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Strati®cation by Size Revisited

Alan H. Dorfman1 and Richard Valliant2

1. Introduction

Strati®cation is one of the most widely used techniques in ®nite population sampling.

Strata are disjoint subdivisions of a population, the union of which exhausts the universe,

each of which contains a portion of the sample. Its essential statistical purposes are to:

(1) allow for ef®cient estimation, especially in the case of strati®cation by size, and

(2) deal statistically with subpopulations or domains by controlling their sample

allocations.

Strati®cation by size is typically considered as serving purpose (1) by creating strata in an

ef®cient way and optimally allocating the sample to the strata. Dalenius and Hodges

(1959) suggested a way of constructing strata based on an hypothesized density function

for the variable of interest. Wright (1983) and Godfrey, Roshwalb, and Wright (1984)

studied strati®cation by size as a way of approximating optimum selection probabilities,

thereby achieving the greatest lower bound on the variance of certain estimators, including

the Horvitz-Thompson, regression, difference, and ratio estimators. Bethel (1989) studied

the relative ef®ciency of the Horvitz-Thompson estimator under a variety of methods of

strati®cation. A synopsis of these efforts can be found in SaÈrndal, Swensson, and Wretman

(1992, Sections 12.2±12.6).

Strati®cation by size is used in ®nite population sampling as a means of producing ef®cient
estimators. The technique has also been recognized as a method of approximating optimum
selection probabilities for a variety of estimators. Using prediction theory, we show that an
unstrati®ed, weighted balanced sample yields the same variance as strati®cation by size
with optimum allocation of a strati®ed, weighted balanced sample when using the best linear
unbiased predictor of the population total. Strati®cation by size can, thus, be viewed as
nothing more than a way of selecting a sample with overall weighted balance. A practical
method of selecting weighted balanced samples is to use restricted randomization in which
poorly balanced samples are rejected. We illustrate by simulation the superiority of weighted
balanced sampling in three real populations.
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Using model-based analysis, we show that, in the situation where strati®cation by size is

generally used, best linear unbiased (BLU) prediction coupled with a certain kind of

weighted balanced sampling ± which requires no strati®cation ± achieves minimal

variance. In other words, strati®cation by size has no theoretical advantage over the

optimal unstrati®ed procedure. This in effect makes moot earlier concerns about how

best to stratify. Our results also supersede those on model-based strati®cation due to

Royall and Herson (1973). The theoretical ®ndings are illustrated with simulations using

real populations. There are, of course, often administrative advantages to using strata for

control of survey costs and workloads, but we do not address those concerns here.

A key tool in our investigation is a result of Royall (1992, Theorem 2) that we restate

here as Theorem 1 below. Consider a ®nite population with N elements, each element i

having associated with it a vector xi of p auxiliaries. The N ´ p matrix of those auxiliaries

is X � �x1; . . . ; xN�
0. A sample s of size n is selected and the realization of a target variable

Yi is observed for each sample unit along with its xi. The matrix of x's for the sample units

is Xs. Suppose that Y � �Y1; . . . ;YN�
0 follows the linear model

EM�Y� � Xb; varM�Y� � Vj2
�1�

where b is an unknown p ´ 1 parameter, and V � diag�vi� is a known N ´ N diagonal

covariance matrix. Denote this model as M�X : V�. The vector of Y's for sample units

is Ys and their n ´ n diagonal covariance matrix is Vss.

Let 1s and 1N be vectors of n and N 1's, respectively. The collection of samples that

satisfy

1

n
10

sW
ÿ1=2
s Xs �

10
NX

10
NW1=21N

�2�

is denoted B�X : W� and such samples are said to be balanced with respect to the weights

root�W� or to be root�W� balanced. Here W is an N ´ N diagonal matrix and Ws is the

n ´ n submatrix for the sample units. This form of balance turns out to be appropriate

when the variance matrix of the model is given by V � Wj2. In Theorem 1, the notation

M �X� refers to the vector space generated by the columns of X, and ÃT�X : V� is the best

linear unbiased (BLU) predictor under model (1).

Theorem 1 (Royall 1992). Under M�X : V� if both V1N and V1=21N [ M �X�, then

varM� ÃT�X : V� ÿ T� $ �nÿ1
�10

NV1=21N�
2
ÿ 10

NV1N�j
2

� j2
�nÿ1

�NÅv�1=2��2 ÿ NÅv� �3a�

where Åv�1=2� � SN
i�1v

1=2
i =N and Åv � SN

i�1vi=N. The bound is achieved if and only if

s [ B�X : V�, in which case

ÃT�X : V� � nÿ1
�10

NV1=21N��1
0
sV

ÿ1=2
ss Ys�

�
1

n
NÅv�1=2�SsYi=v

1=2
i �3b�

The Estimator (3b) to which the BLU predictor reduces in a B�X : V� sample is a mean

of ratios estimator conveniently denoted ÃTMR�v
1=2
�. It equals the Horvitz-Thompson
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estimator ÃTp � Ssyi=pi when the selection probability of unit i is proportional to the model

standard deviation v1=2
i . The lower bound on the error variance of the BLU predictor does

not depend on the particular sample that is selected. This means that any sampling strategy

that achieves (3a) is an optimal strategy under a model that satis®es the conditions of

Theorem 1.

There are two main points to note. The ®rst regards bias-robustness: the estimator
ÃT�X : V� will be unbiased for T under a different model M�X� : V�

� if s [ B�X;X� : V�,

that is, if the sample is balanced on all columns of both X and X�. To see this, note

that if the model is M�X : V�, then ÃT�X : V�, as de®ned by (3b), has a bias equal to

E� ÃT ÿ T� � �nÿ1
�10

NV1=21N��1
0
sV

ÿ1=2
ss Xs� ÿ 10

NX�b

The bias under the model M�X� : V�
� is equal to the expression above with Xs replaced

by X�
s and X replaced by X� (and different b). From (2) the balance condition,

B�X;X� : V�, is

nÿ110
sV

ÿ1=2
ss �Xs X�

s � �
10

N�X X�
�

10
NV1=21N

and this is exactly what is needed to eliminate the biases under both M�X : V� and

M�X� : V�
�. Given this sort of balance, misspeci®cation of the model does not lead to

inef®ciency under the working model nor bias under a broader model.

The second point, noted by Royall (1992), is that the lower bound on the error variance

in Theorem 1 is the same as that derived by Godambe and Joshi (1965) for the model-

based expectation of the random sampling variance of ÃTp. Wright (1983) extended their

result to the large sample, anticipated variance of the general regression estimator.

It is convenient to de®ne the Minimal Model M�v1=2; v : v� having EM�Yi� �

b1=2v
1=2
i � b1vi, which for a given variance matrix V � diag�vi�, has the simplest

speci®cation of EM�Y� that satis®es the conditions of Theorem 1. The estimator

constructed in accord with this (typically oversimpli®ed) model will be the BLU estimator

under a broader model so long as the appropriate weighted balance is maintained, as

indicated above.

Using the variance speci®cation in a model to dictate the form of EM�Y� may seem to be

``putting the cart before the horse'' to many readers. Normally, the working model is our

best assessment of the relationship of the survey variable to the auxiliary variables. In

certain cases where the variance is related to the mean, Theorem 1 allows us to reverse

the usual order of thinking. For example, if the variance of Y is proportional to a single

auxiliary x, the minimal model for EM�Y� would contain terms for x1=2 and x. Suppose

that a reasonable working model contains, in addition, an intercept, a quadratic term in

x, and another variable z, i.e., EM�Y� � b0 � b1=2x1=2
� b1x � b2x2

� gz. By Theorem 1,

the smallest error variance of the BLU predictor under the minimal model,

EM�Y� � b1=2x1=2
� b1x, is achieved by selecting a sample with weighted balance on

x1=2 and x. If we further balance on the intercept, x2, and z, we protect ourselves against

model bias but lose no ef®ciency at all under the working model. In the rest of this article,

we study whether this is a useful approach and how it can be applied in populations that are

usually strati®ed by size.
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2. A Strati®ed Linear Model and Weighted Balanced Samples

Consider now a population divided into H strata. Let h denote a stratum and i a unit within

the stratum. The target variable for unit hi is Yhi. Assume that the population contains H

strata with the number of units in each stratum Nh�h � 1; . . . ;H� and the population size

N � SH
h�1Nh. A sample of nh units is selected from stratum h with the total sample size

being n � Shnh. Denote the set of sample units in stratum h as sh and the set of non-

sample units as rh. Assume that a separate linear regression model holds within each

stratum:

EM�Yh� � Xhbh; varM�Yh� � Vhj
2
h �4�

where Yh is Nh ´ 1, Xh is Nh ´ ph, Vh � diag�vhi� is Nh ´ Nh, and bh is a ph ´ 1 parameter

vector. The model in stratum h is M�Xh : Vh� and the BLU predictor is then the sum of the

BLU predictors in each stratum:

ÃT �
XH

h�1

ÃT�Xh : Vh�

In stratum h de®ne a root�v�-balanced sample to be one that satis®es

1

nh

10
shVÿ1=2

sh Xsh �
10

NhXh

10
NhV1=2

h 1Nh

�5�

where 1sh is a vector of nh 1's, 1Nh is a vector of Nh 1's, Vsh is the nh ´ nh diagonal

covariance matrix for the sample units, and Xsh is the nh ´ ph matrix of auxiliaries for

the sample units. Any stratum sample satisfying (5) will be denoted by B�Xh : Vh�, and,

when (5) is satis®ed in each stratum, the entire sample is a strati®ed weighted balanced

sample. A straightforward application of Theorem 1 yields the following result.

Theorem 2. Suppose that Model (4) holds in stratum h for h � 1; . . . ;H. If both Vh1Nh

and V1=2
h 1Nh [ M �Xh�, then the BLU predictor achieves its minimum variance when each

stratum sample is B�Xh : Vh�. In that case, the BLU predictor reduces to

ÃT �
XH

h�1

NhÅv�1=2�h

1

nh

X
i[sh

Yhi

v1=2
hi

�6a�

and the error variance is

varM� ÃT ÿ T� � Sh

1

nh

�NhÅv�1=2�h �
2
ÿ NhÅvh

� �
j2

h �6b�

where Åv�1=2�h � S
Nh

i�1v
1=2
hi =Nh and Åvh � S

Nh

i�1vhi=Nh

In a strati®ed weighted balanced sample, the optimal estimator thus reduces to a sum of

mean-of-ratios estimators, which, for later reference, we will write as ÃTMRS�v
1=2
�. Thus, as

in the unstrati®ed case, a weighted balanced sample is the best that can be selected in the

sense of making the error variance of the BLU predictor small. And again, to guard against

bias under more elaborate models, we can balance on additional x factors that are not in the

working model, without introducing any bias or losing any precision under the working

model.
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3. Optimal Allocation for Strati®ed Balanced Sampling

The optimum allocation to the strata of a weighted balanced sample can be easily

calculated using standard methods. Assume that the cost of sampling is C � C0 � Shchnh

where C0 is a ®xed cost and ch is the cost per unit sampled in stratum h.

Theorem 3. Assume that Model (4) holds, that Vh1Nh and V1=2
h 1Nh [ M �Xh�, and that a

weighted balanced sample B�Xh : Vh� is selected in each stratum. The allocation of the

sample to the strata that minimizes the error variance of the BLU predictor, subject to

the cost constraint C � C0 � Shchnh, is

nh

n
�

NhÅv�1=2�h jh=
�����
ch

p
Sh0Nh0 Åv

�1=2�
h0 jh0 =

�����
ch0

p for h � 1; . . . ;H �7�

When optimal allocation is used and all costs are equal, the BLU predictor (6a)

becomes

ÃT �
1

n
�ShNhÅv�1=2�h jh�ShSsh

Yhi

v1=2
hi jh

�8a�

and its error variance (6b) can be rewritten as

varM� ÃT ÿ T� �
1

n
�ShNhÅv�1=2�h jh�

2
ÿ ShNhÅvhj

2
h �8b�

4. The Case of a Single Model for the Population

For the purpose of selecting strata, typically a single model is assumed to ®t the whole

population. Suppose the model in each stratum is

EM�Yh� � Xhb; varM�Yh� � Vhj
2

�9�

Expression (9) is just another way of writing the model M�X : V�. Thus, strata can be

ignored in calculating the BLU predictor and its error variance. If V1N and

V1=21N [ M �X�, then by Theorem 1, a weighted balanced sample s [ B�X : V� is optimal

for the BLU predictor, and the BLU predictor and its error variance reduce to (3a) and (3b)

above.

In the eventuality of differential costs, an overall balanced sample for a given value of n

may violate the cost constraint even though it is optimal in the sense of Theorem 1. A

strati®ed allocation is then needed to account for costs even when a single model ®ts

the entire population.

On the other hand, suppose we select a strati®ed weighted balanced sample and use the

optimal allocation given in Theorem 3 for the equal cost case. Using (8a) with jh � j, the

BLU predictor with the optimal allocation is

ÃT �
1

n
�ShNhÅv�1=2�h �ShSsh

Yhi=v
1=2
hi �

1

n
�NÅv�1=2��ShSsh

Yhi=v
1=2
hi

which equals (3b). In other words, strati®cation with optimal allocation of a strati®ed

weighted balanced sample here gains nothing at all compared to the strategy of selecting

an unstrati®ed sample with overall weighted balance.
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In fact, for the equal cost, equal jh case, an optimally allocated, strati®ed weighted

balanced sample has overall weighted balance. Let xhi be the ith row of Xh, and de®ne

the vectors of population means Åxh � S
Nh

i�1xhi=Nh and Åx � SH
h�1

PNh

i�1 xhi=N. Multiply

both sides of (5) by nhnÿ1 and on the right hand side substitute (7) with jh � j and

ch � c; sum over h to get

1

n
ShSsh

xhi

v1=2
hi

�
ShNh Åxh

ShNhÅv�1=2�h

�
Åx

Åv�1=2�

which is equivalent to (2) with W � V.

In particular, a common model is often assumed to hold for the whole population when a

single auxiliary variable x is available, and the auxiliary is then used for strati®cation by

size as well as for estimation. Strata are formed by ordering the units from low to high

based on x and partitioning the population into H groups. A variety of methods of

partitioning have been proposed, which are recapitulated in Section 6 below. An important

special case is given by the polynomial model

EM�Yi� � d0 � d1xi � . . . � dJxJ
i ; varM�Yhi� � j2x

g
hi �10�

where di � 1 if the j th order term is in the model and 0 if not. This model is denoted by

M�d0; . . . ; dJ : v� and the corresponding BLU predictor by ÃT�d0; . . . ; dJ : v�. In many

populations, 0 # g # 2 (see, e.g., Brewer 1963 and Scott, Brewer, and Ho 1978).

When the variance is as speci®ed in (10), the minimal model (see Section 1 above) has

EM�Yhi� � bg=2x
g=2
hi � bgx

g
hi. With the variance speci®cation in (10), the optimum alloca-

tion in Theorem 3 becomes

nh

n
�

Nh Åx
�g=2�
h =

�����
ch

p
Sh0Nh0 Åx

�g=2�
h0 =

������
ch

0
p �11�

The error variance of the BLU predictor in a strati®ed weighted balanced sample is

varM� ÃT ÿ T� � j2Sh

1

nh

�Nh Åx
�g=2�
h �

2
ÿ Nh Åx

�g�
h

� �
�12�

which, when the optimal allocation (11) is used and costs are all equal, reduces to the

variance for an unstrati®ed, weighted balanced sample:

varM� ÃT ÿ T� � j2 1

n
�N Åx�g=2��2 ÿ N Åx�g�

� �
�13�

as it must, by the general result described at the beginning of this section.

5. Comparison with Other Model-based Strategies

Two other strategies for protecting estimators against bias under polynomial models (10)

are due to Royall and Herson (1973) and Scott, Brewer, and Ho (1978). We compare those

approaches to weighted balanced sampling in this section.
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5.1. Royall-Herson strategy

We consider further the polynomial model M�d0; . . . ; dJ : v�, given by (10). When strata

are formed on the basis of a size measure x, the separate ratio estimator is frequently

recommended, namely

ÃTRS �
XH

h�1

Nh
ÅYhs

Åxh

Åxhs

where Åxh � S
Nh

i�1xhi=Nh, ÅYhs � Si[sh
Yhi=nh, and Åxhs � Si[sh

xhi=nh. Under the working model

M�0; 1 : x�, ÃTRS is unbiased with variance equal to

varM� ÃTRS ÿ T� � j2
X

h

N2
h

nh

�1 ÿ fh�
Åxhr Åxh

Åxhs

where fh � nh=Nh and Åxhr � SiÓsh
xhi=�Nh ÿ nh�. If one were completely con®dent that

M�0; 1 : x� is correct, then the optimal sample for ÃTRS would be to pick the nh units

with the largest x's in each stratum. Even more extreme is the globally optimal strategy

that uses the simple ratio estimator, ÃT�0; 1 : x�, and the n largest units in the population.

Con®dence in any single model is seldom this high and having protection against model

failure is usually prudent. If the true model is M�d0; . . . ; dJ ; x�, then the estimator has a

bias:

EM� ÃTRS ÿ T� �
X

h

Nh Åxh

XJ

j�0

djbj

Åx
� j�
hs

Åxhs

ÿ
Åx
� j�
h

Åxh

" #
where Åx

� j�
h � S

Nh

i�1x
j
hi=Nh and Åx

� j�
hs � Si[sh

x
j
hi=nh. If a strati®ed (unweighted) balanced

sample, i.e., one that is balanced in each stratum �Åx
� j�
hs � Åx

� j�
h for j � 1; . . . ; J�, is selected,

then ÃTRS reduces to the strati®ed expansion estimator

ÃT0S �
XH

h�1

Nh
ÅYhs

Denote a strati®ed (unweighted) balanced sample by s��J� and a simple (unstrati®ed)

balanced sample of order J by s�J�. Royall and Herson (1973) showed that if

nh ~ Nh

�����
Åxh

p
, then under M�d0; . . . ; dJ : x� the strategy �s��J�; ÃTRS� is more ef®cient than

�s�J�; ÃT�0; 1 : x�� in the sense that EM� ÃT�0; 1 : x� ÿ T�2 $ EM� ÃTRS ÿ T�2.

However, because the separate ratio estimator does not correspond to a model satisfying

the conditions of Theorem 2, the strategy �s��J�; ÃTRS� is not the best that we can use. When

varM�Yi� � j2xi, as in M�0; 1 : x�, the minimal model is M�x1=2; x : x�. Now suppose that

the correct model contains some higher order polynomial terms. Speci®cally, let

M�d0; d1=2; . . . ; dJ : x� denote the model with EM�Yi� � d0 � d1=2x1=2
i � d1xi � . . . � dJxJ

i

and varM�Yi� � j2xi. If the sample has weighted balance so that

1

n

X
s

x
j
i

x1=2
i

�
Åx� j�

Åx1=2
for j � 0; 1=2; 1; . . . ; J �14�

then the BLU predictor ÃT�x1=2; x : x� under M�x1=2; x : x� is protected against bias if the

model is really M�d0; d1=2; . . . ; dJ : x�, and therefore a fortiori if M�d0; . . . ; dJ : x� holds.
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By Theorem 1, when (14) is satis®ed, ÃT�x1=2; x : x� reduces to the mean-of-ratios estimator
ÃTMR�x

1=2
� � N Åx�1=2�nÿ1SsYi=x

1=2
i and has error variance

varM� ÃTMR�x
1=2
� ÿ T� � j2 1

n
�N Åx�1=2��2 ÿ N Åx

� �
�15�

By Theorem 1, this error variance will be less than or equal to any that can be achieved

under M�d0; d1=2; . . . ; dJ : x� using ÃTRS. In fact, it can be shown that the error variance of
ÃTRS exceeds (15) by at least j2=n��ShNh

�����
Åxh

p
�
2
ÿ �N Åx�1=2��2�:

5.2. Overbalance

Scott, Brewer, and Ho (1978) noted that under the model M�d0; d1 . . . ; dJ : x2
� the BLU

predictor ÃT�0; 1 : x2
� is protected by an ``overbalanced'' sample in which

Åx� jÿ1�
s � Srx

j
i=Srxi; j � 0; 1; . . . ; J �16�

where r denotes the set of nonsample units. If the model is actually M�d0; d1; . . . ; dJ : V�x��

with V�x� � j2
1x � j2

2x2, then the error variance of ÃT�0; 1 : x2
� in an overbalanced sample

is less than the error variance of the ratio estimator in an unweighted balanced sample (i.e.,

the Royall-Herson strategy for H � 1).

If the variance speci®cation in the working model M�0; 1 : x2
� is correct, then the error

variance of ÃT�0; 1 : x2
� in an overbalanced sample is j2

��N Åx�2=n ÿ SN
1 x2

i � Ss�xi ÿ Åx�2�. As

observed by Royall (1992), a better strategy when the variance is proportional to x2 is to

use the minimal model M�0; 1; 1 : x2
�, the estimator ÃT�0; 1; 1 : x2

�, and a weighted

balanced sample. Balance condition (2) is Åxs � Åx�2�=Åx and Theorem 1 gives the minimum

variance of ÃT�0; 1; 1 : x2
� as j2

��N Åx�2=n ÿ SN
1 x2

i �. Thus, ÃT�0; 1; 1 : x2
� with weighted bal-

ance has a smaller error variance than ÃT�0; 1 : x2
� with overbalance, and both estimators

are protected against bias under the general polynomial model M�d0; d1; . . . ; dJ : v� by their

respective balance conditions.

Under the variance speci®cation V�x� � j2
1x � j2

2x2, the comparison of the over-

balanced strategy with the weighted balanced strategy is less clear. However, if the sample

and population are large and the sampling fraction is negligible �N; n; �N ÿ n� ! ¥ and

n=N ! 0�, then Srx
j
i=Srxi > Åx� j�=Åx and the overbalance condition in (16) is the same as a

weighted balance condition. Thus, the two strategies will be essentially the same.

6. Formation of Strata

The primary question traditionally posed when stratifying by size is how to form the strata.

When a common model holds for the entire population as in Section 4 and V1N ,

V1=21N [ M �X�, we know that the BLU predictor with a weighted balanced sample is

the best strategy. Strati®cation by size is then, at best, a mechanism for selecting a

weighted balanced sample. However, various methods of strata formation are used in

practice and it is interesting to investigate their properties.

Assume that Model (10) holds, and let V � diag�Vh� with Vh � diag�x
g
hi�. When V1N ,

V1=21N [ M �X� and the sample is sh [ B�Xh : Vh�, the error variance of the BLU predictor

is given by (12). The problem of how to create strata is most conveniently studied when an

equal number of sample units, nh � n0, is allocated to each stratum. In that case, (12)
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becomes

varM� ÃT ÿ T� �
j2

n0

Sh�Nh Åx
�g=2�
h �

2
ÿ j2N Åx�g� �17�

and optimal strati®cation occurs when Sh�Nh Åx
�g=2�
h �

2 is minimized. Let Zh � Nh Åx
�g=2�
h .

Adding and subtracting j2H ÅZ2=n0, where ÅZ � SH
h�1Zh=H, gives

varM� ÃT ÿ T� �
j2

n0

S2
Z �

j2

n0

�N Åx�g=2��2

H
ÿ j2N Åx�g� �18�

where S2
Z � Sh�Zh ÿ ÅZ�2. The one term in (18) that depends on the formation of the strata

is the ®rst, which is eliminated by making the Zh all equal. Expression (18) then becomes

varM� ÃT ÿ T� � j2=n�N Åx�g=2��2 ÿ j2N Åx�g�. This is just the variance (13) with optimal

allocation and equal costs, which, of course, it must be since allocating the same number

of sample units to each stratum is optimal when the Zh are all equal.

From the results in Section 4 we know that a strati®ed weighted balanced sample,

optimally allocated to strata, is also a sample with overall weighted balance. Thus, we

again con®rm that strati®ed, weighted balanced sampling gains nothing over weighted

balanced sampling in the common model case.

Equalizing Zh � Nh Åx
�g=2�
h leads to several ``equal aggregate size'' rules for forming

strata found in the literature, for example, Cochran (1977, p.172), Godfrey, Roshwalb,

and Wright (1984). When g � 0, equal values of Nh Åx
�g=2�
h correspond to equal numbers

of units Nh in each stratum. When g � 1, we have equal aggregate square root of size,

and g � 2 gives equal aggregate x. We will include several of these methods in the

empirical study in Section 7:

Another method of strati®cation, the cum
���
f

p
rule due to Dalenius and Hodges (1959),

derives from consideration of the theoretical density function of the Yi. This method is

described in SaÈrndal, Swensson, and Wretman (1992, Section 12.6) and is also one of

the methods used in Section 7.

7. Some Empirical Results on Strata Formation

In this section we illustrate the different methods of strata formation and their effects on

estimation in a simulation study. The effects of different combinations of strati®cation and

estimator are examined in three populations which are well known in the literature as

Hospitals, Cancer (Royall and Cumberland 1981), and Beef (Chambers, Dorfman, and

Wehrly 1993). Figure 1 shows scatterplots of the three.

7.1. Combinations of strati®cation, sample selection, and estimators

The methods of strati®cation, sample selection, and estimators were combined in several

ways. The complete list is given below. Note that these combinations are also shown as the

rows in Figure 2, which summarizes our ®ndings.

(1) equal numbers of units Nh in each stratum

(a) ÃT0S, the strati®ed expansion estimator, combined with strati®ed simple random

sampling (stsrs) without replacement
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(b) ÃTRS, the separate ratio estimator, combined with stsrs without replacement

(c) ÃTLS, the separate regression estimator, de®ned below, combined with stsrs

without replacement

(2) Equal cum
���
f

p
in each stratum

1(a), 1(b), and 1(c) as above

(3) equal aggregate total of
���
x

p
(cum

���
x

p
) in each stratum

1(a), 1(b), and 1(c) as above and

(d) separate strati®ed version of ÃT�x1=2; x : x� combined with strati®ed pp�x1=2
�

sampling

(e) ÃTMRS�x
1=2
�, the strati®ed mean-of-ratios estimator, combined with pp�x1=2

�

sampling
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(4) equal aggregate total of x (cum x) in each stratum

1(a), 1(b), and 1(c) as above and

(d) separate strati®ed version of ÃT�x; x2; x2
� combined with strati®ed pp�x� sampling

(e) ÃTMRS�x�, the strati®ed mean-of-ratios estimator, combined with pp�x� sampling

(5) unstrati®ed sampling

(a) ÃT0, the expansion estimator combined with srs without replacement

(b) ÃTR, the ratio estimator, combined with srs without replacement

(c) ÃTL, the regression estimator, de®ned below, combined with srs without

replacement

(d) ÃT�x1=2; x : x�, which is minimal when varM�Yi� � j2xi, combined with pp�x1=2
�

sampling

(e) ÃTMR�x
1=2
�, a mean-of-ratios estimator, combined with pp�x1=2

� sampling

(f) ÃT�x; x2 : x2
�, which is minimal when varM�Yi� � j2x2

i , combined with pp�x�

sampling

(g) ÃTMR�x�, a mean-of-ratios estimator, combined with pp�x� sampling.

Aggregation for all methods of strati®cation was done after sorting each population in

ascending order on the auxiliary x. For the cum
���
f

p
rule, 100 equal length x-intervals

were formed, and the running totals of f 1=2
j were computed, where fj is the number of units

in the j th interval. The intervals were then grouped into ®ve strata. The separate regression

estimator is de®ned as ÃTLS � ÃT0S � ShNhbhs�Åxh ÿ Åxhs� with bhs � Ssh
�xhi ÿ Åxhs��yhi ÿ Åyhs�/

Ssh
�xhi ÿ Åxhs�

2. The unstrati®ed regression estimator ÃTL is equal to ÃTLS with H � 1.

The number of strata was taken as H � 5 in all cases. For each method of strati®cation,

a sample of n � 30 was divided equally among the ®ve strata giving nh � 6 in each

stratum. Remember from Section 6 that, when strata are formed to equalize Nh Åx
�g=2�
h , costs

are all equal, and varM�Yhi� � j2x
g
hi, then an equal allocation is optimal. Thus, there is a

logical consistency to using an equal allocation in each of methods (1), (3), and (4) of

strata formation noted above. In addition, equal allocation is one method traditionally

used with the cum
���
f

p
method.

7.2. Methods of sample selection

Both unrestricted and restricted sampling techniques were used in the simulation.

Unrestricted pp�xg=2
� was implemented using the random order, systematic method

described by Hartley and Rao (1962). Restricted pp�xg=2
� sampling was done by selecting

a sample with the random-order method and then checking its closeness to weighted

balance on four moments within each stratum. The balance measures

ej�sh� �

���
n

p
�Åx

�jÿg=2�
sh ÿ Åx

�j�
h =Åx

�g=2�
h �

sjxh

�����
�����; j � 0; 1=2; 1; 2 �19�

were calculated in each stratum, where sjxh � �S
Nh

i�1phi�x
jÿg=2
hi ÿ Åx

� j�
h =Åx

�g=2�
h �

2
�
1=2 and

phi � x
g=2
hi =�Nh Åx

�g=2�
h �. For the pairs �j � 1=2;g � 1� and � j � 1; g � 2�, ej�sh� � 0, and bal-

ance on those moments is trivially satis®ed. For the nontrivial cases, if ej�sh� # 0:1256613

for all measures in every stratum, then the sample was retained; otherwise, it was

discarded and another drawn. With unstrati®ed sampling, H � 1, so that only overall
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sample balance was checked. The 55th quantile of the standard normal distribution is

q:55 � 0:1256613. Thus, this technique retains only about 10% of the best-balanced

samples.

Balancing on the other moments above, in addition to j � g, protects the minimal

estimator against polynomial terms not in a minimal working model without losing any

precision under the working model. For instance, when g � 1, balancing on the j � 0

and 2 terms protects the minimal estimator against the possibility that the correct model

contains an intercept and a quadratic term. With the weighted balance conditions above,

the mean-of-ratios estimator ÃTMRS�x
g=2
� is equal to the minimal estimator ÃT�xg=2; xg : xg

�,

but in unbalanced samples there may be important differences ± a point that the simulation

results will illustrate.

Unrestricted and restricted stsrs samples were used in strati®cation plans (1)±(4) for

Estimators (a), (b), and (c) above. In the unrestricted samples, a simple random sample

was selected without replacement in each stratum and retained regardless of its con®gura-

tion. For restricted samples, a without-replacement srs was selected in each stratum and

checked for simple balance on the moments Åx
� j�
sh , j � 0, 1/2, 1, 2. For unstrati®ed sampling

± plan (5) ± only overall balance was checked. As above, 10% of the best-balanced

samples were retained. This type of sampling was also investigated by Herson (1976)

and Royall and Cumberland (1981).

7.3. Simulation results

For each combination of strati®cation, sampling method, and estimator, 1,000 samples

were selected. For restricted samples this means that samples were selected until 1,000

were retained. The root mean squared errors for each estimator were computed as

rmse� ÃT� � �S1000
s�1 � ÃT ÿ T�2=1000�1=2. Figure 2 presents results, using a rowplot of the

type devised by Carr (1994). In each column, the ratio of each rmse to the minimum

rmse among the estimators for the population is plotted. Black dots represent restricted

samples while open circles are for unrestricted samples. The narrow triangles are cases

where the ratio was truncated at 2 to avoid scaling problems. Some observations are:

· In Hospitals and Cancer, the minimal estimator with unstrati®ed, restricted pp�x1=2
�

sampling has the smallest rmse or very near it. In Beef, where the relationship

between Y and x is the most diffuse, the strati®ed, minimal estimator with

pp�x1=2
� sampling is best. (See the further comment on Beef below.)

· Unrestricted sampling is generally inferior to restricted, balanced sampling.

· The minimal and mean-of-ratios estimators have about the same rmse's in weighted

balanced samples, as expected. In contrast, ÃTMRS�x
1=2
� can have much higher rmse's

than ÃT�x1=2; x : x� in unrestricted pp�x1=2
� sampling.

· The estimators used when sampling is stsrs ± expansion, ratio, and regression ± are

improved by balanced sampling, but are generally inferior to the minimal estimator

with weighted balance, as anticipated in Section 5.

· For a given selection method �pp�x1=2
� or pp�x��, strati®cation with weighted

balance within strata yields rmse's very near those of unstrati®ed sampling and

weighted balance for the minimal or mean-of-ratios estimator in Hospitals and

Cancer. This is expected since the minimal and mean-of-ratios estimators are equal
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in weighted balanced samples, and an optimally allocated, strati®ed, weighted

balance sample also has overall balance.

· In Beef, strati®ed weighted balanced sampling is somewhat better than unstrati®ed

weighted balanced sampling for the minimal and mean-of-ratios estimators in both

pp�x1=2
� or pp�x� samples. This may be due to better overall balance being obtained

using strati®cation and optimal allocation than for unstrati®ed samples, since the

restrictions (19) are tighter for H � 5 than for H � 1. Another potential explanation

is that a single overall model is inadequate, or the relationship between Y and x is

nonlinear beyond what a polynomial of low order can capture, in which case a

stratum by stratum ®t would be advantageous. In fact, Chambers, Dorfman, and

Wehrly (1993) note that log�Y � 1� is approximately linearly related to

log�log�x�� in Beef, implying that the relationship between Y and x is extremely

nonlinear.

· In contrast to the weighted balanced results, strati®cation with simple balanced

sampling does substantially improve the expansion, ratio, and regression

estimators. In the Cancer population, these three estimators are competitive with

the minimal estimator when the cum
���
f

p
or cum

���
x

p
rule is used for strata

formation.

8. Discussion

Rules for strati®cation by size have been in the literature for many years; see e.g.,

Mahalanobis (1952). The relative merits of particular approaches to selecting stratum

boundaries have been commonly studied under a single population model with uniform

costs per unit sampled (e.g., Bethel 1989). A major point of the present article is that under

this circumstance one need not stratify to get best results. A strategy of selecting a

weighted balanced sample, with weights determined by the model's variance structure,

combined with the best linear unbiased estimator under the model, yields a bias robust

estimator having minimal variance among sample or estimator strategies. Exact model-

based optimality can be obtained through strati®ed, weighted balanced sampling and

optimum allocation, but the strati®cation by size is super¯uous, unless the strata are

needed for other reasons, such as estimating domain characteristics, controlling for

differential costs, or coping with extreme nonlinearity.

One means of selecting weighted balanced samples is restricted probability proportional

to size sampling in which probability samples that are not well-balanced are rejected. This

type of plan has the advantage of maintaining the characteristic of impartiality associated

with randomly selected samples. Such a restriction is, in fact, what practitioners have been

roughly accomplishing for many years using systematic sampling from a list sorted by size.

Probability proportional to size sampling itself is usually approximated in practice

either by some version of systematic sampling as in the Hartley-Rao (1962) approach,

or by some version of strati®ed sampling as in Wright (1983). Thus, as an incidental

tool strati®ed sampling retains its utility.

Our results verify that restricted sampling (either strati®ed or unstrati®ed) yields smaller

mean squared errors than a variety of strati®ed, unrestricted random sampling plans even

when optimal allocation is used.
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Choosing a sample and an estimator to control bias are key features of the approach

studied here. Thus, in closing, it is useful to compare the model-based and design-based

concepts of robustness. The design-based counterpart of robustness to model-failure is

asymptotic design unbiasedness (ADU): as sample and population grow large, the given

estimator is ADU if it is design-unbiased despite total failure of the model. For example,

by requiring ADU, Wright (1983) determines criteria which lead to the choice of the

generalized regression estimator (GREG), which has achieved so much prominence in

recent years. Apart from the model-based versus design-based dichotomy, the difference

between the two standards is that ADU is asymptotic, and all-purpose, in the sense that the

ADU estimator is indifferent to the speci®cs of the alternative models that might hold, and

to the speci®cs of the particular sample chosen, whereas the bias-robust estimator is

speci®c as to what group of models it is robust against, under speci®c conditions of the

particular (®nite) sample chosen.
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