonsingular does not impose

much restriction on the choice of the misclassification probabilities. A sufficient condition

for PX to be nonsingular is pii . 1=2 for i [ {1; : : : ; J}, since in that case PX is strictly

diagonally dominant (see Horn and Johnson 1985, p. 349). An additional assumption is

that the dimensions of f and f * are the same.

The variance of (5) equals

V½ f̂j f � ¼ P21
X V½ _f

*j f �ðP21
X Þt ¼ P21

X

XJ
j¼1

f jVj

 !
ðP21

X Þt ð6Þ

where Vj is the J £ J covariance matrix of two released values given the original value j,

i.e.,

Vjðk1; k2Þ ¼

pk2 jð1 2 pk2jÞ if k1 ¼ k2

2pk1 jpk2 j if k1 – k2

8>><
>>: for k1; k2 [ {1; : : : ; J}

(see Kooiman et al. 1997). The variance can be estimated by substituting f̂j for f j in (6), for

j [ {1; : : :; J}.

The variance given by (6) is the extra variance due to PRAM and does not take into

account the sampling design. The formulas for the latter are given in Chaudhuri and

Mukerjee (1988) for multinomial sampling and compared to (6) in Van den Hout and

Van der Heijden (2002); see also Appendix A.

5. Calibration Probabilities

Literature concerning misclassification shows that calibration probabilities (1) are more

efficient in the analysis of misclassified data than misclassification probabilities (2) (see

the review article by Kuha and Skinner 1997, Section 28.5.1 and the references therein).

The idea of using calibration probabilities for PRAM is mentioned in De Wolf et al. (1997)

(see also Willenborg and De Waal 2001, Section 5.5.4). The following compares the use of

calibration probabilities with the use of misclassification probabilities as far as PRAM is

concerned. We will emphasize the multivariate case, since this is relevant when PRAM is

applied. As far as we know, the multivariate case with respect to calibration probabilities

and PRAM has not been discussed in the literature.

The J £ J matrix with calibration probabilities of the univariate variable X is denoted by
ˆ
PX . Using Bayes’s theorem and the conditional distribution of X given by (3), the entries
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ˆ
pjk of

ˆ
PX are

P ðXi ¼ jjX*
i ¼ k; i [ sÞ ¼

pkj f jXJ

j0¼1
pkj0 f j0

; j; k [ {1; : : : ; J} ð7Þ

where pkj are the entries of PX . Matrix
ˆ
PX is again a transition matrix; each column sums

up to one. It follows that

f ¼
ˆ
PXE½ _f

*j f � ð8Þ

An unbiased moment estimator of f is therefore given by

~f ¼
ˆ
PXf * ð9Þ

In general,
ˆ
PX – P21

X ; which can be proved by showing that
ˆ
PXPX is not equal to the

identity matrix. A more intuitive explanation is that
ˆ
PX changes when the survey data

change, whereas PX can be determined independently from the data and hence does not

necessarily change when the data change. The variance of (9) is given by (6) where P21
X is

replaced by
ˆ
PX and f j is estimated by ~fj, for j [ {1; : : : ; J}.

In the remainder of this section we compare estimators (5) and (9). The first difference is

that (5) might yield an estimate where some of the entries are negative, whereas (9) will

never yield negative estimates (see e.g., De Wolf et al. 1997).

Secondly, Estimator (9) is more efficient than (5) in the univariate case. This is already

discussed in Kuha and Skinner (1997). Consider the case where X has two categories. Let

us say we want to know p ¼ p1 ¼ P ðXi ¼ 1ji [ sÞ. Let p̂ be the estimate using PX and ~p

the estimate using
ˆ
PX . The efficiency of p̂ relative to ~p is given by

effðp̂; ~pÞ ¼
V½ ~p�

V½p̂�
¼ ð p11 þ p22 2 1Þ2ð

ˆ
p22 2

ˆ
p21Þ

2 , 1 ð10Þ

So ~p is always more efficient than p̂. An important difference from the general situation of

misclassification is that in the situation of PRAM, matrices PX and
ˆ
PX are given and do not

have to be estimated. Comparison (10) is therefore a simple form of the comparison in

Kuha and Skinner (1997, Section 28.5.1.3.).

The third comparison is between the maximum likelihood properties of (5) and (9).

Assume that X1; : : :;Xn are independently multinomially distributed with parameter

vector p ¼ ðp1; : : :;pJÞ
t. In the framework of misclassification, Hochberg (1977) proves

that Estimator (9) yields an MLE. When (5) yields an estimate in the interior of the

parameter space, the estimate is also an MLE. See Appendix A for the maximum

likelihood properties of (9) and (5). Note that the likelihood function corresponding to (9)

is different from the likelihood function corresponding to (5), since the information used is

different. This explains why both can be MLEs despite being different estimators of f .

The fourth comparison is with respect to transition matrices of Cartesian products and is

less favourable for (9). It has already been noted that PX1
^PX2

is the matrix with

misclassification probabilities for the Cartesian product X ¼ ðX1;X2Þ (see 4).

Analogously, given
ˆ
PX1

and
ˆ
PX2

the user can construct matrix
ˆ
PX1

^
ˆ
PX2

. However, this
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matrix does not necessarily contain calibration probabilities for X. Note that

P Xi ¼ ð j1; j2ÞjX*
i ¼ ðk1; k2Þ; i [ s

� �
¼

pk1j1pk2j2P Xi ¼ ð j1; j2Þji [ s
� �

XJ1

v

XJ2

w
pk1vpk2wP Xi ¼ ðv;wÞji [ s

� � ð11Þ

It follows that
ˆ
PX ¼

ˆ
PX1

^
ˆ
PX2

when X1 and X2 are independent. In general, this

independence is not guaranteed and since the user of the released data does not have the

frequencies of X, he or she cannot construct
ˆ
PX . In other words, there is no general

analogue to (4) for calibration probabilities and when
ˆ
PX1

^
ˆ
PX2

is used, results will be

biased when X1 and X2 are correlated.

The fifth and last comparison is with respect to the creation of subgroups. Consider the

situation where a user of the released data creates a subgroup by using a grouping variable

that is not part of X. When the number of categories in the subgroup is smaller than J,

Estimate (9) is not well-defined. When the number of categories is equal to J, Estimate (9)

is biased due to the fact that (8) does not hold. Note with respect to (8) that the frequencies

that are used to construct
ˆ
PX are the frequencies in the whole sample which will differ from

the frequencies in the subgroup. The Estimator (5) is still valid for the subgroup.

Since calibration probabilities contain information about the distribution of the sample

s, they perform better than misclassification probabilities regarding the univariate case.

However, in a multivariate setting this advantage may disappear. Section 8 presents some

simulation results.

6. Misclassification Proportions

Matrices PX and
ˆ
PX inform about the expected change due to PRAM. As an alternative we

propose to use transition matrices that inform about the actual change due to an application

of PRAM. These matrices contain proportions and will be denoted P+
X and

ˆ
P
+

X . Matrix P+
X

contains misclassification proportions and
ˆ
P
+

X contains calibration proportions. This

section shows how P+
X and

ˆ
P
+

X are computed and discusses properties of these matrices.

We start with an example. Suppose that X has categories {1,2}. Assume that applying

PRAM yields the cross-classification in Table 1. From this table it follows that the

proportion of records with X ¼ 1 that have X * ¼ 1 in the released sample is 300=400 ¼

3=4 and that the proportion of records with X * ¼ 1 that have X ¼ 1 in the original sample

Table 1. Classification by X* and X

X * X Total

1 2

1 300 200 500
2 100 400 500

Total 400 600 1,000
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is 300=500 ¼ 3=5: Analogously we get the other entries of

P+
X ¼

3=4 1=3

1=4 2=3

 !
and

ˆ
P
+

X ¼
3=5 1=5

2=5 4=5

 !

For the general construction of P+
X and

ˆ
P
+

X , let the cell frequencies in the cross-

classification X * by X be denoted ckj, for k; j [ {1; : : :; J}. The entries of the J £ J

transition matrices with the proportions are given by

p+kj ¼
ckj

f j
and

ˆ
p+jk ¼

ckj

f *
k

where k; j [ {1; : : :; J}.

It follows that f * ¼ P+
X f and f ¼

ˆ
P
+

X f
*. This is the reason to consider the matrices with

the proportions more closely, since it is a great improvement on (5) and (9). Note that

when the user of the released sample has P+
X or

ˆ
P
+

X , he or she can reconstruct Table 1.

Conditional on f , P+
X and

ˆ
P
+

X are stochastic, whereas PX and
ˆ
PX are not. In expectation

P+
X equals PX , and P+

X1
^P+

X equals PX1
^PX2

(see Appendix B). However, since f * is a

realisation of a stochastic process and f *
k ¼ 0, for a k [ {1; : : : ; J}, is possible, the

expectation of
ˆ
P
+

X does not exist. Nevertheless, an approximation shows that
ˆ
P
+

X will be

close to
ˆ
PX (see Appendix B).

There is a setback with respect to the use of proportions for Cartesian products and this

is comparable to the problem mentioned in the previous section. Given P+
X1

and P+
X2

the

user can construct P+
X1
^P+

X2
for X ¼ ðX1;X2Þ. However, P+

X1
^P+

X2
does not contain

proportions as defined above. Note that the user does not have the cross-classification of X

and X *, so he or she cannot derive the proportions in P+
X . The same holds for

ˆ
P
+

X . The

optimal use of misclassification proportions is thereby limited to the univariate case.

Since misclassification proportions contain information about the actual perturbation

due to PRAM, we expect them to perform well also in the multivariate case. Section 8

discusses a multivariate example.

7. Disclosure Risk

There are several ways to measure disclosure risk: see e.g., Skinner and Elliot (2002) and

Domingo-Ferrer and Torra (2001). This section discusses two measures for disclosure risk

with respect to PRAM. Section 7.1 discusses an extension of the general measure of

disclosure risk introduced by Skinner and Elliot (2002). Section 7.2 introduces a measure

that links up with the scenario of spontaneous recognition. In Section 7.3 the two measures

are compared.

7.1. The Measure u

The following describes how the general measure for disclosure risk introduced in Skinner

and Elliot (2002) can be extended to the situation where PRAM is applied before data are

released by the statistical agency. When a disclosure control method such as PRAM has

been applied, a measure for disclosure risk is needed to quantify the protection that is

offered by the control method. Scenarios that may lead to a disclosure of the identity of a
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respondent are about persons that aim at disclosure and that may have data that overlap the

released data. A common scenario is that a person has a sample from another source and

tries to identify respondents in the released sample by matching records. Using the

extension of the measure in Skinner and Elliot (2002) we can investigate how applying

PRAM reduces the disclosure risk.

Under simple random sampling Skinner and Elliot (2002) introduced the measure of

disclosure risk u ¼ P ðcorrect matchjunique matchÞ as

u ¼
j

X
Ið f j ¼ 1Þ=

j

X
FjIð f j ¼ 1Þ

where the summations are over j ¼ 1; : : : ; J. The measure u is the proportion of correct

matches among those population units which match a sample unique. The measure is

sample dependent and a distribution-free prediction is given by

^
u ¼ nn1= nn1 þ 2ð1 2 nÞn2ð Þ

where n is the sampling fraction, n1 ¼
P

j Ið f j ¼ 1Þ is the number of uniques and n2 ¼P
j Ið f j ¼ 2Þ is the number of twins in the sample (see Skinner and Elliot 2002). Elamir

and Skinner (2003) extended u for the situation where misclassification occurs. The

extension is given by

umm ¼
i[s

X
Ið f Xi

¼ 1;X*
i ¼ XiÞ=

j

X
FjIð f j ¼ 1Þ

and its distribution-free prediction is given by

^
umm ¼ n

j

X
Ið f j ¼ 1Þpjj= nn1 þ 2ð1 2 nÞn2ð Þ

where pjj is the diagonal entry ð j; jÞ of the transition matrix PX which describes the

misclassification (see Elamir and Skinner 2003).

Section 8 presents some simulation results with respect to the measure u before applying

PRAM, and umm after applying PRAM.

7.2. Spontaneous Recognition

Data can be released in several ways under various conditions. One way is the releasing of

detailed survey data under contract, i.e., data are released to bona fide research institutes

that sign an agreement in which they promise not to look for disclosure explicitly, e.g., by

matching the data to other data files. In this situation, SDC only concerns the protection

against what is called spontaneous recognition (see Willenborg and De Waal 2001,

Section 2.9.1). This section introduces a measure for disclosure risk for PRAM data that is

specific to the control for spontaneous recognition.

Controlling for spontaneous recognition means that one should prevent that certain

records attract attention. A record may attract attention when a low dimensional

combination of its values has a low frequency. Also, without cross-classifying, a record

may attract attention when one of its values is recognized as being very rare in the
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population. Combinations of values with low frequencies in the sample are called unsafe

combinations.

Note that applying PRAM causes two kinds of modifications in the sample that make

disclosure more difficult. First, it is possible that unsafe combinations in the sample

change into apparently safe ones in the released sample; second, it is possible that safe

combinations in the sample change into apparently unsafe ones. Since misclassification

probabilities are not that large (in order to keep analysis of the released sample possible)

and the frequency of unsafe combinations is typically low, the effect of the first

modification is negligible in expectation. The second modification is more likely to protect

an unsafe combination j when there are a lot of combinations k, k – j, which are

misclassified into j. This is the reason to focus, for a given record i with the unsafe

combination of scores j, on the calibration probability

mj ¼ P ðXi ¼ jjX*
i ¼ jÞ; i [ s

When there are hardly any k, k – j, misclassified into j, this probability will be large, and,

as a consequence, the record is unsafe. Note that combinations with frequency equal to

zero are never unsafe. Calibration probabilities are also used by De Wolf and Van Gelder

(2004), who investigate disclosure risk per record after PRAM is applied.

Assume that the number of unsafe combinations in the original sample is C and that

m1; : : : ;mC are computed. One way to obtain an overall disclosure risk measure is to use

m ¼ max{m1; : : : ;mC}; and this is the choice that is made in the example in Section 8.2.

This choice is sensitive to outliers: if a relatively small number of records lead to a high

maximum, one might consider deleting these records from the sample, or use local

suppression of values of identifying variables in these records.

Measure m is a simplification since it ignores possible correlation between X and other

variables in the sample. Note that X will be a Cartesian product and that the statistical

agency can compute the calibration probability m using (7) since the agency has the

frequencies of X.

7.3. Comparing the Measures u and m

Measure u is a measure for an entire data set, whereas measure m is a measure for a single

unsafe record. The following compares both measures and makes some remarks about

using the measures in practice.

The intuition behind u is that when sample uniques have large corresponding population

frequencies, the disclosure risk is small, i.e., u will be close to zero. In other words, if all

sample uniques are population uniques, u will be one. As a referee pointed out, u is

sensitive to sample uniques that have large corresponding population frequencies. When

there are several sample uniques, one of which has a large corresponding population

frequency, u will be close to zero. This situation is not likely to occur when the sample

design is reasonable and the sample size is not too small. Note, however, that when the

sample size increases, the probability that a sample unique is a population unique also

increases. With respect to the usage of u in complex sample designs, see Skinner and Elliot

(2002, Section 4).
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What is stated about u holds for umm although the misclassification softens the

conclusions. For instance, if all sample uniques in the original data are population uniques

and PRAM is applied, umm will not be equal to one, but close to one.

The intuition behind m is that protection is offered by safe combinations that change into

combinations that are unsafe in the original data set. Whether sample uniques in the

original data actually need this protection because of corresponding population uniques is

neglected by m.

When it comes to PRAM in practice, the statistical agency has to make decisions about

which disclosure scenario is relevant and whether it is wise to release a large data set. Note

that releasing data under contract combined with the scenario of spontaneous recognition

is a rather specific form of releasing survey data (compare Willenborg and De Waal 1996,

Section 3.3, where SDC policies of various statistical offices are summarised). Under the

scenario of spontaneous recognition, a large data set is an advantage, as will be illustrated

in Section 8.2. Under the more general scenario where users may actually aim at

disclosure, a large data set is a disadvantage since the probability that a sample unique is a

population unique increases when the sample size increases, as will be illustrated in

Section 8.1.

It is clear that additional research into some aspects of umm and m is still needed. For

instance, it would be interesting to know whether measure m can be combined with per

record measures of disclosure risk for data that have not been perturbed (see e.g., Mokken

et al. 1992 and the discussion on reidentification risk in Willenborg and De Waal 2001,

Section 2.5). A problem is that applying PRAM is not independent with respect to the

information that is used to determine the reidentification risk and hence that it is not

beforehand clear how to combine reidentification risk and m.

8. Simulation Results

The objective of this section is to illustrate the theory in the previous sections and to

investigate disclosure risk and information loss for different choices of misclassification

parameters. The population is chosen to consist of units with complete records in the

British Household Survey 1996–1999. We have N ¼ 16; 710 and we distinguish five

identifying variables with respect to the household owner: Sex (S), Marital Status (M),

Economic status (D), Socio-Economic Group (E), and Age (A), with number of categories

2, 7, 10, 7, and 8, respectively. In the following we consider simple random sampling

without replacement from the population where the sample fraction n is equal to 0.05, 0.10

or 0.15. The three samples are denoted s1, s2 and s3 and have sample sizes 836, 1,671 and

2,506, respectively.

The transition matrices used to apply PRAM to the selected variables are mostly of a

simple form and are parameterised by pd [ ð0; 1Þ. The idea is as follows. When PRAM is

applied, the diagonal probabilities in the transition matrices are fixed and equal to pd for all

selected variables. In the columns, the probability mass 1 2 pd is equally divided over the

entries that are not diagonal entries. A more sophisticated construction of the transition

matrices can reduce the disclosure risk further. An example of this fine-tuning will be

given.
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8.1. Disclosure Risk and the Measure u

The following discusses disclosure risk by comparing the measure u before PRAM is

applied with the measure umm after PRAM has been applied (see Section 7.1). The

identifying variables are described by X ¼ ðS;M;D;E;AÞ with J ¼ 7; 840 possible

categories.

Table 2 presents simulation results using simple random sampling without replacement

using different sampling fractions n and different choices of pd. Given a choice of n and pd,

each simulation consists of drawing a sample and applying PRAM to the sample. Since the

population is known, measures u, umm, and predictions
^
u,

^
umm can be computed in each

simulation. Note that u and
^
u reflect the risk before applying PRAM and umm and

^
umm

reflect the risk after applying PRAM. The number of simulations is 100 and the means of

the computed and predicted measures are reported in Table 2.

It is clear from Table 2 that applying PRAM will reduce the risk. For example, when

pd ¼ 0:80 and n ¼ 0:10, applying PRAM reduces the risk from u ¼ 0:166 to umm ¼ 0:055.

When pd decreases, disclosure risk decreases too, as one might expect. Note that

disclosure risk increases when sample size increases. In a larger sample, a record with a

unique combination of scores is more likely to be a population unique and therefore the

danger of a correct match is higher.

8.2. Disclosure Risk and Spontaneous Recognition

The following illustrates the measure m for disclosure risk for spontaneous recognition that

is discussed in Section 7.2.

Only combinations of three identifying variables are assessed with respect to disclosure

control for spontaneous recognition. By doing so we follow the rule of thumb that is also

used by Statistics Netherlands: a recognition of a combination of values of more than three

variables is not spontaneous any more. So there are ten groups to consider. We will discuss

only one of them, namely the group defined by X ¼ ðM; D; EÞ. The number of categories

of X is 490. The measure for disclosure risk is given by

mðm; d; eÞ ¼ P ðM; D; EÞ ¼ ðm; d; eÞjðM *;D*;E *Þ ¼ ðm; d; eÞ
� �

Table 2. Simulation results of disclosure risk measures

for X ¼ ðS;M;D;E;AÞ before and after applying PRAM

with pd

pd n ū û
� �umm û

�
mm

0.05 0.084 0.087 0.061 0.065
0.95 0.10 0.151 0.147 0.112 0.110

0.15 0.217 0.215 0.165 0.166

0.05 0.087 0.086 0.047 0.051
0.90 0.10 0.148 0.157 0.083 0.087

0.15 0.213 0.216 0.123 0.127

0.05 0.087 0.090 0.028 0.031
0.80 0.10 0.166 0.151 0.055 0.054

0.15 0.213 0.221 0.065 0.064
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for those combinations of values ðm; d; eÞ that have frequency 1 in sample s1, s2 or s3. Note

that when PRAM is not applied, m ¼ 1. Other approaches are possible. For example, the

threshold to decide whether a record is unsafe – a frequency count equal to 1 above –

could be made dependent on the sample size.

Table 3 presents results with respect to the maximum of m when PRAM is applied to M,

D and E, independently. Given a choice of pd, PRAM is applied only once to the chosen

sample. With respect to X ¼ ðM;D;EÞ the number of unique combinations in s1, s2 and s3

are 48, 44, and 53, respectively.

We draw two conclusions from the results. First, the results illustrate that the probability

pd matters, as one might expect. Second, the results show that the size of the sample is

important. In order to protect an unsafe combination j, it is necessary that there are a lot of

combinations that can change into j due to PRAM. Note that this is the other way around

compared to the measure u where a larger sample size causes a higher disclosure risk. This

difference shows that different concepts of disclosure induce different methods for

disclosure control.

The following introduces a method to fine-tune a transition matrix and shows that this

can help to diminish the disclosure risk. The idea is to adjust one or more columns in the

transition matrix of each variable that is part of an unsafe combination. Consider PX1

where variable X1 has J1 categories. The column that is chosen first corresponds to the

category of X1 with the highest frequency in sample s, say column j. Let furthermore k be

the number that corresponds to the category of X1 with the lowest frequency in s. The

columns of PX1
that are not column j are constructed as explained at the beginning of this

section: pd on the diagonal and ð1 2 pdÞ equally divided over the other entries. Column j is

fine-tuned by

plj ¼

pd if l ¼ j

ð1 2 pdÞ=h if l ¼ k;

ð1 2 pdÞ=ðhðJ1 2 2ÞÞ if l – j; k

8>>>>>>>><
>>>>>>>>:

ð12Þ

for l [ {1; : : :; J1} and h . 1. The idea here is that when we choose h close to 1, the

category with the highest frequency has a relatively high probability of changing into the

category with the lowest frequency. Assuming a link between an unsafe combination and a

low frequency in the original sample, this idea explicitly supports the concept of PRAM:

Table 3. Maximum of m for values of (M,D,E) with frequency 1 when applying PRAM to M, D and E

pd

0.95 0.90 0.85 0.80 0.70 0.60

Sample
s1 with n ¼ 836 0.94 0.86 0.76 0.65 0.43 0.24
s2 with n ¼ 1; 671 0.94 0.85 0.74 0.61 0.36 0.18
s3 with n ¼ 2; 506 0.93 0.83 0.69 0.55 0.31 0.15
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an unsafe combination c is after PRAM protected by creating new combinations c from

combinations that have high frequencies in the original sample.

In the same way other columns in PX1
can be fine-tuned. For example, the second

column chosen is the column that corresponds to the category of X1 with the second

highest frequency in sample s, and the chosen row is now the row that corresponds to the

category of X1 with the second lowest frequency in sample s.

A different method to fine-tune a PRAM transition matrix is described in Willenborg

and De Waal (2001, Section 5.5), where two optimisation models are defined that

maximise the diagonal entries given restrictions, some of which are formulated with

respect to the desired flow from safe combinations of scores to unsafe combinations. The

reason we opt for the method described above is that it links up with the pd-

parameterisation, it is simpler than the optimisation approach, and it does not need extra

optimisation software.

Table 4 presents results for sample s3 when the transition matrices of M, D, and E are

fine-tuned. The advantage of fine-tuning the transition matrices is dependent on the data

and on the size of the sample. One can see that the idea works e.g., if pd ¼ 0:80, fine-

tuning can decrease the maximum of m from 0.55 to 0.34.

Even after using fine-tuning, the maximum of m is still quite large. Additional

simulations, not reported, show that the maximum of m decreases rapidly when sample

size is increased. The conclusion and advice are: determine a largest tolerated m and check

all combinations of three identifying variables and use fine-tuning. The protection offered

by PRAM depends on pd, but also very much on the sample size.

8.3. Bivariate Frequency Estimation

Using simulation, this section discusses two examples concerning efficiency in frequency

estimation when PRAM is applied. The first example is about the efficiency of

misclassification probabilities and calibration probabilities, the second is about the

efficiency of misclassification probabilities and misclassification proportions.

In the multivariate situation calibration probabilities do not always work well. To

illustrate this, the following example is about bivariate frequency estimation concerning

sample s3 and variable X ¼ ðS;EÞ that has 14 categories. The x2-test of independence

between S and E yields 529.55, where df ¼ 6 and the p-value , 0:001. It is this lack of

independence between the variables that causes calibration probabilities to perform badly.

Table 4. Maximum of m for values of (M,D,E) with frequency 1 in sample s3 when using fine-tuning for all three

variables

pd

0.95 0.90 0.85 0.80 0.70

No fine-tuning 0.93 0.83 0.69 0.55 0.31
Fine-tuning 1 column where h ¼ 1:001 0.92 0.80 0.66 0.51 0.28
Fine-tuning 2 columns where h ¼ 1:001 0.91 0.74 0.57 0.42 0.20
Fine-tuning 3 columns where h ¼ 1:001 0.90 0.72 0.52 0.34 0.15
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The example consists of B ¼ 10 simulations. In each simulation, PRAM is applied

independently to S and E where both the 2 £ 2 transition matrix PS and the 7 £ 7 matrix PE

are constructed using the one parameter parameterisation given by pd ¼ 0:85. After each

application of PRAM, the bivariate frequency distribution of X ¼ ðS;EÞ is estimated

twice. The first estimation uses the observed distribution of X * ¼ ðS*;E *Þ and PS^PE,

and estimates are denoted f̂1b; : : : ; f̂14b, for simulation b [ {1; : : : ;B}. The second

estimation uses X * ¼ ðS*;E *Þ and
ˆ
PS^

ˆ
PE, and estimates are denoted ~f1b; : : : ; ~f14b,

b [ {1; : : : ;B}. The plots (a) and (b) in Figure 1 contain the points ð f jb; f̂jbÞ and ð f jb; ~fjbÞ,

respectively, for j [ {1; : : : ; 14} and b [ {1; : : : ;B}.

Figure 1 shows that the misclassification probabilities perform better, i.e., in general, the

points ð f j; f̂jÞ are closer to the identity line than the points ð f j; ~fjÞ. The variance is less when
ˆ
PS^

ˆ
PE is used, but the figure shows that in that case estimates are biased. Violating the

independence assumption regarding the use of
ˆ
PS^

ˆ
PE has severe consequences.

Misclassification proportions are close to misclassification probabilities in the above

example. Compare for instance

PS ¼
0:85 0:15

0:15 0:15

 !
and P+

S ¼
0:854 0:154

0:156 0:156

 !

A simulation can be used to investigate the performance of misclassification

probabilities versus misclassification proportions. The example consists of B ¼ 1; 000

simulations. The simulation of applying PRAM to S and E is the same as above but this

time the second estimation of the bivariate frequency distribution of X ¼ ðS; EÞ uses the

observed distribution of X * ¼ ðS*; E *Þ and P+
S^P+

E. The study compares using PS^PE

versus using P+
S^P+

E by looking at the average point estimates of the sample frequencies,

the root mean squared errors (RMSE), and the actual coverage percentages (ACPs) of 95%

confidence intervals. The ACP is the percentage of the replicated perturbed samples for
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Fig. 1. Estimating frequencies of X ¼ ðS;EÞ after applying PRAM to S and E in sample s3 with pd ¼ 0.85 in ten

simulations. (a) Using misclassification probabilities. (b) Using calibration probabilities
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which the estimated confidence interval of the estimated frequency covers the actual

frequency in the original sample.

Table 5 shows that misclassification proportions perform better than misclassification

probabilities since the root mean squared error (RMSE) is smaller for the proportions.

Table 5 also shows that in both situations the average point estimates are close to the true

value and furthermore that the variance dominates the bias. The mean value of ACP when

using PS^PE equals 95.1, and the mean value of ACP when using P+
S^P+

E equals 98.1. (A

paired t-test yields a p-value , 0:001.) When P+
S^P+

E is used, the estimation is

conservative in the sense that the estimated confidence intervals show higher-than-

nominal rates of coverage. This indicates that the estimation can be improved upon.

Nevertheless, the results show that there is no false sense of precision associated with

using the misclassification proportions in a bivariate situation. Although P+
S^P+

E does not

contain the misclassification proportions of the Cartesian product X ¼ ðS;EÞ, it still

produces more precise estimates than does PS^PE.

9. Discussion

The article shows that the analysis of PRAM data is more efficient when misclassification

proportions are used instead of misclassification probabilities. Calibration probabilities

and calibration proportions work fine in the univariate case, but cause serious bias in the

multivariate case. Since in most situations the user of PRAM data will be interested in

multivariate analysis, it seems wise not to release calibration probabilities or calibration

proportions together with the PRAM data. Given the results in this article, we advocate

adapting the original idea of PRAM and releasing the misclassification proportions instead

of the misclassification probabilities.

Table 5. Sample frequencies and average point estimates w.r.t. X ¼ ðS;EÞ for sample s3 and 1,000 simulated

samples, where pd ¼ 0:85. (Root MSE and actual coverage percentage within parentheses.)

Sample frequencies Average point estimates (RMSE; ACP)

Using PS^PE Using P+
S^P+

E

f ð1;1Þ ¼ 76 75.9 (10.8; 94.8) 75.9 (8.9; 97.7)
f ð1;2Þ ¼ 242 241.4 (14.5; 95.8) 241.5 (12.3; 98.2)
f ð1;3Þ ¼ 132 132.0 (14.4; 93.4) 132.2 (12.5; 96.9)
f ð1;4Þ ¼ 83 83.2 (15.0; 94.6) 83.3 (12.4; 98.2)
f ð1;5Þ ¼ 430 430.4 (16.9; 95.8) 430.3 (13.2; 99.0)
f ð1;6Þ ¼ 198 198.3 (14.8; 96.2) 198.4 (12.8; 98.5)
f ð1;7Þ ¼ 61 60.3 (11.0; 95.1) 60.3 (9.5; 97.5)
f ð2;1Þ ¼ 23 23.0 (10.1; 94.8) 23.1 (8.9; 97.5)
f ð2;2Þ ¼ 136 136.9 (14.3; 95.3) 136.5 (12.3; 98.0)
f ð2;3Þ ¼ 221 220.5 (14.9; 95.1) 220.8 (12.5; 97.8)
f ð2;4Þ ¼ 388 387.8 (16.6; 93.7) 387.7 (12.4; 99.2)
f ð2;5Þ ¼ 95 94.8 (15.7; 94.9) 94.7 (13.2; 97.9)
f ð2;6Þ ¼ 313 312.7 (15.9; 96.1) 312.6 (12.8; 98.7)
f ð2;7Þ ¼ 108 108.8 (11.7; 95.7) 108.7 (9.5; 98.0)
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Given that releasing misclassification proportions makes PRAM more efficient with

respect to information loss, it is still an open question how this works out when PRAM is

compared with other SDC methods (see Domingo-Ferrer and Torra 2001). It might be

worthwhile to state that PRAM was never meant to replace existing SDC methods.

Working with PRAM data and taking into account the information about the

misclassification in the analysis might be quite a burden for some researchers. However,

when researchers are interested in specific details in data, details that might disappear

when e.g., global recoding is used, PRAM can be a solution. Note that PRAM is

statistically sound. Data are perturbed, but information about the perturbation is at hand.

Although estimates will have extra variance due to the perturbation, they will be unbiased.

An option that takes away some of the problems of users is to use data perturbed by

PRAM as source data in a remote access situation. This idea was suggested by a referee.

Users outside the statistical agency submit simple queries such as tabulations via the

World Wide Web and receive output that has already been adjusted with respect to the

perturbation. The advantage is that when the remote access system is hacked, source data

are still protected against disclosure.

Since the misclassification proportions provide more information about the original

sample than the misclassification probabilities, one should consider the question whether

providing these proportions increases the disclosure risk. Since the privacy protection that

is offered by PRAM is at the record level, we do not think that disclosure risk increases

when misclassification proportions are released. With these proportions, sample

frequencies of the identifying variables can be deduced, but these frequencies are not

sensitive information. Note also that when one works with the measures for disclosure risk

discussed in Section 7, the risk does not change when misclassification proportions are

released.

With respect to applying PRAM in practice, there are problems that are not

discussed in this article. For example, how shall one select the identifying variables?

And how shall one choose threshold values for the measures of disclosure risk?

Another problem in practice – one that we want to discuss briefly – is the situation

where variables are strongly correlated and where applying PRAM introduces

inconsistencies. A simple example taken from Gouweleeuw et al. (1998) is the

situation where we have the variable Gender and a variable that denotes whether or

not the respondent is or has been pregnant. When PRAM is applied independently to

Gender, inconsistencies will be hard to prevent.

Inconsistencies might lead to a higher disclosure risk. An inconsistent record attracts the

attention of persons that aim at disclosure since the inconsistency may give an indication

with respect to the privacy protection of the underlying original record. We can prevent

inconsistencies by applying PRAM to the Cartesian product of variables and carefully

choosing the entries of the PRAM matrix of this product. In general, however, the problem

of strongly correlated variables is difficult. When there are a lot of high-dimensional

variables, a reasonable PRAM matrix of the Cartesian product might be difficult to

determine and its size might be impractical. Furthermore, when a user of the released data

wants to analyse a subset of the correlated variables, the misclassification information for

that subset requires additional estimation. As an example, consider the categories

1 ; ðm; npÞ, 2 ; ðm; pÞ, 3 ; ð f ; npÞ and 4 ; ð f ; pÞ of X ¼ ðG;PÞ, where G denotes
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Gender and P denotes whether or not the respondent is or has been pregnant. A possible

transition matrix for X is given by

PX ¼

0:8 0 0:1 0:1

0 1 0 0

0:1 0 0:8 0:2

0:1 0 0:1 0:7

0
BBBBB@

1
CCCCCA

in which case the misclassification of G is correlated with P. Since

P ðG * ¼f jG ¼ f Þ ¼ P ðG* ¼ f jP ¼ p;G ¼ f ÞP ðP ¼ pjG ¼ f Þ

þ P ðG* ¼ f jP ¼ np;G ¼ f ÞP ðP ¼ npjG ¼ f Þ

the user of the released data has to estimate the bivariate distribution of X in order to

estimate the univariate misclassification of G.

We do not know a general solution for the inconsistency problem. However, when data

are released to a group of users with specific research questions, applying PRAM to

Cartesian products of variables might be an option. This will only work, when the data

structure is not too complex and when the statistical agency is willing to attune the

released data to the specific research questions. This is basically the same idea as described

in Bycroft and Merret (2005), where stratification is used to preserve multivariate

distributions.

In the situation where data are released to a group of users with different research

questions, a combination of applying PRAM and data editing might be considered.

Assume that the original microdata consist of consistent records. First, within the group of

identifying variables, one selects those that have the lowest correlation with the other

variables in the microdata. Second, PRAM is applied independently to the selected

variables. Third, when the number of newly created inconsistencies is relatively small,

PRAM data are made consistent using data editing software such as SLICE (De Waal,

2001). This will destroy the aforementioned statistical soundness of PRAM, but when the

number of inconsistencies is small the damage might be kept within limits. Shlomo and De

Waal (2005) investigate similar ideas and apply PRAM while minimising the number of

newly created inconsistencies.

Appendix A

The following derives the maximum likelihood properties of (5) and (9). The reasoning is

the same as in Hochberg (1977), but simpler, since in the PRAM situation calibration

probabilities do not have to be estimated. Also, we show that the reasoning applies both to

(5) and to (9).

Assume that the frequency vector of X1; : : :Xn is multinomially distributed

with parameter vector p ¼ ðp1; : : :;pJÞ
t, where pj . 0 for j [ {1; : : :; J}, andPJ

j¼1pj ¼ 1. Consider the transformation p* ¼ Pp, where P is a J £ J transition matrix,

i.e., columns sum up to one and pkj $ 0 for k; j [ {1; : : :; J}. Assume that P is

nonsingular. Let the distribution of X * be given by P ðX * ¼ kÞ ¼ p*
k , for k [ {1; : : :; J}.
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It follows that X*
1;X

*
2; ::;X

*
n are multinomially distributed with parameters n and p*.

Indeed, p*
k ¼ pk1p1 þ : : :þ pkJpJ . 0 for k [ {1; : : :; J} and

XJ
k¼1

p*
k ¼

XJ
l¼1

pl1

 !
p1 þ : : :þ

XJ
l¼1

plJ

 !
pJ ¼ 1

The likelihood L* for p* and observed x* ¼ ðx*
1; x

*
2; : : : ; x

*
nÞ

t is well-known. Let

f * ¼ ð f *
1; f

*
2; : : : ; f

*
JÞ

t denote the observed cell frequencies. The MLE is given by p^
* ¼

f *=n and has covariance matrix V ¼ ½Diagðp*Þ2 p*ðp*Þt�=n, where Diagðp*Þ is the

diagonal matrix with the diagonal entries given by the elements of p*.

Next we can use the invariance property of maximum likelihood (see e.g., Mood et al.

1985, p. 285). Define the transformation gðp*Þ ¼ P21p*. With respect to (5) maximum

likelihood properties are proved by taking P ¼ PX and obtaining p̂ ¼ gðp̂*Þ ¼ P21
X p̂*.

With respect to (9), the misclassification design is described by p ¼
ˆ
PXp*, so P ¼

ˆ
P
21

X

and the MLE is given by ~p ¼ gðp̂*Þ ¼
ˆ
PXp̂ *. Since g has a first order derivative, the

covariance matrices can be obtained using the delta method (see e.g., Agresti 1990,

Chapter 12).

Appendix B

Let P+
kj denote the stochastic variable of the kj-th entry of P+

X and Ckj the stochastic number

of observations in the kj-th cell in the cross-classification X * by X. It follows that Ckj has a

binomial distribution with parameters f j and pkj. Consequently, E½P+
kjj f � ¼ E½Ckj=f jj f � ¼

f jpkj=f j ¼ pkj and in expectation P+
X equals PX . Since Ck1j1 and Ck2j2 are independent given

f , it follows that E½P+
k1j1

P+
k2j2

j f � ¼ pk1j1pk2j2 . So, in expectation, P+
X1
^P+

X equals PX1
^PX2

.

Let Ckþ ¼
PJ

j¼1Ckj. We define
ˆ
P
+

jk ¼ Ckj=ðCkþ þ 1Þ where 1 is a small positive value.

Using the delta method (see e.g., Rice 1995, Section 4.6), we obtain

E½
ˆ
P
+

jkj f � <
E½Ckjj f �

E½Ckþj f �
þ

1

E½Ckþj f �
2

V½Ckþj f �
E½Ckjj f �

E½Ckþj f �
2 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½Ckjj f �V½Ckþj f �

q� �

where E½Ckjj f � ¼ f jpkj and r is the correlation between Ckj and Ckþ. From this we see that

the difference between E½
ˆ
P
+

jkj f � and
ˆ
pjk will be small when V½Ckþj f � is small and

E½Ckþj f � is large.
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