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Observational studies inevitably suffer from nonresponses and missing values. Bayesian full
probability modelling provides a flexible approach for analysing such data, allowing a
plausible model to be built which can then be adapted to carry out a range of sensitivity
analyses. In this context, we propose a strategy for using Bayesian methods for a “statistically
principled” investigation of data which contains missing covariates and missing responses,
likely to be nonrandom.
The first part of this strategy entails constructing a “base model” by selecting a model of

interest, then adding a submodel to impute the missing covariates followed by a submodel to
allow informative missingness in the response. The second part involves running a series of
sensitivity analyses to check the robustness of the conclusions. We implement our strategy to
investigate some typical research questions relating to the prediction of income, using data
from the UK Millennium Cohort Study.
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1. Introduction

Social science data typically suffer from nonresponse and missing values, which often

render standard analyses misleading. Cross-sectional studies tend to be rife with missing

data problems, and studies which are longitudinal inevitably lose members over time in

addition to other sources of missingness. As a consequence, researchers generally face the

problem of analysing datasets complicated by missing covariates and missing responses.

The appropriateness of a particular analytic approach is dependent on the mechanism that

led to the missing data, which cannot be determined from the data at hand. Given this

uncertainty, researchers are forced to make assumptions about the missingness mechanism

and are strongly recommended to check the robustness of their conclusions to alternative
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plausible assumptions. A number of different approaches to this task have been proposed

and determining a way forward can be daunting for the analyst.

An extensive literature has built up on the topic of missing data, with the various

methods, covering both cross-sectional and longitudinal studies, catalogued and reviewed

in papers (Schafer and Graham 2002; Ibrahim et al. 2005), as well as detailed in

comprehensive textbooks (Schafer 1997; Little and Rubin 2002; Molenberghs and

Kenward 2007; Daniels and Hogan 2008). Broadly speaking, there are two types of

methods for handling missing data: ad hoc methods and “statistically principled” methods.

Ad hoc methods, such as complete case analysis or single imputation, are generally not

recommended because, although they may have the advantage of relative simplicity, they

usually introduce bias and do not reflect statistical uncertainty. By contrast, so-called

“statistically principled” or “model-based” methods combine the available information in

the observed data with explicit assumptions about the missing value mechanism,

accounting for the uncertainty introduced by the missing data. These include maximum

likelihood methods which are typically implemented by the EM algorithm, weighting

methods, multiple imputation and Bayesian full probability modelling.

In this article, we provide guidance to the analyst on the practicalities of modelling

incomplete data using Bayesian full probability modelling. We propose a modelling

strategy and apply this to investigate two questions relating to the prediction of mother’s

income, using data from the first two sweeps of the most recent British birth cohort study,

the Millennium Cohort Study (MCS). Specifically, for mothers who are single at the start

of the study, we look at (i) the income gains from higher education and (ii) changes in pay

rates associated with acquiring a partner. In Section 2, we introduce some of the key

definitions relating to missing data and briefly describe a Bayesian approach to modelling

data with missing values. Our proposed modelling strategy is then described in Section 3,

and is compared with alternative modelling strategies in Section 4. In Section 5, we apply

this strategy to our illustrative example, discuss possible modifications and the

circumstances where these would be necessary in Section 6, and conclude in Section 7.

2. Bayesian Full Probability Modelling of Missing Data

The appropriateness of a particular missing data method is dependent on the mechanism

that leads to the missing data and the pattern of the missing data. From a modelling

perspective, it also makes a difference whether we are dealing with missing response,

missing covariates or missingness in both the response and covariates. Following Rubin

(Rubin 1976), missing data are generally classified into three types: missing completely at

random (MCAR), missing at random (MAR) and missing not at random (MNAR).

Informally, MCAR occurs when the missingness does not depend on observed or

unobserved data, in the less restrictive MAR it depends only on the observed data, and

when neither MCAR or MAR hold, the data are MNAR.

In longitudinal studies, nonresponse can take three forms: unit nonresponse (sampled

individuals are absent from the outset of the study), wave nonresponse (where an

individual does not respond in a particular wave but reenters the study at a later stage)

and attrition or drop-out (where an individual is permanently lost as the study

proceeds), and these may have different characteristics (Hawkes and Plewis 2006).
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Also, different kinds of nonresponse can often be distinguished, typically not located,

not contacted and refusal. Missing data patterns may be further complicated by data

missing on particular items (item nonresponse) or on a complete group of questions

(domain nonresponse).

Bayesian full probability modelling provides a flexible method of incorporating

different assumptions about the missing data mechanism and accommodating different

patterns of missing data. A full probability model is a joint probability distribution

relating all the observed quantities (observed data) and unobserved quantities (including

statistical parameters, latent variables and missing data) in a problem (Gelman et al.

2004). For analysing data with missing values, it entails building a joint model consisting

of a model of interest and one or more models to describe the missingness mechanism

and to impute the missing values, and such models can be implemented using Markov

Chain Monte Carlo (MCMC) methods. By estimating the unknown parameters and the

missing data simultaneously, this method ensures that their estimation is internally

consistent.

Since the required joint models are built in a modular way, they are easy to adapt,

facilitating sensitivity analysis which is crucial when the missing data mechanism is

unknown. The Bayesian formulation also has the advantage of allowing the incorporation

of additional information through informative priors when relevant.

Suppose the data for our research consist of a univariate outcome yi and a vector of

covariates x1i; : : : ; xpi; for i ¼ 1; : : : ; n individuals, and we wish to model this data using

a linear regression model assuming normal errors. Then the Bayesian formulation of our

model of interest, f( yjb, s) is

yi , Nðmi;s
2Þ

mi ¼ b0 þ
Xp
k¼1

bkxki ð1Þ

b0;b1; : : : ;bp;s
2 , prior distribution

where N denotes a normal distribution. Suppose also that the response contains missing

values such that y can be partitioned into observed, yobs, and missing, ymis, values, i.e.,

y ¼ ð yobs; ymisÞ. Now define m ¼ (mi) to be a binary indicator variable such that

mi ¼
0 : yi observed

1 : yi missing

(

and let u denote the unknown parameters of the missingness function. The joint

distribution of the full data, f ð yobs; ymis;mjb;s; uÞ, can be factorised as

f ð yobs; ymis;mjb;s; uÞ ¼ f ðmjyobs; ymis; uÞf ð yobs; ymisjb;sÞ ð2Þ

suppressing the dependence on the covariates, and assuming that (mjy, u) is conditionally

independent of (b, s), and ( yjb, s) is conditionally independent of u, which is usually

reasonable in practice. This factorisation of the joint distribution is known as a selection

model (Schafer and Graham 2002). The missing data mechanism is termed ignorable

(Little and Rubin 2002) for a Bayesian inference about (b, s) if
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. the missing data are MAR, i.e., f ðmjyobs; ymis; uÞ ¼ f ðmjyobs; uÞ

. the parameters of the data model, (b, s), and the missingness mechanism, u, are

distinct, and

. the priors for (b, s) and u are independent.

For a response with missing values, we do not need a missingness model, f(mjy,u),

provided we can assume that the missing data mechanism is ignorable. In this case the

imputation of ymis is unnecessary for valid inference about b and s. However, if we cannot

assume that the missing data mechanism is ignorable, then we need to specify a response

model of missingness and impute the missing ys.

The situation is different for covariates with missing values. In this case, an imputation

model for the missing data is required to fully exploit all the available data, regardless of

our assumptions about the missingness process (see Section 3). As for response variables,

if we cannot assume that the missing covariates were generated by an ignorable missing

data mechanism, then an appropriate missingness indicator must also be modelled via a

third model part.

Our proposed modelling strategy for missing data, described in the next section, allows

for missing values in both the response and the covariates. Taking a Bayesian approach has

a number of advantages over other commonly used “statistically principled” methods.

Firstly, Bayesian models are formulated in a modular way, which lends itself to the

iterative modelling strategy, building and then modifying a base model, that we propose.

Secondly, uncertainty about the imputed missing values is automatically and coherently

propagated through the model and reflected in the parameter estimates of interest. Thirdly,

Bayesian models provide scope for including extra data or other information, which can be

particularly useful when dealing with suspected nonignorable missingness.

3. Proposed Modelling Strategy

The basic steps in our general strategy for analysing longitudinal or cross-sectional data

with missing values are shown in Figure 1. This approach allows the uncertainty from the

missing data to be taken into account, and a range of relevant sources of information

relating to the question under investigation to be utilised. It can be implemented using

currently available software for the Bayesian analysis of complex statistical models, such

as WinBUGS (Spiegelhalter et al. 2003).

This strategy consists of two parts: 1) constructing a base model and 2) assessing

conclusions from this base model against a selection of well-chosen sensitivity analyses.

Each of these is now discussed, drawing attention to the key decisions based on our

experience. The proposed strategy allows informative missingness in the response, but

assumes that the covariates are MAR. We defer discussion of adaptations, extensions and

limitations until Section 6.

3.1. Construct a Base Model

In essence, this part involves building a joint model by starting with a model of interest,

and then adding a covariate imputation model followed by a model of response

missingness. For each submodel, we recommend that plausible alternative assumptions are
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noted for use in selecting the sensitivity analyses in the second part. The estimation of

some parameters in the two models of missingness can be difficult when there is limited

information, but the amount of available information can be increased by incorporating

data from other sources and/or expert knowledge. We now look at each step in more detail.

Step 1. Select an initial model of interest (MoI) based on complete cases.

1: Select Mol using
    complete cases

2: Add CIM

3: Add MoRM

4: Seek additional
data

5: Elicit expert
knowledgeBASE MODEL

6: ASSUMPTION
SENSITIVITY

Run alternative models
with key assumptions

changed including
• Mol error distribution

    • Mol response transform
 • MoRM functional form

7: PARAMETER
SENSITIVITY

Run model with the
MoRM parameters
associated with the

informative missingness
(d ) fixed to range of

plausible values

Assess
fit

Recognise
uncertainty

Determine
region of high

plausibility

Report
robustness

NoYes

8: Are
conclusions

robust?

Mol = Model of Interest
CIM = Covariate Imputation Model
MoRM = Model of Response Missingness

Note plausible
alternatives

Fig. 1. Strategy for Bayesian modelling of missing data. The numbers relate to the steps described in Section 3.

Dashed boxes indicate optional steps.

Mason et al.: Bayesian Methods for Missing Data 283



The process of building a base model starts with the formation of an initial model of

interest using only complete cases and previous knowledge, as for example specified by

Equation 1. This includes choosing a transform for the response, model structure and a set

of explanatory variables. It may also allow for hierarchical structure and/or other data

complexities. In our experience, the most critical assumption is the error distribution of the

model of interest, whose misspecification can adversely affect the performance of a

selection model (Mason 2009 Ch. 4).

Step 2. Add a covariate imputation model (CIM).

The model of interest will run with missing responses, but not with missing covariates, so

to incorporate the incomplete cases the next step is to add a covariate imputation model to

produce realistic imputations of any missing covariates simultaneously with the analysis

of the model of interest. If there is a single covariate, x, there are two obvious ways of

building this submodel: i) specify a distribution, e.g., if x is a continuous covariate, then

specify xi , Nðv; 62Þ and assume vague priors for v and 62 or ii) build a regression model

relating xi to other observed covariates. For example, if x is binary, then it may take the

form

xi , BernoulliðqiÞ

qi ¼ f0 þ
Xs

k¼1

frzsi ð3Þ

f0;f1; : : : ;fs , prior distribution

where z1i; : : : ; zsi is a vector of fully observed covariates which should include the other

covariates which appear in the model of interest, and other variables which are associated

with the missingness or explain a considerable amount of variance in x. Whether this

model is adequate should be checked by comparing the pattern of the imputed values with

the observed values.

This submodel will be more complicated when there is more than one covariate with

missing values, as is usually the case with real data, and should allow for possible

correlation between covariates. A latent variable approach can be used for binary or

categorical variables, which can be implemented using a multivariate probit model for

binary covariates (Chib and Greenberg 1998) with extensions to ordered categorical

variables (Albert and Chib 1993) as required. By creating an underlying set of latent

variables, models for mixtures of binary, categorical and continuous variables can be

developed (Dunson 2000; Goldstein et al. 2009). Molitor et al. (2009) provide an example

of this approach for two binary covariates.

Step 3. Add a model of response missingness (MoRM).

Next, add a model of response missingness to allow informative missingness in the

response. Before defining this part of the model, it is important to think about the process

that led to the missingness, gathering as much information as possible from the literature

and those involved in the data collection process. Then, these findings have to be translated

into a statistical model, e.g.,

mi , Bernoullið piÞ

logitð piÞ ¼ u0 þ
Xr

k¼1

ukwki þ dyi ð4Þ

u0; u1; : : : ; us; d , prior distribution
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where w1i; : : : ;wri is a vector of variables which are predictive of the response

missingness. It is the inclusion of the response, y, (includes the missing values) in this

submodel that changes the assumption about the missing responses from MAR to

MNAR and provides the link with the rest of the model. The choice of the shape of the

relationship between the response and the probability of missingness is important. We

need to consider carefully whether a linear relationship is adequate or whether a more

complex shape such as that allowed by a piecewise linear functional form would be

better. For some datasets, it may well be intuitively plausible that the response is more

likely to be missing if it takes high or low values. Thought should also be given to the

most appropriate way of including the response; for example, with longitudinal data,

change in response from one sweep to the next is an alternative option that is worth

exploring.

In the absence of any prior knowledge, the recommended strategy is to assume a linear

relationship between the probability of missingness and the response or change in response

(Mason 2009, Ch. 4). The estimation of the parameters associated with the response (d)

can be difficult, as it is reliant on limited information from assumptions about other parts

of the model. These estimation difficulties increase for more complex models of

missingness, and motivate the parameter sensitivity described in Step 7.

The d parameters are identified by the parametric assumptions in both the model of

interest and the model of response missingness. The missing responses are imputed in a

way that is consistent with the distributional assumptions in the model of interest given

their covariates, thus d are identified by the observed data. Daniels and Hogan (2008, Sec.

8.3.2) provide two simple examples which show clearly how this works. Unfortunately the

model of interest distribution is unverifiable from the observed data when the response

is MNAR. Since different model of interest distributions will lead to different results,

the model of interest distribution is a key assumption to explore in the sensitivity analysis.

Step 4. Seek additional data.

Additional data can be incorporated into the various submodels to help with parameter

estimation where there is limited information in the study itself. This may come from

another study on individuals with similar characteristics to those being modelled or, in

the case of longitudinal data, be provided by earlier/later sweeps not under investigation.

We discuss an example in Section 5.2.5.

Step 5. Elicit expert knowledge.

Expert knowledge can be elicited (O’Hagan et al. 2006) and incorporated into one or more

of the submodels using informative priors. Information relating to the model of response

missingness has the potential to make a substantial impact, as there is little information in

the model for estimating some of its parameters. However, it is difficult to elicit priors on

parameters directly and a better strategy is to elicit information about the probability of

response and convert this into informative priors. Elicitation effort should concentrate on

the parameters which are not well identified by the data, in particular those associated with

the degree of departure from MAR, and the process should allow for correlation between

variables. If a comprehensive elicitation is impractical, extracting information about the

functional form of important parameters from experts or the literature is worthwhile. For

example, an expert may be able to advise whether a linear or piecewise linear relationship

is more appropriate. If piecewise linear seems a better option, then including prior
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information on the position of the change points and signs of the gradients can be

beneficial.

At each step, checks of model fit should be carried out to ensure that the models are

plausible, and some suggestions are provided in Section 3.3.

3.2. Perform Sensitivity Analysis

When modelling missing data, some form of sensitivity analysis is essential because

assumptions must be made that are untestable from the data. There are many possible

options, and to some extent the choice will be determined by the problem at hand. We

propose that two types of sensitivity analysis should be carried out, an assumption

sensitivity and a parameter sensitivity. This part of the strategy is encapsulated by the

following steps.

Step 6. Assumption sensitivity.

For the assumption sensitivity, form a number of alternative models from the base model

by changing the assumptions in the different submodels. Key assumptions that should be

explored include the model of interest error distribution, the transformation of the model

of interest response and the functional form of the model of response missingness. It could

also involve varying the explanatory variables. Initially, each of the chosen sensitivity

analyses should vary from the base model in a single aspect so their individual effects can

be assessed. A second stage of sensitivity analysis could combine several changes which

are shown to have a sizeable impact on results.

Step 7. Parameter sensitivity

The parameter sensitivity involves running the base model with the model of response

missingness parameters controlling the extent of the departure from MAR fixed to values

in a plausible range. Expert knowledge can help with setting up the parameter sensitivity

range.

Step 8. Determine robustness of conclusions

The results of both sets of sensitivity analyses should then be examined to establish how

much the quantities of interest vary. A range of plots, providing complementary views of

the analysis can help (Mason 2009 Ch. 8). If the conclusions are robust, this should be

reported. Otherwise a range of diagnostics should be used to determine a region of high

plausibility, and the uncertainty in the results recognised. The sensitivity analysis may also

suggest that the base model should be reconsidered, or more external information sought

from experts or related studies.

3.3. Checking Model Fit

One option for assessing model fit is to use a set of data not used in the model estimation.

In surveys, sometimes data is collected from individuals who are originally noncontacts or

refusals. These individuals can be treated as missing in the main analysis, and then the

predicted values for the covariates and/or response compared with the actual values

measured. Using such individuals for comparing model fit is particularly attractive as they

are likely to be similar to individuals who have missing data.

Another option is the Deviance Information Criterion (DIC), which is widely used for

Bayesian model comparison for complete data. However, with missing data, DIC can be
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constructed in different ways (Celeux et al. 2006; Daniels and Hogan 2008; Mason et al.

2012), and its use and interpretation are not straightforward. For example, when the

response is missing, Mason et al. (2012) propose a strategy for comparing selection

models by combining information from two measures taken from different constructions

of the DIC. A DIC based on the observed data likelihood (integrated over the missing data)

is used to compare joint models with different models of interest but the same model of

missingness, and a comparison of models with the same model of interest but different

models of missingness is carried out using a partial DIC which treats the missing data as

additional parameters in the likelihood.

4. Comparison with Alternative Modelling Strategies

Although there is an extensive literature on missing data, published papers tend to take the

form of either a wide-ranging review or focus on a specific type of missing data problem.

The review papers generally outline a broad range of different missing data techniques

including Bayesian methods, discussing their pros and cons and the circumstances in

which each is appropriate. Their aim is to provide the reader with an overview of possible

ways of dealing with missing data, rather than a formal strategy.

Much of the more specific missing data literature discusses the implementation of

methods that assume MAR. Acknowledging that it is not possible to distinguish between

MAR and MNAR from the observed data alone, authors typically argue that the MAR

assumption can be made more plausible by collecting and incorporating more explanatory

variables and auxiliary information into the analysis. This is good advice, and our strategy

also encourages incorporating extra information where possible (Steps 4 and 5), but also

allows for the possibility that we still have informative missingness.

Many authors agree that some form of sensitivity analysis is a crucial ingredient of any

modelling strategy, and one proposed approach involves considering a number of different

statistical models (Molenberghs and Kenward 2007). We have followed this principle by

developing a base model and then creating a neighbourhood of alternative models by

varying our base model assumptions. An alternative way would be to simply create and

compare a number of models underpinned by a range of plausible assumptions, without

assigning special “base case” status to one of them. However, this renders comparison

more difficult to organise. We prefer to start by building the model thought to be most

plausible, and then exploiting the modular setup of Bayesian models by using this as a

starting point for alternative models, having thus implicit “directions” for interpreting the

sensitivity.

Since we wish to incorporate the assumptions thought most realistic into the base

model, we allow informative missingness in the response and envisage that the subsequent

sensitivity analysis will include exploring the assumption of MAR missingness. Most

proposals for sensitivity analysis take the opposite stance, start with a MAR model and

then explore potential deviations towards a MNAR missingness mechanism, e.g., Troxel

et al. (2004). This approach has much to recommend it when using non-Bayesian methods

that do not allow for MNAR missingness in such a natural way. Our strategy could easily

be modified to adopt this line by performing only Steps 1 and 2 to produce the base model,
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and carrying out Step 3 as a prelude to the sensitivity analysis. The models analysed would

be the same, but the labels would change.

Our strategy is based on a selection model factorisation of the joint model, which has the

advantage of specifying the distribution that the analyst is usually interested in, the model

of interest, directly. An alternative is the pattern mixture factorisation which allows a

different model for y for each pattern of missingness. Pattern mixture models are favoured

by some because the assumptions about the missing data are more explicit (Daniels and

Hogan 2008). A hybrid strategy using both selection models and pattern-mixture models is

also possible (Molenberghs and Kenward 2007).

Of the commonly used “statistically principled” methods, multiple imputation is most

closely aligned to Bayesian methods. It requires specifying an imputation model, similar to

the covariate imputation model in Step 2 of our strategy, to generate multiply imputed data

sets. Then each of these “completed data sets” is analysed using a model of interest, as in

Step 1, and estimates of the statistics of interest combined. In contrast to the Bayesian

approach, it is a two-stage process, whereby the imputation of the missing data is carried

out as a distinct phase prior to the analysis. This has the advantage of simplifying

computation by dividing the problem, but great care is required to avoid a mismatch

between the imputation model and the model of interest (often referred to as the problem of

“congeniality” (White et al. 2011)). Assuming that a MAR assumption is appropriate,

multiple imputation is now readily implementable using a number of mainstream statistical

software packages (Horton and Kleinman 2007), and there are a number of excellent papers

providing guidance on its use (Kenward and Carpenter 2007; White et al. 2011).

In principle, multiple imputation can be implemented for MNAR mechanisms, but there

are few examples of this and mostly these involve adjusting the imputations in some way.

Van Buuren et al. (1999) provide an early example, and Carpenter et al. (2007) obtain an

overall MNAR estimate by weighting imputations generated under MAR according to the

assumed degree of departure fromMAR. The idea behind these relatively crude techniques

is to test the robustness of results to departures from MAR, to help decide whether

implementing a more sophisticated MNAR modelling technique is worthwhile. More

usually, strategies involvingmultiple imputation focus onways of turning aMNARproblem

into a MAR problem through judicious variable selection for the imputation model.

By contrast, we start by explicitly allowing for informative missingness in the response,

modelling this in a principled and coherent manner. Then, we exploit the modularity of

Bayesian models to perform a thorough sensitivity analysis, which explores the uncertainty

surrounding assumptions that cannot be verified on account of the missing data.

5. Application of Modelling Strategy to MCS Income Data

We now provide two examples of how our strategy can be applied in practice, using data

from the MCS (University of London, Institute of Education 2009a; University of London,

Institute of Education 2009b) which contains missing values for some covariates and for

the response, income. Survey methodology literature has shown that income nonresponse

is usually nonignorable (Yan et al. 2010). As this is for demonstration purposes, we make

simplifying assumptions for the models and omit details of the checks and analysis that

should be carried out (suggestions can be found in Mason 2009). All the models are fitted
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using the WinBUGS software (the code for a base model is provided as an Appendix), run

with two chains initialised using diffuse starting values. Convergence is assumed if the

Gelman-Rubin convergence statistic (Brooks and Gelman 1998) for individual parameters

is less than 1.05 and a visual inspection of the trace plot for each parameter is satisfactory.

5.1. Description of Data

The MCS was set up to provide information about children living and growing up in

each of the four countries of the UK, including information about the children’s families,

and has over 18,000 cohort members born in the UK between specified dates at the start

of the Millennium (Plewis 2007a). Data is collected through interviews and self-

completion forms undertaken by a main respondent (usually the cohort member’s mother)

and a partner respondent (usually the father), and four sweeps of this cohort are now

available. Nonresponse is discussed by Plewis (2007b), Ketende (2008) and Calderwood

et al. (2008).

Using data from Sweeps 1 (2001/2) and 2 (2004/5), we investigate two questions

relating to the income from paid work of single mothers. We consider the benefit from

having a degree (which we shall refer to as the Education Question) and the changes in a

mother’s rate of pay related to gaining a partner (Partner Question). In line with the

literature (Blundell et al. 2000; Zhan and Pandey 2004), we expect that higher pay is

related to having a degree. The effect of gaining a partner is less obvious, as various

aspects of this change in circumstances can be hypothesised to work in opposite directions.

It is also possible that the Education Question and the Partner Question are related, but to

keep the models relatively simple for illustration purposes, we look at the two questions

separately.

To investigate these questions, we model income for the subset of main respondents

who are single in Sweep 1, in paid work and not self-employed, using either education

level or partnership status, and other known predictors of income. Those who are known to

be self-employed or not working in Sweep 2 are also excluded. By definition we are

looking at a set of individuals who are the mothers of very young children, so many are

working part-time. To simplify the models, hourly net pay, hpay, is chosen as our response

variable, and the distribution of the observed hpay is positively skewed.

Drawing on existing literature, potential covariates are selected with the motivating

questions and the structure of the survey in mind. The dataset also includes variables

which may help to explain the missingness (Hawkes and Plewis 2008). All these variables

are detailed briefly in Table 1. The key covariates of interest are educational level, edu,

which indicates whether or not an individual has a degree, and partnership status, sing,

which is always 1 in Sweep 1 from the definition of the dataset, but is used to indicate

whether the individual has acquired a partner by Sweep 2.

Ctry and stratum are fully observed by survey design. Of the other variables in the

dataset, in Sweep 1, 8% of individuals have missing hpay, a very small number have

missing edu or sc, and the remaining variables are completely observed. In Sweep 2

missingness is substantially higher, with 32% of individuals having no Sweep 2 data due

to wave missingness, and a small amount of item missingness, predominantly for hpay.
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The analysis of this dataset is restricted to modelling the missingness in Sweep 2 and

contains 505 individuals, of which 322 are complete cases.

5.2. MCS Example – Constructing a Base Model

5.2.1. Step 1: Choice of Model of Interest

Based on previous work, we assume that a satisfactory proposed model of interest is

available for addressing each question. The models are similar in both cases. Skewness in

the response, hpay, is dealt with by taking a log transformation, and t4 errors are used for

robustness to outliers. The design of the survey, which is disproportionately stratified

(Plewis 2007a), and the correlation between the two data points for each individual are

taken into account using stratum-specific intercepts and individual random effects. Hence

the model of interest is given by the equations

yit , t4ðmit;s
2Þ

mit ¼ ai þ gsði Þ þ
Xp
k¼1

bkxkit ð5Þ

for t ¼ 1,2 sweeps, i ¼ 1; : : : ; n individuals and s ¼ 1; : : : ; 9 strata. The bks are not

time-dependent, so information from both sweeps contributes to their estimation.

However, for the partner question only the values for sing in Sweep 2, when some

Table 1. Description of MCS income dataset variables (these relate to the main respondent)

Name Description Details

hpay hourly net pay continuous – median ¼ £7, range ¼ (£1, £56)
age age at interview continuousa – median ¼ 26, range ¼ (15,48)
eth ethnic group 2 levels (1 ¼ White; 2 ¼ Non-White)
reg region of country 2 levels (1 ¼ London; 2 ¼ other)
edub educational level 2 levels (1 ¼ no degree; 2 ¼ degree)
singc single/partner 2 levels (1 ¼ single; 2 ¼ partner)
sc social class 4 levelsd (NS-SEC 5 classes with 3 omitted)
ctry country 1 ¼ England; 2 ¼ Wales; 3 ¼ Scotland;

4 ¼ Northern Ireland
stratum country by ward type 9 levelse

a All continuous covariates are centred and standardised; the median and ranges are for Sweep 1 on the original

scale.
b Based on the level of National Vocational Qualification (NVQ) equivalence of the main respondent’s highest

academic or vocational educational qualification. We regard individuals with only other or overseas

qualifications as missing.
c Always 1 for Sweep 1 by dataset definition.
d The main respondent’s social class, based on the National Statistics Socio-Economic Classification (NS-SEC)

grouped into five categories. NS-SEC 3 is small employers and own account workers, and the self-employed

are excluded by definition, so sc only has four levels: 1 ¼ managerial and professional occupations;

2 ¼ intermediate occupations; 3 ¼ lower supervisory and technical occupations; 4 ¼ semi-routine and routine

occupations.
e Three strata for England (“advantaged”, “disadvantaged” and “ethnic minority”); two strata for Wales, Scotland

and Northern Ireland (“advantaged” and “disadvantaged”) – see Plewis (2007a) for details.
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individuals have a partner, inform about the value of b sing�ai are the individual random

effects, such that ai , Nð0; 62Þ and its standard deviation, 6, has a vague prior defined

as a half normal distribution restricted to positive values. Vague priors are also specified

for the other unknown parameters of the model of interest: the stratum-specific intercepts,

gsði Þ and bk parameters are assigned N(0,10,0002) priors and the inverse of the sampling

(Level 1) variance, 1/s 2, is given a Gamma(0.001,0.001) prior.

For both questions, age (main respondent’s age) and reg (London/other) are included in

the set of time-dependent x covariates. For the education question edu (no degree/degree)

is also included, whereas for the partner question sing (single/partner) is added. The

parameter estimates for these initial models of interest, MoI, based on complete cases only

are shown in Table 2 (the other models in this table will be discussed later). They suggest

that higher levels of hourly pay are associated with increasing age and having a degree,

and lower levels of hourly pay are associated with living outside London and gaining a

partner between sweeps.

5.2.2. Step 2: Choice of Covariate Imputation Model

To include the incomplete cases, the missing Sweep 2 values for age, reg and either edu or

sing need to be imputed. For simplicity, we do not use a statistical model for reg and age,

but prior to the analysis set their missing values using simple rules. Missing reg are set to

their Sweep 1 values, and missing age are set to the individual’s Sweep 1 age plus the

mean observed difference in ages between Sweeps 1 and 2. Imputing edu or sing is

sufficient for demonstrating our strategy, although the covariate imputation model could

be expanded to include the imputation of age and reg (ways of doing this are discussed in

Section 3, Step 2).

By contrast, for imputing edu or sing, the variables which particularly interest us, we

define a Bernoulli model. For the partner question, we define a covariate imputation model

for the individuals who have Sweep 2 missing sing values by

singi2 , BernoulliðqiÞ

qi ¼ fsði Þ þ ðfage £ agei2Þ þ ðfreg £ regi2Þ ð6Þ

where fsði Þ are stratum-specific intercepts. Vague N(0, 10,0002) priors are assigned to the

fk parameters. For the education question, an individual with a degree in Sweep 1 must

also have a degree in Sweep 2, so there is no need to include them in the imputation model.

We only impute Sweep 2 edu for individuals who have missing edu values in Sweep 2 and

who do not have a degree in Sweep 1. A simpler covariate imputation model without

explanatory variables is used, as too few individuals gain a degree between sweeps to

estimate all the parameters in a more complex model. In this joint model consisting of the

proposed model of interest and covariate imputation model (MoI.CIM), not only are the

covariates assumed to be MAR, but the response is also assumed to be MAR.

From Table 2, there are small changes in some of the model of interest parameters from

fitting MoI.CIM compared to the complete case analysis (MoI). Among individuals

without a degree in Sweep 1 and observed educational level in Sweep 2, 5 individuals

(1.9%) gained a degree by Sweep 2. Based on the posterior means, this is similar to the

2.3% (95% interval from 0% to 5.7%) imputed to gain a degree between sweeps. For sing,
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Table 2. Comparison of selected parameter estimates from different models (with BASE and non-negligible differencesa from BASE highlighted in bold)

Complete cases MAR response MNAR response

MoI MoI.CIM BASE AS1 AS2

Education

question

MoI: bage 0.12 (0.08,0.16) 0.11 (0.08,0.14) 0.10 (0.07,0.14) 0.09 (0.06,0.13) 0.35 (0.09,0.61)

MoI: bage2 20.27 (20.54, 2 0.01)

MoI: bedu 0.23 (0.15,0.31) 0.18 (0.10,0.26) 0.19 (0.11,0.27) 0.21 (0.12,0.29) 0.14 (0.06,0.22)

MoI: bage£edu 0.11 (0.03,0.19)

MoI: breg 2 0.16 (20.28, 2 0.04) 20.11 (20.22,0.00) 2 0.11 (20.22,0.00) 2 0.13 (20.24, 2 0.01) 2 0.12 (20.23, 2 0.01)

RMoM: db 2 0.17 (20.41,0.05) 2 0.23 (20.59,0.05) 2 0.13 (20.37,0.06)

Partner

question

MoI: bage 0.15 (0.11,0.18) 0.13 (0.10,0.17) 0.13 (0.09,0.16) 0.11 (0.08,0.15) 0.35 (0.09,0.60)

MoI: bage2 2 0.22 (20.48,0.03)

MoI: bsing 2 0.08 (20.15, 2 0.01) 2 0.07 (20.14,0.00) 2 0.17 (20.28, 2 0.07) 20.26 (20.37, 2 0.15) 2 0.18 (20.28, 2 0.08)

MoI: breg 2 0.18 (20.31, 2 0.05) 20.13 (20.24, 2 0.01) 2 0.12 (20.23, 2 0.01) 20.12 (20.24, 2 0.01) 20.12 (20.24, 2 0.01)

RMoM: db 2 0.43 (20.76, 2 0.13) 20.81 (21.24, 2 0.44) 2 0.42 (20.76, 2 0.12)

Table shows the posterior mean, with the 95% interval in brackets.
a Absolute difference . 0.02 and percentage difference . 10%.
b d is the key parameter in the model controlling the departure from MAR, and multiplies change in pay.
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35.5% (95% interval from 26.5% to 44.6%) of those with missing sing at Sweep 2 were

imputed to gain a partner, compared to 33.6% of those with observed Sweep 2 sing.

5.2.3. Step 3: Choice of Model of Response Missingness

The base model is completed by adding a model of response missingness as specified by

Equation 4, where mi is a binary missing value indicator for hpayi2, set to 0 when hourly

pay in Sweep 2 for individual i is observed and 1 otherwise. The predictors of missing

income, w, are sc (social class), eth (ethnic group) and ctry (country), and their inclusion is

based on work on item missingness by Hawkes and Plewis (2008). The missingness is also

allowed to depend on the level of pay at Sweep 1 and the change in pay between sweeps, so

logitð piÞ ¼ u0 þ
Xr

k¼1

ukwki þ k £ hpayi1 þ d £ ðhpayi2 2 hpayi1Þ ð7Þ

For simplicity, linear relationships are assumed, and this submodel uses an untrans-

formed version of hpay. The priors for the u, k, and d parameters are specified as u0 ,
Logistic(0,1) and uk, k, d , N(0,10,0002). It is the inclusion of the term d £ ðhpayi2 2

hpayi1Þ that allows the response missingness to be MNAR. If d ¼ 0, then we have MAR

missingness.

5.2.4. Conclusions from Base Model

Selected parameter estimates for the base model for each question, BASE, are shown in

Table 2 and can be compared with the models in the left-hand side of this table. As regards

our substantive questions, compared to the complete case analysis (MoI), the evidence that

having a degree is associated with higher pay is similar and the evidence that gaining a

partner is associated with lower pay has strengthened. The covariate imputations are

similar to MoI.CIM for the education question (Section 5.2.2), but a greater proportion of

individuals are imputed to gain a partner, 43.9% (32.5%,56.6%), once we allow for

nonignorable missing responses. For the partner question, individuals whose pay

decreases substantially between sweeps are more likely to be missing, but this effect is not

so strong for the education question.

5.2.5. Steps 4 and 5: Incorporating Additional Data and Expert Knowledge

The strategy also allows for including additional data (Step 4) and an elicitation to provide

expert priors (Step 5). For example, one possibility for incorporating additional data into

the covariate imputation model would be to use information on educational qualifications

and partner status from women who had recently had children, taken from Sweeps 5 and 6

of the 1970 British Cohort Study (BCS70) (University of London, Institute of Education

2007a; University of London, Institute of Education 2007b). Data from these sweeps

would be appropriate as they were carried out at similar times to the MCS Sweeps 1 and 2,

when the cohort members were aged 30 and 34. The difference is that the BCS70 data

would be on the cohort members themselves rather than their mothers. The BCS70 and

MCS data would then be modelled by simultaneously fitting two sets of equations with

common parameters, one for each data source, allowing these parameters to be estimated

with greater accuracy.
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For this application, level and change in income are the key variables in the model of

response missingness, and survey methodology experts could be consulted to elicit prior

beliefs about how these variables are likely to influence the probability of nonresponse. In

particular, the assumption of linear relationships should be reviewed as individuals may be

less inclined to disclose their income if it is either low or high, or has changed substantially

in either direction. See Mason (2009, Ch. 7) for examples of incorporating data from

another study and eliciting expert knowledge.

5.3. Step 6: MCS Example – Assumption Sensitivity

To demonstrate the assumption sensitivity, we fit two sensitivity analyses (AS1 and AS2)

to investigate different model of interest assumptions. For AS1 a normal error distribution

is used instead of a t4, and for AS2 additional covariate terms age 2 (for both questions) and

age £ edu (for the education question only) are added. The parameter estimates are given

for both models in Table 2, with nonnegligible differences from BASE highlighted in bold,

where a nonnegligible difference is defined as a percentage difference greater than 10%

and an absolute difference greater than 0.02.

5.4. Step 7: MCS Example – Parameter Sensitivity

The value of d in the model of response missingness controls the degree of departure from

MAR missingness. This parameter is difficult to estimate for a model with vague priors.

Verbeke et al. (2001) envisage a sensitivity analysis in which the changes in the

parameters or functions of interest are studied for different values of d. In the same spirit,

we also carry out a sensitivity analysis in which a series of models is run with this

parameter fixed to different values. We refer to this group of models as PS (Parameter

Sensitivity), and it contains nine variants in which d is set to the values {21, 20.75,

20.5, 20.25, 0,0.25,0.5,0.75,1}, where d corresponds to the log odds ratio of a missing

response per £1 increase in hourly pay. Values outside this range are intuitively

implausible as the probability of response is then assumed to change from 1 to 0 very

abruptly. The d ¼ 0 variant is equivalent to assuming the response is MAR. In contrast to

BASE which estimates d, the PS models fix d using point priors. An alternative would be

to use strongly informative priors.

The estimated proportional increase in hourly pay associated with having a degree,

exp(bedu) varies from 1.17 (1.08,1.27) when d ¼ 1 to 1.24 (1.15,1.34) when d ¼ 2 1

(based on the posterior means, with 95% credible intervals shown in brackets), indicating

that the effect of gaining a degree on income is fairly robust to different settings for d. By

contrast, the range for exp(bsing) is 0.76 (0.69,0.82) to 1.36 (1.22,1.51), so the effect of

gaining a partner between sweeps on hourly pay is very sensitive to the value of d. If all the

PS variants are plausible, then even the direction of this effect is uncertain.

Given the sensitivity of the results to the assumptions, the plausibility of the range of

d values needs to be considered carefully, as discussed in Step 8. We looked at the fit of a

small sample of individuals, who responded after they were reissued by the fieldwork

agency and were not included in our analysis, and various measures of DIC. Taken

together, this analysis suggests that positive values of d are unlikely (Mason 2009, Ch. 8).

Journal of Official Statistics294



5.5. Step 8: Robustness of the Conclusions on Substantive Questions

From BASE, gaining a degree would make a difference of £2.08 (£1.18,£3.04) an hour for

an individual earning £10 an hour. However, from the sensitivity analysis, this difference

could plausibly vary between £1.48 (£0.57,£2.46) (AS2) and £2.44 (£1.54,£3.41) (PS with

d ¼ 21). There is greater uncertainty surrounding the impact of gaining a partner, with a

plausible range on the reduction in pay from £0.67 (£1.32, 2 £0.04)(PS with d ¼ 0) to

£2.46 (£3.06, £l.82)(PS with d ¼ 21) an hour for an individual earning £10 an hour.

BASE suggests a £1.59 (£2.41,£0.72) reduction. Some models run as part of the parameter

sensitivity analysis suggest that change in partnership status is associated with an increase

in pay, but these models do not fall within the region of high plausibility.

5.6. Comparison with Other Methods

Finally, we compare the results from our modelling strategy with those from other missing

data methods, using the partner question and focussing on the change in pay for an

individual earning £10 an hour (Table 3). So that the alternative methods can be

implemented using readily available packages written for the R software (R Development

Core Team 2011), the model of interest used in all the models discussed in this section is

fitted with normal rather than t4 errors.

For Step 1, a complete case analysis can be carried out by fitting the multilevel model of

interest using the lme function from the nlme library (Pinheiro et al. 2011). As vague

priors were used in the Bayesian model, the results using maximum likelihood are

virtually identical. Last Observation Carried Forward (LOCF) is a single imputation

method, which makes the strong and usually unjustifiable assumption that the missing

values for an individual are the same as their last seen value. For the example, the missing

Sweep 2 values of hpay and sing are set to their Sweep 1 values, which has the predictable

effect of reducing the impact of gaining a partner and underestimating the uncertainty of

the estimate, as evidenced by the narrower interval.

Multiple imputation provides a comparison with a “statistically principled” method and

can be implemented using functions from the mice library (van Buuren and Groothuis-

Oudshoorn 2011). So, at Step 2, the missing values for both hpay and sing can be imputed

under an assumption ofMARusing the chained equations approach (White et al. 2011) with

ten imputations (typical number). Missing values of sing are imputed using a logistic

regression with all the regressors from the Bayesian covariate imputation model and hpay.

We add hpay because multiple imputation is a two-stage approach, so, unlike in the

Bayesian joint model, there is no feedback from the model of interest, and consequently the

response must be included directly in the imputation model. The missing values of hpay are

imputed using a two-level linear model (2l.normmethod in the mice function), to correctly

reflect the complexity in the model of interest (Carpenter and Goldstein 2004). Again, the

inclusion of an imputationmodel for hpay is necessitated by the separation of the imputation

and analysis, whereas in a Bayesian joint model the model of interest is used. This multiple

imputation is similar in terms of assumptions to the Bayesian joint model developed at Step

2 (model of interest plus covariate imputationmodel), but is not mathematically equivalent.

It can be viewed as an approximation to the Bayesian joint model, and the multiple

imputation gives a slightly higher point estimate and wider 95% interval (see Table 3).
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Table 3. Decrease in hourly pay associated with gaining a partner for an individual earning £10 an hour

Bayesian modellinga Alternative methodsb

Complete cases (Step 1: MoI) £0.72 (£1.39,£0.00) Complete cases £0.72 (£1.40, 2 £0.01)
LOCF £0.40 (£1.00, 2 £0.23)

MAR (Step 2: MoI.CMoM) £0.56 (£l.28, 2 £0.22) MAR (mice) £0.69 (£1.54, 2 £0.24)
MNAR (Step 3: AS1) £2.28 (£3.07,£1.37)
MNAR PS (Step 7: d ¼ 20.5) £1.82 (£2.47,£1.11) MNAR (mice 250%) £1.80 (£2.78,£0.68)

95% credible or confidence interval shown in brackets.
a Models fitted using WinBUGS software and R software for pre and post-processing.
b Models fitting using R software.
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Although multiple imputation is not restricted to MAR, most implementations do not

readily extend to MNAR other than in an ad hoc way. It is not currently possible to fit an

equivalent model to the Bayesian joint model produced at Step 3 of our strategy using

MICE or similar packages. However, following the suggestions of van Buuren and

Groothuis-Oudshoorn (2011), we carry out a sensitivity analysis under MNAR by post-

processing the imputations. Sensitivity to the imputed values of income being too low can

be tested by multiplying the original imputed values by, say, 1.5 to inflate them by 50%.

Similarly a factor of, say, 0.5 can be used to assess the effects of the imputed values being

too high. The results for decreasing the hpay imputations by 50% on the untransformed

scale in this way are shown in Table 3, but we do not look at increasing given our previous

conclusion about the implausibility of positive d values (Section 5.4). This multiple

imputation sensitivity analysis is not directly comparable with the parameter sensitivity

analysis undertaken at Step 7 of our strategy, but decreasing the imputed hpay values has a

similar effect to a negative d which associates missingness with a pay decrease. This

multiple imputation adjustment approach and the proposed Bayesian methods both show

sensitivity to the assumptions about the missingness process.

6. Extensions and Adaptations of Modelling Strategy

Our proposed strategy assumes that the covariates are MAR, but in principle Step 2 can be

elaborated to allow MNAR covariates. This raises a number of questions, for example

should separate missingness indicators for the covariates and the response be used or an

overall missingness indicator for attrition? If separate indicators are used, a new submodel

linked to the existing covariate imputation model is required. To implement this, a

different indicator for each covariate pattern of missingness is needed. Alternatively, if an

overall missingness indicator for attrition is used, then a method for dealing with any item

missingness that occurs in the response or covariates is also required. Although in theory a

model allowing MNAR covariates could be designed, it may currently be computationally

prohibitive in WinBUGS. Conversely, if there is reason to suspect that the responses are

not generated by an informative missingness process, then the strategy can be simplified

by omitting Step 3 and restricting the sensitivity analysis to varying the assumptions.

In Section 2 we discussed the different types of nonresponse that can occur, but in the

application we modelled the missing data as a homogeneous process. However, the

nonresponse in Sweep 2 can result from the failure to trace families who have moved,

failure to contact families at a known address and refusal of individuals to continue to

cooperate. As these three types of nonresponse have different correlates (Plewis 2007b;

Plewis et al. 2008), there is considerable scope for expanding the sensitivity analysis to

respecify the model of response missingness to specifically allow for these differences.

This could be implemented by modelling a missingness indicator with separate categories

for each type of nonresponse using multinomial regression in place of the logistic

regression model (Equation 4). In general, the model of response missingness can be

extended in a similar way, using multiple missingness indicators, to allow different

predictors to be used for item missingness, wave missingness and attrition as appropriate.

There are situations where it may be necessary to adapt the strategy that we recommend.

Bayesian models have the advantage of being fully coherent, but pragmatically, with large
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datasets or large numbers of covariates with missingness they may be computationally

challenging to fit. In these circumstances, some sort of hybrid approach is required, whereby

some of the covariates are imputed (preferably multiple times) prior to fitting a Bayesian

model. As this would be a two-stage process, the usual issues surrounding multiple

imputation regarding compatibility must be considered (Rubin 1996; Carpenter and

Goldstein 2004). Itmay be acceptable to impute themissing values of some covariates using

simplistic assumptions (as for age and region in the example). If not all the covariates are

correlated, another option is to split the covariate imputation model into several smaller

submodels. Although our strategy has been implemented usingBayesianmodels, there is no

reason why the framework could not be adopted for other inference paradigms.

7. Concluding Remarks

Compared to performing a complete case analysis or using some other ad hoc method for

dealing with missing data, the implementation of the strategy set out here, which enables a

“principled” missing data analysis, is time-consuming in terms of the extra work in

designing and implementing a base model and number of sensitivity analyses. However,

the time taken to implement this more complex analysis is still likely to be a small fraction

of the overall time spent collecting, preparing and analysing the data. In return, realistic

assumptions about the missingness mechanism can be thoroughly explored and the

uncertainty resulting from the missing data properly reflected in the discussion of results.

The individual elements of the strategy are not novel, but to our knowledge they have

not previously been presented as part of a general strategy for analysts to follow. We hope

that having an adaptable iterative framework to follow will encourage the analyst to think

carefully about the reasons for the missingness in their data, to incorporate realistic

assumptions into their models and to acknowledge the uncertainty that missing data adds

in the presentation of their results.

Appendix

# WinBUGS code for running the base model for the Partner Question

# Model of Interest: hpay logged, covariates {age, sing, reg}, individual random effects,

# stratum-specific intercepts and t4 errors

# Covariate Model of Missingness: imputes missing sing in Sweep 2 using covariates

# {age, reg} and stratum-specific intercepts

# Response Model of Missingness: logit(p) regressed on {change, level, ctry, eth, sc}

model

{

for (i in 1:N) { # N individuals

for (t in 1:2) {#2 sweeps

# Model of Interest

hpay[i,t] , dt(mu[i,t],tau,4)

mu[i,t] , -beta0[i]þ beta0.stratum[stratum[i]]þ beta.age*age[i,t]

þ beta.sing*sing[i,t] þ beta.reg*reg[i,t]

e.hpay[i,t] , -exp(hpay[i,t]) # unlog hpay for response missingness model
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resid[i,t] , -(hpay[i,t]-mu[i,t])/sigma # calculate residuals

}

beta0[i] , dnorm(0,beta0.tau) # individual random effects

# Missingness model for the Response – sweep 2 only

payid[i] , dbern(p[i])

logit(p[i]) , -theta0 þ theta.eth*eth[i]þ theta.ctry[ctry[i]]þ theta.sc[sc[i]]

þ theta.level*level[i] þ delta.change*change[i]

linkp[i] , -theta0 þ theta.eth*eth[i]þ theta.ctry[ctry[i]]þ theta.sc[sc[i]]

þ theta.level*level[i] þ delta.change*change[i]

level[i] , -e.hpay[i,1]-mean(e.hpay[,1])

change[i] , -e.hpay[i,2]-e.hpay[i,1]

}

# sing imputation model – sweep 2 only

for (i in 1:N){

sing[i,2] , dbern(q[i])

logit(q[i]) , -phi.stratum[stratum[i]] þ phi.age*age[i,2] þ phi.reg*reg[i,2]

}

# Priors for model of interest

beta0.sigma , dnorm(0,0.00000001)l(0,)

beta0.tau , -1/(beta0.sigma*beta0.sigma)

for (st in 1:9) { beta0.stratum[st] , dnorm(0,0.00000001)}

# 9 stratum-specifc intercepts

beta.age , dnorm(0,0.00000001)

beta.sing , dnorm(0,0.00000001)

beta.reg , dnorm(0,0.00000001)

tau , dgamma(0.001,0.001)

sigma , -sqrt(2 / tau) # t errors on 4 degrees of freedom

# Priors for sing imputation model

for (st in 1:9) { phi.stratum[st] , dnorm(0,0.00000001)}

# 9 stratum-specifc intercepts

phi.age , dnorm(0,0.00000001)

phi.reg , dnorm(0,0.00000001)

# Priors for missingness model

theta0 , dlogis(0,l)

theta.eth , dnorm(0,0.00000001)

theta.sc[1] , 20 # alias first level of sc (social class) beta

for (s in 2:4) {theta.sc[s] , dnorm(0,0.00000001)} # 4 levels of social class

theta.ctry[1] , 20 # alias first level of ctry (country) beta

for (y in 2:4) {theta.ctry[y] , dnorm(0,0.00000001)} # 4 countries

theta.level , dnorm(0,0.00000001)

delta.change , dnorm(0,0.00000001)

# Odds ratios

sing.or , -exp(beta.sing)

}
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