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Statistical Matching: A Paradigm for Assessing the
Uncertainty in the Procedure

Chris Moriarity’ and Fritz Scheuren®

Statistical matching has been widely used by practitioners without always adequate theoreti-
cal underpinnings. The work of Kadane (1978) has been a notable exception and the present
article extends his insights. Kadane’s 1978 article is reprinted in this JOS issue. Modern com-
puting can make possible, under techniques described here, a real advance in the application
of statistical matching.
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1. Introduction

Many government policy questions, whether on the expenditure or tax side, lend them-
selves to microsimulation modeling, where ‘‘what if”’ analyses of alternative policy
options are carried out (e.g., Citro and Hanushek 1991). Often, the starting point for
such models, in an attempt to achieve a degree of verisimilitude, is to employ information
contained in several survey microdata files. Typically, not all the variables wanted for the
modeling have been collected together from a single individual or family. However, the
separate survey files may have many demographic and other control variables in common.
The idea arose, then, of matching the separate files on these common variables and thus
creating a composite file for analysis.

“‘Statistical matching,”” as the technique began to be called, has been more or less
widely practiced since the advent of public use files in the 1960’s. Arguably, the desire
to employ statistical matching was even an impetus for the release of several of the early
public use files, including those involving U.S. tax and census data (e.g., Okner 1972).

Statistical matching always has had an ad hoc flavor (Scheuren 1989), although parts of
the subject have been examined with care (e.g., Cohen 1991; Rodgers 1984; Sims 1972).
In this article we return to one of the important attempts to underpin practice with theory.
This is the work of Joseph Kadane (1978), which is now over 20 years old (reprinted in this
JOS issue).
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We begin by describing Kadane’s contribution. Needed refinements are then made
which go hand-in-hand with advances in computing in the two decades since his article
was written. To frame the results presented, after this introduction (Section 1) we include
a section (Section 2) entitled, ‘“What is Statistical Matching?’’ This is followed by a resta-
tement of the original results by Kadane (Section 3 and the Appendix). Then, in Section 4,
improvements of Kadane’s procedure are presented and their properties developed. Sec-
tion 5 provides some simulation results that illustrate the new approach. Section 6 dis-
cusses generalizations of the approach. In the last section (Section 7) an application is
sketched as part of a brief discussion of implementation issues.

2. What is Statistical Matching?

Perhaps the best description to date of statistical matching was given by Rodgers (1984).
Other good descriptions are given by Cohen (1991) and Radner et al. (1980). A summary
of the method is provided here.

Suppose there are two sample files, File A and File B, taken from two different surveys.
Suppose further that File A contains potentially vector-valued variables (X, Y), while File
B contains potentially vector-valued variables (X, Z). The objective of statistical matching
is to combine these two files to obtain at least one file containing (X, Y, Z).

In contrast to record linkage, or exact matching (e.g., Fellegi and Sunter 1969; Scheuren
and Winkler 1993 and 1997), the two files to be combined are not assumed to have records
for the same entities. In statistical matching the files are assumed to have little or no over-
lap; hence, records for similar entities are combined, rather than records for the same enti-
ties. For example, we might want to match individuals who are similar on characteristics
like sex, age, poverty status, health status, etc.

All statistical matches described in the literature have used the X variables in the two
files as a bridge to create a single file containing (X, Y, Z). To illustrate, suppose File A
consisted, in part, of records

X, I
X27 Y2
X3’ Y’%

while File B has records of the form

X, Z
X, Zs
Xy, 724
Xs, Zs

The matching methodologies employed almost always have made the assumption that
(Y, Z) are conditionally independent, given X, as pointed out initially by Sims (1972).
From this it would be immediate that we could create

Xl’ Yla Zl
X3, Y3, Z
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Notice that matching on X and X5 (where X is, say, age) in no way implies that these are
the same entities.

What to do with the remaining records is less clear and techniques vary. We could stop
where we are, only partially matching the two files, but this option is not usually taken.

Broadly, the various strategies employed for statistical matching can be grouped into
two general categories: ‘‘constrained’’ and ‘¢
matching requires the use of all records in the two files and basically preserves the mar-
ginal Y and Z distributions (e.g., Barr, Stewart, and Turner 1982). In the above (toy) exam-
ple, for a constrained match we would have to end up with a combined file that also had
additional records that used the remaining unmatched File A record (X, Y5) and the two
unmatched File B records (X4, Z4) and (X5, Zs). In other words, all of the records on both
files get used. Notice that, as would generally be the case, we could not preserve the role of
X in the matching as one where only identical X’s were matched. We would have to settle
on matching X’s that were only close (similar) to one another.

Unconstrained matching does not have the requirement that all records are used. Indeed,
we might stop after creating (X, Y, Z;) and (X3, Y3, Z3). Usually in an unconstrained
match, though, all the records from one of the files (say File A) would be used (matched)
to ‘‘similar’’ records on the second file. Some of the records on the second file may be
employed more than once, or not at all. Hence in the unconstrained case the remaining
unmatched record on File A, the observation (X5, Y,), would be matched to make the com-
bined record (X, Y>, Z»). The observations (X, Z;) and (X5, Zs) from File B might or
might not be included. Exactly how we defined ‘‘similar’” would, of course, determine
the values of the variables without specific subscripts. To go further into this now, how-
ever, would be to get ahead of ourselves.

A number of practical issues, not part of our present scope, need to be addressed in sta-
tistical matching; for example, alignment of universes (i.e., agreement of the weighted
sums of the data files) and alignment of units of analysis (i.e., individual records represent
the same units). Also, X variables can have different measurement or nonsampling proper-
ties in the two files. See Cohen (1991) and Ingram et al. (2000) for further details. Statis-
tical matching is by no means the only way to combine information from two files. Sims
(1978), for instance, described alternative methodologies to statistical matching that could
be employed under conditional independence.

Other authors (e.g., Singh et al. 1993; Paass 1986 and 1989) have described methodol-
ogies for statistical matching if auxiliary information about the (Y, Z) relationship is avail-
able. While an important special case, this option is seldom available (Ingram et al. 2000).
See also National Research Council (1992), where the subject of combining information
has been taken up quite generally.

Rodgers (1984) includes a more detailed example of combining two files, using both
constrained and unconstrained matching, than the example we have provided here. We
encourage the interested reader to consult that reference for an illustration of how sample
weights are used in the matching process.

unconstrained.”’ Constrained statistical

3. Kadane’s Procedure for Statistical Matching

In the setting described above, Kadane (1978) sets out a methodology for statistical



410 Journal of Official Statistics

matching where the vector (X, Y, Z) is assumed to have a nonsingular multivariate normal
distribution with covariance matrix

2oxx xy D2xz
Z = X Xw 2w
Y vz

Note that all elements of > can be estimated from File A or File B except Yy, and its
transpose, Y zy.

Kadane’s procedure begins by selecting an admissible value of >y, (Cov(Y, Z)
or Corr(Y, Z) in the univariate case). (Henceforth in this article, we usually will use
> vz generically for both the multivariate case and the univariate case.) What we
mean by ‘‘an admissible value of > y,’" is a value of >y, that would give a positive
definite ).

The given value of >y is used in regressions done on both files to produce augmented
files containing (X, Y, 7) (File A) and (X, ¥, Z) (File B). The files then are matched using a
Mahalanobis distance (as defined in Section 3.3.), and Y and Z values are exchanged in
matched records to obtain the augmented records (X, Y;, Z;) (File A) and (X;, Y}, Z;)
(File B), where the jth record of File A was matched to the ith record of File B. The match-
ing methodology prescribed by Kadane is a constrained match, so all records in the two
files are used in the matching process. The end result is two files containing records of
the form (X;, Y;, Z;) (File A) and (X;, Y}, Z;) (File B), where the jth record of File A was
matched to the ith record of File B.

Kadane recommended that this procedure be repeated for many values of > _y,, thereby
obtaining a range of synthetic datasets (X, Y, Z) under various assumptions on the value of
> vz- Kadane’s procedure is one of only two procedures described in the statistical match-
ing literature for assessing the effect of alternative assumptions of the inestimable value
> vz- Rubin (1986) discusses the other procedure.

3.1.  Specification of >y,

Kadane’s procedure requires the specification of > _y,. Kadane correctly states that nothing
can be learned about »_y, from File A and File B, beyond the assumed nonsingularity of
the distribution of (X, Y, Z).

More specifically, in the case of univariate (X, Y, Z), one can start from several sources,
e.g., the definition of the partial correlation of (Y, Z), given X, or the requirement that the
correlation matrix of (X, Y, Z) must be positive definite, to show that Corr(Y, Z) must lie in
the interval

Corr(X,Y) % Corr(X,Z) = \/[1 — (Corr(X, Y))*] % [1 — (Corr(X,Z))*]

This provides a bound on Corr(Y, Z) in terms of Corr(X, Y) and Corr(X, Z) (which can be
estimated using File A and File B, respectively).

Note that Corr(Y, Z) is equal to Corr(X, Y)*Corr(X, Z) in the special case of conditional
independence of (Y, Z), given X. This special case has been discussed extensively in the
statistical matching literature. However, here it is seen that the ‘‘conditional independence
value’’ is the midpoint of a range of admissible values of Corr(Y, Z).
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In general, the bounds given above are wide, even for large values of Corr(X, Y) and
Corr(X, Z). For example, when both Corr(X, Y) and Corr(X, Z) are equal to 0.75 (or both
are equal to —0.75), the admissible range of Corr(Y, Z) values is (0.125, 1). In most
cross-sectional surveys, finding correlations larger than 0.4 in absolute value has
been extremely rare in the experience of the authors. If Corr(X, Y) and Corr(X, Z)
both equal 0.4, the range of admissible Corr(Y, Z) values is (—0.68, 1), virtually useless
as a guide to practice. This is one of the reasons why practitioners commonly
have invoked the conditional independence assumption, whether or not it could be justified.

3.2.  Regression step

As Kadane discusses, for a given value of Yy, the procedure begins by estimating the
missing values in the two sample files using conditional expectation (i.e., regression).
For example, if Z is missing and all needed quantities are known, then (e.g., Anderson
1984, p. 36)

XX XY - X; —
E(Zj|Xj,Yj)=Mz+(ZZXZZY)<§ g ) <YA_ZX>

In this application, all quantities other than »_,y can be estimated using one or both sample
files. For the given value of ) .y, this procedure is followed for File A, and a similar pro-
cedure is followed for missing Y in File B.

As stated by Kadane, it can be shown that the joint distribution of (X;, Y}, Zj) is normal
with mean (uy, uy, uz) and (singular) covariance matrix

Sxx ¥
Si=[ X XZw ®
¢ 9 P
Kadane gave an analogous expression for the joint distribution of (X;, ¥;, Z):
Sxx P Dk
S, = o, b,
Yoo s Yz

When rederiving these expressions, we realized that the formulas Kadane gave for the ®,,
i = 1to 6 (refer to the appendix), were more complicated than they needed to be. It can be
shown (Moriarity 2001) that

@) = (3> )

and

Yoo Yar\ [ Txz
‘I’3=<ZZXZZY)<ZYX ZYY) (Zyz)

= o () St () o
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In a similar manner, analogous results can be derived for &4, ®5, and &5 (Moriarity 2001).
These simplifications were useful to us in the evaluation of Kadane’s procedure and the
development of an improved methodology.

3.3. Matching step

Letting W; = (X, Y}, Zj) from File A and V; = (X;, ¥;, Z;) from File B, the mean of W, =V,
is the zero vector. Kadane states that the covariance matrix of W; — V;, which is the sum of
the two singular covariance matrices S; and S, is nonsingular. (Moriarity (2001) provides
a proof of this result.)

Given the nonsingularity of S; + S,, Kadane suggested using the Mahalanobis distance
in (X, Y, Z) to do a constrained match of File A and File B. In matrix algebra notation, the
Mahalanobis distance being minimized in the matching would be of the form

(W; = V' (S; + $) ™ (W, — V)

Alternatively, Kadane suggested using a Mahalanobis distance involving only X. (For this
alternative, it would not be necessary to carry out the regression step, as the regressed
values would not be in the distance computation.)

As noted by Kadane, using either of these suggested matching procedures while requiring
use of a constrained match can be shown to be equivalent to solving a ‘ ‘transportation prob-
lem,”” a type of linear programming problem (see, e.g., Barr and Turner 1978; Bertsekas
1991). That is, it is known that an algorithm exists to carry out these matching procedures.

4. Preservation of >y, During the Procedure

The derivations sketched in Section 3.2. show that the specified value of )y, is preserved
during the regression step. However, an extensive simulation (see Section 5 for details of
the simulation methodology) of Kadane’s suggested matching procedure showed that the
specified value of Corr(Y,Z) is not preserved during the matching step. This was true
regardless of whether matching was performed using (X, Y, Z) or X, the two methods sug-
gested by Kadane. Hence, a revision of Kadane’s methodology was needed. This section
describes our proposed revision.

4.1. Additional alternatives

Matching on (X, Y, Z) or X, as Kadane did, does not exhaust the possibilities. Why
not match on (Y, Z)? This is the very relationship we are interested in. Matching using
(Y, Z) might do the best job of preserving (Y, Z) relationships. Indeed, simulations showed
that matching using (Y, Z) was far more successful, on average, in retaining the specified
value of Corr(Y, Z), than the two methods Kadane examined. Even so, this method did not
always give good results, particularly (refer to Table 1) for values of Corr(Y, Z) that were
far from the conditional independence value of Corr(X, Z)+Corr(X, Y).

Referring to results sketched in Section 3.2., S; and S, are given in simplified form by

Zxx ZXY sz
S = ZYX ZYY ZYZ
ZZX Zzy ¢;
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and

Doxx 2xy Doxz
S=2Xwx P Dw
Yoz Dz Yz

with &3 as given in Section 3.2. It can be shown (Moriarity 2001) that

Zxx ZXZ - ZXY
P = (Zyxzyz) (sz Zzz) <ZZY>

= e (Swr) S+ ren(Yzn)

Now, > 7z —®, and ) yy —®_, the variances of the residuals from the regressions, can be
characterized as variances of random variables with certain conditional distributions (e.g.,
Anderson 1984, p. 37). Hence, the two covariance matrices can be made equal by imputing
independently drawn normally distributed random residuals with mean zero and the spe-
cified variances, and adding these residuals to ZJ and ¥;. In addition to making the two cov-
ariance matrices equal (both to each other and to the covariance matrix of the common
parent distribution), this approach also has the benefit of converting singular distributions
to nonsingular distributions. Given this observation, imputation of random residuals prior
to matching appeared to be a promising innovation to explore.

4.2.  Success of alternatives

In our simulations of matching using (Y, Z), after imputation of random residuals, we
found our new method to be very successful in retaining the specified value of
Corr(Y, Z), always giving good results.

Furthermore, as shown in Table 1, the method is robust for values of Corr(Y, Z) close to,
and far from, the conditional independence value of Corr(X, Z)*Corr(X, Y). This robust-
ness is a feature not found in other methods employed in statistical matching (as noted by
Rodgers 1984).

In summary, it appears to us that in order to preserve the value of >y, during the match-
ing step, it is critical to align the covariance matrices by imputing residuals prior to the
matching step, rather than doing the match first and then, in essence, imputing residuals
afterwards.

5. Simulations Conducted

In order to assess the performance of Kadane’s original procedure, and our variants, simu-
lations were carried out. For simplicity, univariate X, Y, and Z were used, and (X, Y, Z)
were constructed to have a multivariate normal distribution. Also, for convenience and
without loss of generality, (X, Y, Z) were assumed to have zero means and unit variances.

5.1. Basic simulation setup

Corr(X, Y) was allowed to vary from 0 to 0.95 in increments of 0.05. For a given value of
Corr(X, Y), Corr(X, Z) was allowed to vary from Corr(X, Y) to 0.95 in increments of 0.05.
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Given the symmetry of Y, Z in Corr(Y, Z) and the fact that Corr(—A, B) = Corr(A, —B)
=— Corr(A, B), the effect of allowing Corr(X, Y) and Corr(X, Z) to range from —0.95 to
0.95 can be inferred. For given values of Corr(X, Y) and Corr(X, Z), Corr(Y, Z) was
allowed to take four to ten different values within the range of admissible values
specified in Section 3.1. (The number of values of Corr(Y, Z) depended on the length
of the interval of admissible values of Corr(Y, Z).)

For given values of Corr(X, Y), Corr(X, Z), and Corr(Y, Z), two independent samples of
size 1,000 were drawn from the specified multivariate normal distribution. We felt that
using a sample size of 1,000 was a reasonable compromise to simulate a dataset of realistic
size with minimal sampling validity, while avoiding excessive computational burden.

The regression step was carried out as described in Section 3.2. Note that although it is
possible to pool the X values from both files to estimate Var(X), this can and does lead to
occasional problems of nonpositive definite covariance matrix estimates in the regression
step (Moriarity 2001). To avoid any possibility of a nonpositive definite covariance matrix
estimate, X values only from File A were used to estimate Var(X) when predicting Z from
X and Y for File A, and X values only from File B were used to estimate Var(X) when
predicting Y from X and Z for File B.

For the matching procedures that included imputation of residuals, random residuals
with mean zero and specified variances were added to the ZJ and the ¥, after the regression
step. Y 7z —®3 and ) yy —P¢ were estimated using the data. In a small proportion (about 8
percent) of the simulations, one of these estimates was negative; when a negative estimate
occurred, no random residuals were added to the respective variable. In our simulations,
there were no occurrences where both estimates were negative (although such an occur-
rence is possible). Any such occurrence in practice could be expected to give results con-
sistent with the results presented in Table 1 for matching on (Y, Z) (without imputing
residuals to the Z] and the ; after the regression step); that is, better than other suggested
methods in the existing literature, but not ideal.

The constrained match was carried out using RELAX-IV software (Bertsekas 1991,
Bertsekas and Tseng 1994), which is written in FORTRAN and is in the public domain.
The RELAX-IV software was executed from within SAS macro code that included exten-
sive use of SAS/IML. Note, however, that it was not necessary to use the RELAX-IV soft-
ware for conducting the match using univariate X. As shown by Goel and Ramalingam
(1989), it suffices to match the sorted values of X in the two files — a major saving in com-
putational effort.

All of the simulation work was carried out on a Sun Ultra 60 workstation, with a
360 MHz Sparc-II CPU and 512 MB RAM. A set of 1,873 simulations typically took about
a week of continuous computer processing to complete.

5.2.  Results obtained

Table 1 summarizes five sets of results: matching on (X, Y, Z) and matching on X (the two
procedures suggested by Kadane), plus three more variants: matching on (Y, Z), and
matching on (X, Y, Z) and (Y, Z) after residuals were added to ¥ and Z.

A comparison of the first two columns within a given row shows the relative perfor-
mance of a matching procedure for values ‘‘near’’ conditional independence versus values
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Table 1. Summary of simulation results for Kadane’s method and related methods

Matching Average absolute difference between Performance
procedure specified value of Corr(Y, Z) and value reproducing
computed from matched (Y, Z) pairs specified
values of
Corr(Y, Z) Corr(Y, Z) values ) Co.rr(X, Z)
values near away from in File A and
conditional conditional Corr(X, Y)
independence independence in File B
value value
1,049 824
simulations simulations
match on .07 49 bad
X, Y,2)
match on X .07 52 good
match on (Y, Z) .04 .08 bad
match on .01 .01 usually OK,
(X, Y, Z) after but a few bad
adding results
residuals to
Y and Z
match on (Y, Z) .01 .01 good

after adding
re§idua1sAto
Y and Z

““far’’ from conditional independence. In general, performance was worse for values
““far’’ from conditional independence; for some procedures, dramatically worse. Match-
ing on (X, Y, Z) and (Y, Z) after adding residuals were the only procedures with robust
performance.

For the first two columns, a comparison of the rows within a given column illustrates the
relative ability of different procedures to maintain the specified value of Corr(Y, Z) during
the matching step. The differences in the procedures are particularly easy to see in the column
corresponding to values ‘‘far’” from conditional independence. Matching on (X, Y, Z) or on
(Y, Z) after adding residuals performed better than the other procedures, both for values
“‘near’’ conditional independence and for values ‘far’’ from conditional independence.

The last column of Table 1 provides summary-level information about each procedure’s
ability to accurately reproduce other correlation estimates, such as Corr(X, Z) in File A and
Corr(X, Y) in File B, over the set of simulations. (Note that since constrained matching was
used, means and variances automatically were preserved.) We examined both the overall
average absolute deviations and individual occurrences of large absolute deviations (e.g.,
larger than .10). Procedures with ‘‘good’’ performance had low averages (e.g., less than
.05) with no occurrences of large deviations, while procedures with ‘‘bad’’ performance
had both high averages and occurrences of large deviations. Matching on (X, Y, Z) after
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adding residuals had low averages, but some occurrences of large deviations (as high as
.18).

The occurrences of some large deviations when matching on (X, Y, Z) after adding resi-
duals fell among the small proportion of simulations, mentioned earlier, when residuals
were not imputed for one of the variables. No large deviations occurred for this (adverse)
situation when matching on (Y, Z) after adding residuals. These results suggest that match-
ing on (Y, Z) after imputing residuals gives more robust performance in this specific situa-
tion. However, as our research did not focus on this area, we think that more examination
is warranted before reaching such a conclusion.

It is useful to compare and contrast the performance of the two methods suggested by
Kadane and the method of matching on (Y, Z) (without adding residuals). We found that
matching on X consistently led to the creation of synthetic files with Corr(Y, Z) values
very close to the ‘‘conditional independence’’ value of Corr(X, Y)*Corr(X, Z), as
expected. Matching on (X, Y, Z) had some effect on moving the synthetic estimates
of Corr(Y, Z) away from the conditional independence value, but at the price of intro-
ducing distortions into the synthetic estimates of Corr(X, Z) in File A and Corr(X, Y)
in File B. Matching on (Y, Z) gave great improvement in terms of allowing the synthetic
estimates of Corr(Y, Z) to do a better job of reproducing the specified values of Corr(Y, Z);
however, as was seen for matching on (X, Y, Z), distortions were introduced into the syn-
thetic estimates of Corr(X, Z) in File A and Corr(X, Y) in File B. It is not surprising to
see these distortions when the matching process involves regression estimates of Y and Z
as linear functions of X.

5.3.  Simulation summary

Several conclusions can be drawn from the results summarized in Table 1, and the discus-
sion in Section 5.2:

(1) Matching on X alone should be avoided, as this procedure can be expected to
lead to ‘‘conditional independence’’ synthetic estimates of Corr(Y, Z)

(Corr(X, Y)* Corr(X, Z)).

(2) Matching with variables that are linear combinations of other variables (e.g., regres-
sion estimates) can be expected to introduce distortions into the synthetic estimates
of Corr(X, Z) in File A and Corr(X, Y) in File B.

(3) Matching on (Y, Z) after adding residuals performed, overall, better than any of the
other procedures that we examined. It always did a good job of accurately reprodu-
cing the other correlation estimates. For both theoretical and operational reasons, we
recommend it to our fellow practitioners.

5.4. Additional research on proposed new procedure

We conducted additional research on the proposed new procedure of matching on (Y, Z)
after adding residuals. Specifically, we were interested to see how the procedure would
work for specified values of Corr(X, Y), Corr(X, Z), and Corr(Y, Z), and what would
happen when an incorrect (but admissible) value of Corr(Y, Z) was postulated and used
in the regression process.
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In particular, we were curious to see if our recommended procedure could produce
matched datasets with accurate synthetic estimates of Corr(X, Z) in File A and Corr(X, Y)
in File B, while also reproducing the postulated (and incorrect) value of Corr(Y, Z). Based
on extensive simulation results (Moriarity 2001), the answers to these questions all appear
to be ‘‘yes.”” This is to be expected, as per the following quote from Kadane’s article:

““In the domain in which )y, is such that the matrix

( dvv vz )

S Yz

is positive semidefinite, nothing is learned from the data about 3 _y,. In Bayesian terms,
whatever our prior on Y .y, was, the posterior distribution will be the same.”’

Note that for the situation where an auxiliary source provides information about the value
of Corr(Y, Z), the results discussed in this section suggest that our recommended pro-
cedure could produce matched datasets with accurate synthetic estimates of Corr(X, Z)
in File A and Corr(X, Y) in File B, while also reproducing the value of Corr(Y, Z) obtained
from the auxiliary source. That is, our recommended procedure might be an alternative to
other procedures previously described for this situation (e.g., Singh et al. 1993; Paass 1986
and 1989).

6. Generalizations

We have outlined a procedure that can be used to explore variability due to alternative
assumptions made during statistical matching. The procedure gave robust performance
in our simulations, and we would expect robust performance from the procedure in other
applications as well. We have provided explicit guidance for implementing the procedure
for univariate (X, Y, Z), where the variables can be taken to be normally distributed (or
approximately so).

As might be expected, the procedure is more complicated when the dimension of (X, Y, Z)
exceeds three. However, one of the many strengths of Kadane’s procedure is that it is
formulated in general terms, and provides a framework for the more general case. It should
be noted that the specification of an admissible value of )y, requires some effort.

One possible strategy is to begin with the ‘‘conditional independence value’
S xx) " Sxz. which always is an admissible value for y,. This provides a
starting point for generating perturbations that would then need to be checked for
admissibility.

For multivariate X and univariate (¥, Z), Rodgers and DeVol (1982) give a bound for
Corr(Y, Z) that is a generalization of the bound given in Section 3.1. Let the dimension of
X be P, and let C i/ denote the (i, j )th element in the inverse of the correlation matrix of X.
Then Corr(Y, Z) must lie in the interval

c++D

where

C= Z Corr(Y,X;) x C” x Corr(X;,Z)

i=1 j=1
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and

PP B
Z Z Corr(Y,X;) % C" % Corr(X;,Y)

P )4
* [1 =3 > Corr(Z,X;)  CY % Corr(X;, Z)

i=1 j=1

This can be seen to reduce to the bound given in Section 3.1. if the dimension of X
is 1.

In the more general case, the following recursion formula for partial correlations (e.g.,
Anderson 1984, p. 43) can be used to generate admissible values of > y,:

Pijiq+2,...p ~ Pig+1-g+2....pPjg+1-g+2,...p

Pijq+1,..p =
\/1 ptq+lq+2 ,,,,, \/1 p1q+lq+2 ..... P

For example, in the simplest case of univariate (X, Y, Z), this formula gives

o _ Pyz — PyxPzx
YZX =
\/1 - P%/X\/l — o2

from which the bound given in Section 3.1. can be derived by allowing py.x to vary from
—1toI.

For (X, Y, Z,, Z,), a value for py, could be specified in accordance with a bound
analogous to what is given in Section 3.1.; i.e., in the interval,

PYXPZ,X = \/1 - PYX \/1 le

This value of py, then determines pyz .x via the equation

Pyz, — PyxPz,x
V1 — pyxy/1 —P%lx

The recursion formula then could be used to obtain the relation

Pyz, x =

_ Pyzyx — Pyz,-xPz,z, X

Pyz,x,z, = > >
\/1 - pYZI-X\/l — Pz,7,x

which specifies pyz,.x 7, in terms of pyz .x, 0z,7,.x, and pyz, x. pz,z,x can be estimated from
File B, and then by allowing py,.x 7, to vary from —1 to 1, the allowable range of values
for pyz,.x can be determined. Using these bounds, the allowable range of values for pyz,
can be determined that correspond to the given value of pyy, .

7. Summary and Application Issues

Kadane’s article presented pioneering work in the area of statistical matching. Clearly,
Kadane was the first to propose a methodology to evaluate the variability of alternative
assumptions in statistical matching; we are surprised that he has not gotten due recognition
in the existing literature.
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7.1. Conclusion

The discussion in this note has shown that most of Kadane’s procedure rests on a firm
theoretical basis. There is an important qualification, though. Due to the loss of the speci-
fied value of »_y, during the matching step, Kadane’s procedure is not feasible as origin-
ally described. However, an innovation (adding residuals to the regression estimates prior
to matching) makes the procedure feasible. The end result is a collection of datasets
formed from various assumed values of 3 ", where analyses can be repeated over the col-
lection and the results can be averaged (or summarized in some other meaningful way) to
assess the variability due to alternative assumptions about the value of » . (For a recent
reference on ways for averaging the resulting values, see Hoeting et al. 1999. The methods
described in Rubin (1987) might also be employed.)

7.2.  Application

In this article we have made the assumption that the variables to be statistically matched
come from multivariate normal distributions. This does not really fit most practice, where
the variables come from complex survey designs and do not have a standard theoretical
distribution, let alone a normal one.

While beyond our scope here to develop a complete paradigm, there are some sugges-
tions that we would make:

(1) Constrained matching is a good starting point. It is expensive but affordable now
with recent advances in computing. Unconstrained matching may also be used
but this topic is taken up elsewhere (Moriarity and Scheuren 2000).

(2) Applications that match files as large as 1,000 (the sample size we simulated) would
be unusual. Even in large-scale projects like matching the full Current Population
Survey (CPS) with the Survey of Income and Program Participation (SIPP), the
matching would be done separately in modest-sized demographic subsets defined
by categorical variables such as sex, race, etc.

We do want to mention here that during the course of our research, we noticed that
file sizes of 100 appeared to be too small (too much ‘‘noise’’), and file sizes of 500
appeared to be adequate. However, we did not conduct extensive research in this
particular area.

(3) We believe that the general robustness of normal methods can be appealed to, even
when the individual observations are not normal. While not necessarily optimal, the
statistics calculated from the resulting combined file will be approximately normal
because of the central limit theorem.

(4) Naturally, we recommend that Kadane’s procedure, as modified here, be used.
Whether one chooses to postulate a prior distribution for >y, and then make
random draws from that distribution, as Kadane suggested, or to specify values
deterministically from the range of admissible values (our approach), distribu-
tional information will be created as a result. This can be used to check on
robustness and should be.

(5) As samplers we are more worried about the assumption of independent identically
distributed (IID) observations that exist in our modified method. With unequal
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weights and clustering, common in many surveys (including the CPS and SIPP, for
example), the matching results could still be unsafe.

(6) Resampling of the original sample, prior to employing the techniques in this article,
could help here to expose potential lack of robustness to failures in the IID assump-
tion. One such technique is found in the article by Hinkins, Oh, and Scheuren
(1997), albeit it can be computationally expensive depending on the sample designs
of the two files being matched.

(7) Often researchers that do statistical matching do not bring in the survey designers
and at a minimum this is needed. The use of sample replication if possible, even
approximately, is one way that designers can help matchers.

(8) Deep subject-matter knowledge is required too, in order to deal with differences
across files in the measurement error and other nonsampling concerns (e.g., edit
and imputation issues) that arise and which could even be dominant as a limitation
to statistical matching.

7.3.  Final observation

In this article we have reviewed and strengthened the theoretical underpinnings of
one form of statistical matching, that proposed by Kadane. There has also been a
brief discussion of applications issues. The application suggestions, however, are
clearly not enough for a novice to begin a statistical matching exercise unaided. In
all applications, no matter what the experience level of the matcher, caution would
recommend that with a new problem, simulations should always be done and a small
prototype involving real data should be conducted before beginning on a large scale.
No decision on how or even whether to do a statistical match should be made until these
steps have been taken.

Appendix

Formulas given by Kadane for the ®;, i = 1 to 6 (refer to Section 3.2.)

=Y s (X)) St L Sma) o

3, = sz.y(zxx.y)flzxy + Zzy.x(Zyy.X)ileY

2= e (Swr) DS ) D
=) (X)) v
=32 (Yr) o (Co) e
S (E) o (Cr) e

2= e (Sz) St YY) S

=Y e (Cwe) St v Yn) Yo



Moriarity and Scheuren: Statistical Matching: A Paradigm for Assessing Uncertainty in the Procedure 421

and

cI)G = Z YX-Z (ZXXZ) 712)()( (ZXXZ) 7IZXY~Z

+ Z YzZX (Z zz-x) ) ZZZ (Z zz-x) B Zzyx
+ Z Xz (Zxxz) B ZXZ (Z zz-x) B ZZYX

+ Z YZX (Z zz.x) 7122}( (Z xx-z) B ny.z,
where Y apc = Yap = Yac(Eco) ™ Yep-
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