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Statistical Methods for Developing Ratio Edit Tolerances for
Economic Data
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1. Introduction

Key data items collected by the economic programs of the U.S. Bureau of the Census are

subjected to ratio edits as a part of the overall data-review process. In a ratio edit, the ratio

of two highly correlated items is compared to upper and lower bounds, known as toler-

ances. Ratios outside the tolerances are edit failures, and one or both of the items in an

edit-failing ratio are either imputed or ¯agged for analyst review. The effectiveness of

the ratio edit is therefore dependent on the tolerances.

From a subject-matter analyst's perspective, ratio edits are appealing because it is

dif®cult to evaluate the ``reasonableness'' of a data item's value by itself. By comparing

an item to other related values in the questionnaire, the analyst can determine if the

response appears valid. For example, the ratio of total annual hours to total employees

should be approximately 2,000 (40 hours a work week multiplied by 50 work weeks a

year). Ratio edit systems are equally appealing from a mathematical perspective. By

augmenting explicitly de®ned ratio edits with implied ratio edits, a record containing

edit failures can be corrected by applying a set covering procedure to the set of edit-failing
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ratios (Fellegi and Holt 1976; Greenberg 1986). This procedure determines the minimal

number of edit-failing data items that must be imputed to obtain a consistent record.

In the past year, ratio editing has become increasingly important at the U.S. Census

Bureau. A team of analysts, computer scientists, and statisticians has developed a

general-purpose ratio edit module based on the U.S. Census Bureau's original SPEER

edit system (Structured Programs for Economic Editing and Referrals) for use by all ten

economic census sectors in 1997. The SPEER system, which utilizes the Fellegi-Holt

model of editing continuous data described above, has been used successfully at the

U.S. Census Bureau in various forms since 1984 (Greenberg, Draper, and Petkunas

1990; Winkler and Draper 1997). Many analysts increased their use of ratio edits because

of the new software. Thus, not only did old tolerances need to be updated or regenerated,

but entirely new sets of tolerances had to be developed. Because some censuses use ``live''

(new) data for their tolerance development, often the parameter generation had a tight time

constraint as well (a two-week turnaround for some censuses).

Traditionally, the most dif®cult part of ratio editing has been developing reasonable

bounds. Overly tight bounds lead to a high proportion of false edit rejects, in turn resulting

in over-imputation or fruitless analyst review. Overly wide bounds retain erroneous data,

which can affect the ®nal tabulations. Occasionally, bounds on a ratio can be determined

by a mathematical rule: for example, the ratio of total annual hours to total employees

cannot be less than zero or more than 8,784 (24 hours a day multiplied by 366 days in

a leap year). More often, there is no set of known boundaries on ratio relationships.

Instead, the ratio edit can be viewed as a no-intercept regression model, where the numera-

tor is the dependent variable. In these cases, statistical methods should be used to develop

tolerances.

When historical data are available, the development of statistical ratio edit tolerances

begins with data analysis. Ratio edit tolerances separate a distribution of ratios into two

regions: an acceptance region and an outlier region. Determining ratio edit tolerances

via data analysis thus falls into the category of univariate outlier detection. In discussing

outlier detection, it is important to distinguish between legitimate outliers, i.e., unusual

values that are accurately recorded, and genuine errors, i.e., values that are inaccurately

recorded and yield suspicious-looking results. For us, ``good'' items are those that are

accurately recorded (however extreme) and ``bad'' items are those that are inaccurately

recorded.

We conducted research to ®nd a statistical method of developing ratio edit tolerances

that works well for different sets of economic data. Our statistical objective was to ®nd

a technique that balanced the goals of maximizing the number of rejected bad items

and minimizing the number of rejected good items in our data sets (using the historical

edit outcome to classify the ratios). Our operational objective was to ®nd a method that

was easy to implement and ¯exible. We compared three different tolerance development

methodologies, exploring variations within each to see how capable the procedure was of

adapting to the nuances of different data sets. Two of the methodologies considered, robust

methods and gap analysis, had been used with varying success at the U.S. Census Bureau

for other economic reports. The other methodology, resistant fences, was suggested by

Exploratory Data Analysis (EDA) literature.

Most of the techniques that we considered assume the ratios are symmetrically
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distributed. Distributions of ratios created from skewed data may or may not be sym-

metric, and so in Section 2 we present our approach for symmetrizing skewed distributions

of ratios prior to setting the tolerances. In Section 3, we describe the outlier detection

methods considered. Section 4 describes our evaluation of these methods. Section 5

discusses these results and presents our recommendation. Section 6 contains ®nal remarks.

2. Symmetrizing Skewed Distributions for Tolerance Development

2.1. Background

In general, distributions of economic data are positively skewed. However, most of the

statistical methods we considered for tolerance development implicitly assume symmetric

distributions. Often, approximate symmetry can be achieved using power transformations

on the original data. A power transformation with parameter equal to p is a function of the

following form:

Tp�x� �

xp
� p > 0�

log�x� � p � 0�

ÿxp
� p < 0�

8><>: �1�

The negative sign before the expression for p < 0 guarantees that Tp�x� has the same

limit approaching from both left and right as p ! 0.

For long-tailed distributions, power transformations such as the natural logarithm

( p � 0) or the square root ( p � 0:5) are useful, since they expand the lower data values

and shrink the spread of larger data values. The logarithm transformation has another

appealing property: absolute differences on the log scale correspond to percentage differ-

ences on the original scale. However, the logarithm transformation cannot be used when

the distributions contain legitimate zero values.

To estimate p, we ®rst employed a modi®cation of an EDA method for determining p

described by Hoaglin, Mosteller, and Tukey (1983), then applied the natural logarithm

transformation to the same distribution of ratios, and selected the transformation that

produced the smallest absolute value of the sample skewness coef®cient (including a

comparison to the skewness coef®cient of the original distribution). We included the com-

parison to the natural logarithm transformation because the EDA method's resistance

breaks down when the data set contains more than the expected number of outliers (see

Section 2.2). As would be expected, we did not symmetrize every distribution of ratios.

Several of the distributions contain legitimate outliers and remain skewed even after being

transformed. Moreover, a symmetrizing power transform does not exist for some

distributions.

Initial sets of ratio edit tolerances are obtained from the transformed distributions. The

inverse power transformation is applied to the initial limits to obtain the tolerances

actually used in the edit system. The inverse-transformed tolerances will not be symmetric

on the original scale.

2.2. EDA method for symmetrizing skewed distributions

Most of the skewed distributions we examined could be easily symmetrized by applying
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the natural logarithm transformation to the ratios, i.e., by applying (1) with p � 0. To

evaluate other power transformations, we obtained p with the modi®cation of Hoaglin

et al.'s (1983) transformation plot for symmetry described below.

Given an ordered sample of size n, let M be the median of the sample, and xL and xU

represent the lower and upper values of a set i of k-percent approximate quantiles. The

EDA transformation plot for symmetry places

xvi � ��xU � xL�=2� ÿ M �2�

on the vertical axis (n), and

xhi � ��xU ÿ M�
2
� �M ÿ xL�

2
�=�4M� �3�

on the horizontal axis (h), so that

slopei � xvi=xhi �4�

If the resultant graph is nearly linear, that is, slope <c, then p � 1 ÿ c. We determined a

value for p without graphing the points, by setting p � 1-median�xvi=xhi�. Although

Hoaglin recommends rounding p to the nearest multiple of 1
2
, we did not employ this

rounding.

The EDA procedure resistance breaks down (exceeds the breakdown point) when the

actual number of outliers exceeds the number of observations in one (or both) of the quan-

tiles with the smallest tail probability. The breakdown point can be raised by decreasing

the number of quantiles employed. However, the lower the breakdown point, the more

data points available to calculate the median slope.

To minimize the effect of multiple outliers, we deleted extreme observations from the

untransformed sample before estimating the slope from the quantiles using the resistant

outer fences rules described in Section 3. We refer to the reduced sample size as n. To

maximize the resistance, we linked sample size with expected number of outliers before

breakdown by using the sets of quantiles speci®ed in Table 1.

Our variation of the EDA method allows for four expected outliers in the subsetted data

set before breakdown.

3. Outlier Detection Methods

We examined three approaches to setting tolerance limits: a robust approach (®fteen-

percent trimmed mean and standard deviation); an outlier-resistant approach (resistant

fences); and a gap analysis approach (Distance Measurement Algorithm for the Selection

of Outliers, (D_MASO)). These methods are described below.
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Table 1. Sets of quantiles for EDA transformation plot for symmetry

Range of n Breakdown point Quantiles used

33±64 1/8 1/4, 1/8
65±128 1/16 1/4, 1/8, 1/16

129±256 1/32 1/4, 1/8, 1/16, 1/32
257±512 1/64 1/4, 1/8, 1/16, 1/32, 1/64
513±¥ 1/128 1/4, 1/8, 1/16, 1/32, 1/64, 1/128



3.1. Robust mean and standard deviation

In an earlier economic census editing cycle, the ®rst step of tolerance development was to

eliminate all of the ratios in a class that were more than two standard deviations from the

mean and to base the tolerances on the resultant data set. We attempted an analogous

technique using robust estimates of the population mean and standard deviation. Other

case studies have employed robust estimation techniques to develop tolerances (Mazur

1989; Pierce and Gillis 1995).

We used the ®fteen-percent trimmed mean2 as our robust estimate of the population

mean and a robust estimate of population standard deviation based on the Winsorized

sum of squared deviations (a consistent estimator of the variance of the trimmed mean,

as shown in Gross (1976)). A more conservative approach such as the ®ve-percent

trimmed mean would have yielded wider tolerances (hence fewer false edit rejects) but

would have been less robust.

If the distribution of ratios (or transformed ratios) is approximately symmetric, the robust

estimates of the population mean and standard deviation de®ne a robust con®dence interval

for the mean (Gross 1976; Mazur 1989). Based on the principle that almost any distribution

is ``normal in the middle,'' the interval �Åxk 6 2jk� should include roughly ninety-®ve per-

cent and �Åxk 6 3jk� should include roughly ninety-nine percent of the observations. The

analyst thus has some control over the number of edit rejects. Using �Åxk 6 2jk� to de®ne

the acceptable region amounts to a more liberal rule, while using �Åxk 6 3jk� amounts to a

more conservative rule in terms of the number of cases ¯agged for review.

3.2. Resistant fences

Resistant methods are insensitive to outlying observations in the distribution (Hoaglin

et al. 1983), producing results that change only slightly when a part of the data is replaced

by new (entirely different) numbers. West (1995) proposed using an EDA outlier detection

method called resistant fences to develop tolerances. Resistant fences rules are based on

sample quartiles. Given an ordered distribution of ratios, let q25 � the ®rst quartile,

q75 � the third quartile, and H � q75 ÿ q25, the interquartile range. The resistant fences

rules de®ne outliers as ratios less than q25 ÿ k*H or greater than q75 � k*H, where k is

a constant. The inner fences rule sets k equal to 1.5 and is the rule used to de®ne the stan-

dard Tukey boxplot. The outer fences rule sets k equal to 3. A compromise rule ± the mid-

dle fences rule ± sets k equal to 2. We calculated the quartiles by setting the cumulative

probability level for the ith order statistic x�i� equal to i=�n � 1� as recommended by Hoa-

glin and Iglewicz (1987).

The resistant fences rules implicitly assume ± but do not require ± that the ratios are

symmetrically distributed. We applied the resistant fences rules to both transformed and

untransformed data.

3.3. Distance measurement algorithm for selection of outliers (D_MASO)

The D_MASO gap analysis approach was developed at the U.S. Census Bureau to develop
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ratio edit tolerances for the 1992 Enterprise report (Oh, Paletz, Kim, and Salyers 1994).

D_MASO examines successive ratios of ordered explicit ratios, considering proportional

distances between adjacent ordered observations to ®nd potential edit bounds. An

``unusually'' large gap between adjacent observations at either end of the distribution

may indicate that the observations between the gap and the end of the distribution are

outliers. The observation on the ``center side'' of the gap is a potential tolerance. The

user speci®es the maximum percentage of observations that can be labeled as outliers

and speci®es a cut-off value for distance comparisons. Appendix A outlines the

D_MASO procedure.

4. Determining Ratio Edit Tolerances

4.1. The ratio edit as a hypothesis test

A ratio edit is a hypothesis test, in which the null hypothesis is that both data ®elds in the

ratio are correct (Pierce and Gillis 1995). One rejects the null hypothesis when the ratio

falls outside of the tolerances. Given this de®nition, we can de®ne Type I and Type II error

for each ratio edit. A Type I error ¯ags a ratio value as an error when it is in fact correct:

these are good ratios that fall outside of the tolerances. A Type II error ¯ags a ratio as

correct when it is in fact an error: these are bad ratios that lie inside of the tolerances.

Type I error increases unnecessary analyst work and is generally controlled by widening

the tolerances. However, the wider the tolerances, the greater the probability of Type II error.

Some caution must be used in de®ning Type II error. Only a portion of the Type II error

for an individual ratio test is controlled by the tolerance limits. With ratio edits, there is

usually an ``inlier'' set of bad ratios, where an inlier is de®ned as a bad ratio whose value

is consistent with the rest of the distribution. For example, ratio edits rarely identify round-

ing errors: if both items are reported in the wrong units (e.g., thousands instead of units),

the ratio value will be acceptable even though both data items are scaled incorrectly.

Furthermore, an item in a ratio is often involved in more than one ratio test. An item value

that is acceptable in one ratio relationship edit may be unacceptable in another.

Because item values are often tested in more than one ratio edit, the individual ratio edit

Type II error is a poor measure of the overall proportion of uncorrected (unidenti®ed) bad

items left remaining in the edited data. Consequently, we de®ne the Type II error of an

entire set of ratio edits as bad data that passes all containing ratio edits. At the ratio-

edit level, the all-ratio-test Type II error for the complete set of ratio edits is the number

of bad ratios that are not outside of any tolerances. At the individual data item level, the

all-item Type II error for the complete set of ratio edits is the bad data items that are not

contained in any ratios outside the tolerances, i.e., the bad items that are not identi®ed as

outliers by any of the ratio edit tests.

We can also examine the power of a set of ratio edits. For outlier detection, the power is

the probability of correctly concluding that a bad ratio is an outlier. The power of a set of

ratio edits is the proportion of bad ratios that fall outside of one or more tolerances.

An alternative measure for evaluating the tolerances for a given ratio test is the hit rate ±

the ratio of the number of bad ratios outside of the tolerances to the total number of ratios

outside of the tolerances (Granquist 1995). This is an important measure in evaluating the
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operational effectiveness of an edit. The higher the hit rate, the more erroneous

observations correctly ¯agged.

To examine the different methods, we used historical data (see Section 4.2.) and

classi®ed each ratio based on its historical edit outcomes.3 First, we considered each

nonblank/zero data item separately, using the reported data item, the edited data item,

and the data item's edit action ¯ag to classify each data item as good, bad, or questionable.

Good data items had legitimate reported values, bad data items had unacceptable reported

values, and questionable data items had reported values which were impossible to classify

as good or bad. For example, in certain cases, the reported and edited value are not equal,

and the item is ¯agged as having been imputed and then analyst corrected. On average,

roughly ®ve percent of the nonzero data items were ¯agged as questionable.

A ratio is good if both the numerator and the denominator are ¯agged as good. A ratio is

bad if either the numerator or the denominator is ¯agged as bad. Ratios that contain blank

or questionable values were excluded from all evaluations. The ¯owchart in Figure 1

shows how we classi®ed and used the historical data.
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We assume that the edited historical data are correct. This assumption is not unreasonable.

Edited economic census data are subjected to a separate outlier detection program, giving

extreme values two chances of review. Additionally, large establishments are often

¯agged for analyst review regardless of edit outcome. And, in many cases, aggregate

census cell totals are compared to corresponding administrative data totals. It is of course

possible that undetected erroneous variables are included in the edited data (and classi®ed

as ``good'' in our system), especially among small establishments.

4.2. Historical data sources

We examined two sets of historical data: the 1994 Annual Survey of Manufactures (ASM)

and the 1992 Business Census. Our data included only full-year reported establishments

and excluded all fully imputed cases.

The ASM is a mail-out/mail-back survey representing all establishments that received a

form in the previous census of manufactures. The survey provides detailed annual statis-

tics on the location, activities, and products of approximately 58,000 U.S. manufactures.

Prior to ratio-editing, the ASM reported data undergoes some clerical edits. We used this

partially edited data to develop the tolerances. Twelve of the ASM ratio edits require

statistically developed tolerances and the same set of ratio edits is used in each standard

industrial classi®cation (SIC).

The Business Census is a quinquennial mail-out/mail-back census that covers ®ve trade

areas: Retail Trade; Wholesale Trade; Service Industries; Transportation, Communication,

and Utility Industries (Utilities); and Finance, Insurance, and Real Estate (FIRE). Data are

collected on approximately 150 different questionnaires, and over four million census forms

are mailed out. The Business Census data are ratio edited without a prior clerical edit.

Administrative data is substituted for blank data whenever possible to develop tolerances,

so we used reported and administrative data to develop the tolerances. Some trade areas clas-

sify the establishments within SIC by legal form of organization, type of operation, and tax

status. We used the trade area classi®cations for our evaluation, but refer to each classi®ca-

tion as an SIC. Each trade area in the Business Census employs a common set of core ratio

edits. Four of these ratio edits require statistically developed tolerances. We performed our

evaluation by trade area within census for the four statistically determined ratio edits.

4.3. Evaluation methodology

We generated nine sets of edit tolerances per ratio test in each SIC: two sets of robust

edit limits for symmetrized distributions; three sets of resistant edit limits (inner, middle,

and outer fences limits) for symmetrized and unsymmetrized distributions (six sets total);

and one set of gap analysis (D_MASO) edit limits. We used sixteen SICs for the ASM

evaluation and thirty SICs for the Business Census evaluation.

Our objective was to ®nd a technique that balanced the goals of maximizing the number

of rejected bad items and minimizing the number of rejected good items. Appendix B

presents the average Type I error rates for each ratio test, the all-ratio-test Type II error

rate, and the all-item Type II error rate obtained using each tolerance development method

on the 1994 ASM data. Appendix C presents the same statistics for the 1992 Business Cen-

sus data by trade area. The Type I error rate for each ratio test within an SIC is the number
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of good ratios outside of the tolerances divided by the total number of good ratios. The

all-ratio-test Type II error rate is the number of bad ratios inside the tolerances of all con-

taining tests divided by the total number of bad ratios. The all-item Type II error rate is the

number of bad items which are not outside of any tolerance limits divided by the total

number of bad items for the trade area (Business Census) or survey (ASM). The all-

item Type II error rate is always larger than the all-ratio-test Type II error rate.

The Type I error rates should be interpreted cautiously. Usually there were very few

good ratios outside of the tolerances, and a difference of one or two cases gives the

misleading appearance of a large change in the error rate.

4.3.1. Comparison of robust and resistant methods: symmetrized data

To eliminate the method that performed the worst overall in terms of Type I error (false

reject rate), we ®rst examined the robust and resistant methods on symmetrized

distributions, considering a high proportion of ratio tests with a Type I error larger than

0.10 unacceptable. Across the board, the tolerances generated with two robust standard

deviations were too narrow. The robust methods performed poorly because the tails of

the symmetrized distributions were heavier than those of a normal distribution with j2

equal to that estimated by the Winsorized variance estimator, so 62j did not cover the

expected 95 percent. Moreover, in the ASM data set, the 63j did not cover the expected

99 percent.

The appeal of the robust methods was the potential for control over Type I error. This was

not the case with our data sets. Furthermore, the tolerances generated with three robust

standard deviations were similar to those generated with the resistant middle fences

(k � 2), so there was no apparent advantage in further pursuing the robust estimation

techniques. Mazur (1989) reached the same conclusion with livestock slaughter data.

4.3.2. Comparison of resistant fences methods: symmetrized and unsymmetrized data

We next considered the resistant methods separately on symmetrized and unsymmetrized

distributions. For each SIC/ratio, we selected a ``best'' resistant fence rule for the unsym-

metrized data and for the symmetrized data. We then examined whether symmetrizing was

necessary for the historical data used. For more details, see Thompson and Sigman (1996).

For most of the ASM ratios, the same resistant fence rule (outer fences) worked best on

both the symmetrized and the unsymmetrized data. In fact, the tolerances generated from

both data sets were similar. Although the ASM distributions of ratios are generally

positively skewed, the degree of skewness is often not severe4 as in some economic

applications. The symmetrizing compressed the ASM distributions of ratios but did not

dramatically change their shape. Often, the skewness of the transformed distributions

was not substantially reduced because the longer tail consisted entirely of legitimate

outliers. Consequently, the tolerances developed from the symmetrized data were only

slightly narrower than those from the unsymmetrized data.

In general, the tolerances calculated from the unsymmetrized ASM data yielded tests

with slightly higher hit rates (proportion of rejected ratios that were bad) than those

calculated from symmetrized data. Consequently, the Type I error rate (proportion of

rejected good ratios) is also lower for the unsymmetrized distributions on a case by
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case basis. Moreover, the all-ratio Type II error rates were essentially the same for the

symmetrized and unsymmetrized distributions.

In contrast with the ASM results, the resistant methods perform quite differently on the

symmetrized and unsymmetrized distributions of Business Census data. The Business

Census data is highly positively skewed5 more so than the ASM data. Because of the

degree of skewness, the interquartile range (H) is generally larger than �q25 ÿ x�1�� for

the unsymmetrized data: the lower bound is almost always negative, and the upper bound

is near the center of the distribution. For most of our data sets, applying the natural

logarithm transformation to the distributions of ratios corrected the skewness. When the

resistant rules were applied to the symmetrized data, the tolerances were generally near

the ends of the distributions. Thus, the symmetrizing decreased the Type I error rate

and yielded approximately the same all-ratio Type II error rate.

Applying the resistant outer fences �k � 3� to the original unsymmetrized distribution of

ratios usually worked well for the ASM data. This was rarely the case with the Business

Census data. Although symmetrizing the distributions improved the hit rate of the tests, a

distance of three interquartile ranges from the upper and lower quartiles was not often suf-

®cient. In three of the ®ve trade areas, the Type I error rate was too high for k � 3 (often

larger than 0.05). We found that specifying four interquartile ranges (k � 4) improved

the Type I error rate with very little loss in individual hit rates or total power for the

census of Retail Trade, the census of Service Industries, and the census of Transportation,

Communication, and Utilities Industries.

4.3.3. Comparison of resistant fences and D_MASO procedure

The D_MASO algorithm was developed at the U.S. Census Bureau to generate tolerances

for the 1992 Enterprise Report (Oh et al. 1994). There are some key differences between

the D_MASO approach and the resistant approaches. First, the D_MASO procedure does

not use a probability model. Second, the D_MASO procedure looks for separate groups of

observations to determine outlier zones, rather than looking for extreme observations.

Finally, the user speci®es a priori the maximum proportion of the data that can be labeled

as outliers by the D_MASO procedure.

For our application, we speci®ed a maximum outlier proportion of ®ve percent per tail

and used the default cut-off factors of 1.2 for the lower and upper tail as speci®ed in Oh

et al. (1994), ®nding the algorithm fairly insensitive to the cut-off percent when the default

cut-off factors were between 1.2 and 3. In fact, the selection of the cut-off factor had a

larger effect on the tolerance limits than the cut-off percent. We compared the

D_MASO procedure to the most successful resistant procedure for each historical data

set: outer fences with unsymmetrized ASM data; and outer fences (k � 3) or ``big'' fences

(k � 4) with symmetrized Business Census data, depending on trade area. See Thompson

and Sigman (1996) for more details.

For most of the ASM ratios, the resistant fences usually performed better than

D_MASO. In the few cases where the D_MASO bounds were clearly superior, the original

distributions are very positively skewed; the resistant fences bounds were too narrow and
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were negative at the lower end. In general, however, the ASM resistant fences tolerances

were usually slightly wider than the D_MASO tolerances and identi®ed the same bad

ratios. Consequently, the Type I error rate is usually higher for D_MASO. The power is

about the same for the two methods, although the hit rate is generally higher for the

resistant fences tolerances. However, the difference in error rates and hit rates between

the two methods is usually caused by a small number (two or three) of rejected good ratios.

For the Business Census data, the resistant methods outperformed D_MASO in three

trade areas: Wholesale, Utilities, and FIRE. In the other two trade areas, the resistant

methods and D_MASO tied in terms of overall performance. The D_MASO procedure

limits the number of observations that can be ¯agged as outliers, so the procedure begins

at the tail ends of the distribution. In cases where the interquartile range was small and the

range of the distribution of ratios was large, the resistant bounds were much narrower than

the D_MASO bounds. In these cases, the D_MASO bounds outperformed the resistant

fences bounds by a large margin in terms of rejected good ratios (Type I error).

5. Discussion

We examined variations of three different approaches to setting tolerance limits. None of

these approaches incorporated specialized subject-matter knowledge of the distribution of

ratios. Analysts who work with economic data develop an expert understanding of the

distributions of ratios in a given industry. A statistical methodology cannot replace this

knowledge. However, it can serve as a good starting point, especially when there is no

known mathematical relationship to rely upon.

Outlier detection methods can fail to work properly when more than one outlier is

present. Problems that arise in the presence of multiple outliers are of two types: masking

and swamping. Masking occurs when the presence of several outliers makes each

individual outlier dif®cult to detect. Swamping occurs when multiple outliers cause the

procedure to erroneously ¯ag too many observations as outliers. These two problems

can adversely impact tolerance development.

The resistant fences rules were designed to reduce masking. Because they are based on

quartiles, they have a breakdown point of approximately 25%. Swamping must be

controlled by the choice of k, the number of interquartile ranges between the quartiles

and the fences. However, Hidiroglou and Berthelot (1986) note that resistant fences

methods are not free from masking.

They cite two speci®c masking effects, both of which were present in our analysis. First, if

the distribution is very positively skewed, then outliers on the left tail of the distribution are

undetectable (as they are with generated negative lower tolerances for data that is always

non-negative). Second, the resistant fences method does not make a speci®c provision for

the size of the establishment, and the variability of ratios for small establishments is larger

than the variability of ratios for large establishments. If the establishment size varies widely

within an SIC, then too many small units will be ¯agged as outliers, and not enough large

units will be considered. Hidiroglou and Berthelot refer to this as the ``size masking effect.''

Hidiroglou and Berthelot address these two problems with their statistical edit. This

procedure transforms a distribution of ratios using a nonlinear symmetrizing transforma-

tion based on the median ratio, then multiplies the transformed observations by the larger
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value in the individual ratio raised to a power U, where 0 # U # 1 (U provides a control of

the importance associated with the magnitude of the data). Quantiles are calculated from

the resultant products (called effects), and the ratio edit tolerances are derived from these

quantiles. Each ratio edit is performed separately. Items whose effects lie outside the

tolerances are ¯agged for review/imputation.

The Hidiroglou-Berthelot statistical edit does not, however, easily adapt to an editing sys-

tem consisting of multiple ratio edits which must be satis®ed simultaneously, such as the one

employed at the U.S. Census Bureau. The effects from each set of ratios are nonlinear func-

tions of the original data and are scaled differently for different ratios, so ®nding an imputa-

tion solution that satis®es all edits is dif®cult and may not even be possible. Fortunately, the

resistant fences techniques can be modi®ed to address these two masking problems. If a

highly positively skewed distribution of ratios has a heavy tail, then symmetrize the distri-

bution with a power transformation and determine the initial tolerances with respect to the

transformed data. The inverse-transformed ®nal tolerances should locate outliers in both

tails of the distribution [recall that the left and right tolerances are different distances

from the median]. The ``size masking effect'' can be controlled by subgrouping establish-

ments within cells (industries) by an establishment-size categorical variable.

D_MASO was designed to reduce swamping. The user speci®es the maximum percen-

tage of the data set that can be identi®ed as outliers. In this case, the masking is controlled

by the choice of lower and upper cut-off factors. The larger gaps in proportional distances

are usually due to the smaller establishments, so the D_MASO algorithm is also prone to

the size masking effect.

In terms of outlier detection, the resistant methods were the most consistently successful

in balancing minimum Type I error and maximum power, working best on approximately

symmetric distributions. After ®ne-tuning some of the values of k, we were able to develop

tolerances with low Type I error rates and reasonable power for most of the ASM and the

Business Census ratio edits. As always, there is a trade-off between Type I error and Type

II error: by minimizing the Type I error rate, we increase the Type II error rate for the set of

ratio edits and correspondingly reduce the power of the set of ratio tests.

D_MASO worked quite differently for the two sets of historical data. Usually, the

D_MASO bounds were too tight with the ASM data: the algorithm appeared to be quite

prone to swamping. This result surprised us because it was counter to the design of the

algorithm. We expected the D_MASO bounds to be wider than the resistant bounds in

most cases. There was no clear pattern for the Business Census data.

The appeal of the D_MASO approach is the user's control over the maximum number of

outliers. From a statistical perspective, this is not necessarily a strength. Deciding a priori

on the number of outliers that can be detected has quality implications for the ®nal edited

data; tabulations may use data that contains several unexamined erroneous observations. If

the number of establishments is large, then the Type II error rate can have a signi®cant

effect on the ®nal tabulations.

For us, D_MASO was a ``black box.'' We did not have an intuitive understanding of the

ordered distribution of gaps for a ratio and had a dif®cult time relating the D_MASO

breaks to histograms of ratios in an SIC. In contrast, the resistant fences rules were fairly

intuitive. This approach takes the shape of the center of the distribution into consideration,

without making parametric assumptions about the tails. From an operational perspective,
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the resistant fences methods are ¯awed because they do not allow explicit control over the

number of ¯agged outliers; if k � 1, up to ®fty percent of the sample can be ¯agged as

outliers. In practice, however, we found that the percent of observations in the rejection

region could be controlled through the choice of k.

There are some theoretical results for normally distributed data that reinforce our con-

clusion. Hoaglin and Iglewicz (1987) provide details of the expected some-outside rate

(fraction of the samples that will ¯ag at least one observation as outlying) and the outside

rate per observation (fraction of observations that are ¯agged as outliers by chance): the

outer fences rule had an outside rate per observation of less that 0.5% for n < 10, and a

some-outside rate of 1% for n < 20. Research by Hoaglin and Iglewicz (1987) on ®xing

the some-outside rate per sample found that for normally-distributed data, with sample

sizes of n > 300, the some-outside rate was approximately ten percent for k � 2:2 and

approximately ®ve percent for k � 2:4.

Our success with the resistant outer fences has since been validated on other data sets: in

particular, the 1997 Business Census (Graham 1998), the 1997 Census of Construction

Industries (Kornbau 1997), and the September 1997 Hog Report (Todaro 1998). Provided

that the distribution under consideration is unimodal and has a nonzero interquartile range

(H), the resistant outer fences rules yield a good set of initial tolerances.

The necessity of symmetrizing is debatable. Symmetrizing distributions of ratios can be

time-consuming and computer intensive. The effort is justi®ed only when it reduces the

Type I error rates and increases the power. However, if the same ± or better ± results

can be obtained without ®rst symmetrizing the data, then the additional effort is not

justi®ed. In the case of the Business Census data, the additional effort was worthwhile,

but not in other data sets. And across the board, we have found that symmetrizing very

small distributions (e.g., less than thirty observations) results in unusably wide tolerances.

In practice, we recommend examining the degree of skewness of a representative set of

distributions of ratios and examining the composition of the longer tail in a positively

skewed distribution before considering power transformations.

Moreover, there are alternative versions of resistant fences rules for asymmetric distri-

butions. Lanska and Kryscio (1997) propose using the distance between the ®rst quartile

(q25) and the median for the lower fence and the distance between the third quartile (q75)

and the median for the upper fence instead of the interquartile range. This elongates the

fences in the direction of the skewness of the distribution. While we have not investigated

this method on our data sets, we believe that it is worth future consideration.

6. Conclusions

In this article, we have examined a variety of methods for developing ratio edit tolerances.

Based on the results of our evaluation, we recommend using EDA resistant fences

procedures to develop an initial set of ratio edit tolerances. If several of the distributions

of ratios being edited are highly positively skewed with heavy tails, then consider combining

the resistant fences techniques with the symmetrizing procedure described in Section 2 to

obtain an initial set of tolerances, followed by inverse transforming the initial bounds to

obtain ®nal bounds.

Developers of ratio edit tolerances have some control over the development
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methodology that we propose. They can examine the distributions of the ratios and modify

the development approach until it works well on the data at hand. They can work to reduce

the size masking effect by subgrouping establishments within cell (industry) by size

category. Implementation ± even with symmetrizing ± is easy and fast. Thus, this

methodology appeals to statisticians and analysts alike. As an example, the 1992 Business

Census used a maximum of ®fteen ratio edits in 1992 (Wholesale Trade); the other

Business Censuses used six ratio edits. For the 1997 Business Census, they used 65 ratios

for Wholesale, 26 for Retail, 57 for Services, 64 for FIRE, and 79 for Utilities (two new

censuses ± Auxiliary Establishments and Outlying Areas ± will also use ratio edits). This

increase would not be possible without a mechanism for developing reasonable tolerances

quickly (the Business Census develops ``warm deck'' parameters from live data during the

Census).

No matter how much we re®ne a statistical methodology, however, statistical methods

cannot automatically provide the ``best'' tolerances in every case. Statistical methods can-

not replace subject matter expertise and common sense. As a general rule, a mathematical

relationship that governs the upper and lower bounds of a ratio edit should preempt any

statistical techniques. For example, the Business Census tests the ratio of Annual Payroll

to First Quarter Payroll. Logically, the lower bound of this ratio is one. When we used the

resistant fences methods to generate tolerances, our lower tolerances were as low as 0.85.

A ratio value of 0.86 would not be ¯agged as an outlier for this distribution. However, one

of the two items being edited is obviously wrong.

Developing good ratio edit tolerances is an iterative process. Our proposed approach

provides an initial set of parameters. Data users should examine these parameters in

conjunction with the microdata and modify them accordingly.

Appendix A

Steps in the D_MASO procedure

Given a class variable and an explicit ratio:

1) Sort the usable observations (ratios) in ascending order.

2) Calculate ratios of the ordered ratios (proportional ratios).

3) Calculate upper and lower cut-off values. The cut-off value is the median of the

proportional ratios multiplied by user-speci®ed cut-off factors.

4) Flag tolerance at the lower end of the distribution. Starting at observation 1, compare

the proportional ratio to the lower cut-off value. If the proportional value exceeds the

cut-off, ¯ag the next observation as a candidate bound. The lower tolerance is the

innermost ¯agged observation (the ¯agged value closest to the center). If nothing

is ¯agged, then the default lower tolerance is the ®rst ratio.

5) Flag tolerance at upper end of the distribution. Starting at observation n, compare the

proportional ratio to the upper cut-off value. If the proportional value exceeds

the cut-off, ¯ag observation (n ÿ 1) as a candidate bound. The upper tolerance is the

innermost ¯agged observation (the ¯agged value closest to the center). If nothing is

¯agged, then the default upper tolerance is the last ratio.
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Appendix B

Average Type I Error Rates
1994 Annual Survey of Manufacturers

RATIO EDIT Symmetrized Unsymmetrized

Robust Resistant Resistant Gap

Two Three Inner Middle Outer Inner Middle Outer D_MASO
SDs SDs Fences Fences Fences Fences Fences Fences Default

cm/vs .076 .023 .020 .009 .005 .017 .007 .004 .025
le/sw .061 .018 .026 .010 .002 .026 .019 .006 .024
ow/oe .086 .030 .024 .006 .002 .029 .012 .007 .036
ph/pw .079 .035 .062 .042 .014 .045 .025 .010 .014
sw/te .075 .018 .016 .007 .004 .019 .008 .004 .012
sw/vs .091 .031 .033 .018 .008 .036 .021 .011 .038
tib/vs .079 .020 .015 .005 .001 .057 .042 .021 .036
tie/tib .139 .065 .078 .047 .019 .081 .051 .028 .042
tie/vs .075 .013 .010 .005 .002 .058 .041 .026 .037
vp/sw .074 .016 .020 .011 .001 .026 .015 .005 .038
ww/ph .062 .027 .031 .021 .011 .029 .020 .014 .014
ww/pw .079 .022 .019 .006 .001 .019 .010 .006 .021
Average .081 .027 .030 .015 .006 .037 .023 .012 .028

Type II Error Rates
1994 Annual Survey of Manufacturers

RATIO EDIT Symmetrized Unsymmetrized

Robust Resistant Resistant Gap

Two Three Inner Middle Outer Inner Middle Outer D_MASO
SDs SDs Fences Fences Fences Fences Fences Fences Default

All- .544 .710 .694 .777 .858 .715 .773 .850 .804
Ratio-Test
All-Item .589 .746 .733 .816 .891 .768 .828 .907 .834

Mnemonic Description Mnemonic Description

TE Total Employment LE Legally Required Supplemental Labor Costs

PW Production Workers VP Voluntary Supplemental Labor Costs

OE Other Employees PH Total Plant Hours

SW Total Salaries and Wages CM Total Cost of Materials

WW Production Workers' Wages TIB Beginning Total Inventories

OW Other Workers' Wages TIE Ending Total Inventories

VS Total Value of Products Shipped
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Appendix C

Average Type I Error Rates
1992 Business Census

Symmetrized Unsymmetrized

Robust Resistant Resistant Gap

RATIO Two SDs Three SDs Inner Middle Outer Inner Middle Outer D_MASO
EDIT Fences Fences Fences Fences Fences Fences Default

APR/EMP .100 .034 .027 .012 .002 .044 .023 .012 .010

QPR/EMP .112 .042 .043 .018 .002 .046 .032 .016 .010

SLS/EMP .101 .035 .033 .023 .005 .075 .056 .042 .008

SLS/QPR .100 .023 .022 .018 .014 .082 .064 .048 .009

AVERAGE .103 .033 .031 .018 .006 .062 .044 .030 .009

APR/EMP .081 .025 .027 .012 .004 .035 .022 .010 .005

QPR/EMP .070 .020 .021 .007 .002 .025 .015 .006 .005

SLS/EMP .095 .027 .028 .013 .002 .050 .033 .018 .009

SLS/QPR .119 .050 .054 .032 .012 .079 .058 .036 .004

AVERAGE .091 .030 .033 .016 .005 .047 .032 .018 .006

APR/EMP .089 .027 .027 .010 .002 .032 .017 .007 .010

QPR/EMP .082 .022 .023 .007 .001 .033 .016 .006 .007

SLS/EMP .087 .022 .023 .009 .001 .055 .039 .022 .003

SLS/QPR .077 .023 .023 .013 .005 .072 .054 .035 .002

AVERAGE .084 .024 .024 .010 .002 .048 .032 .018 .006

APR/EMP .092 .029 .030 .013 .002 .046 .029 .012 .009

QPR/EMP .073 .017 .017 .007 .001 .033 .019 .009 .006

SLS/EMP .089 .019 .021 .008 .001 .077 .054 .032 .010

SLS/QPR .092 .027 .028 .013 .002 .087 .067 .042 .004

AVERAGE .087 .023 .024 .010 .002 .061 .042 .024 .007

APR/EMP .109 .048 .044 .020 .005 .038 .026 .016 .011

QPR/EMP .097 .033 .045 .016 .007 .040 .026 .016 .008

SLS/EMP .074 .010 .019 .003 .000 .081 .065 .034 .014

SLS/QPR .104 .022 .024 .010 .003 .080 .070 .046 .018

AVERAGE .096 .028 .033 .013 .004 .060 .047 .028 .013
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Appendix C (continued)

Type II Error Rates
1992 Business Census

Symmetrized Unsymmetrized

Robust Resistant Resistant Gap

RATIO Two Three Inner Middle Outer Inner Middle Outer D_MASO
EDIT SDs SDs Fences Fences Fences Fences Fences Fences Default

ALL-RATIO .516 .643 .643 .701 .794 .754 .783 .817 .727
TEST

ALL-ITEM .580 .688 .685 .729 .802 .778 .808 .843 .749

ALL-RATIO .382 .579 .560 .645 .751 .723 .749 .787 .794
TEST

ALL-ITEM .491 .631 .618 .687 .780 .814 .827 .852 .815

ALL-RATIO .446 .609 .602 .694 .818 .799 .828 .863 .890
TEST

ALL-ITEM .522 .671 .666 .745 .853 .862 .884 .906 .905

ALL-RATIO .340 .596 .576 .736 .862 .747 .774 .803 .848
TEST

ALL-ITEM .461 .707 .698 .823 .900 .808 .834 .855 .880

ALL-RATIO .367 .522 .506 .588 .690 .653 .671 .689 .704

ALL-ITEM .477 .602 .587 .665 .758 .733 .749 .757 .757

Mnemonic Description

SLS Total Sales

EMP Total Employment

APR Annual Payroll

QPR First Quarter Payroll
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