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Survey Estimation for Highly Skewed Populations in the
Presence of Zeroes

Forough Karlberg'

Estimation of the population total of a highly skewed survey variable from a small sample
using straightforward methods is problematic for two reasons: (i) when there are no extreme
values in the sample, too small estimates will be obtained, and (ii) if extreme values are
sampled, the estimates will become grotesquely large. Traditional methods for outlier
treatment will usually compensate for outliers in the sample, thereby avoiding (ii), whereas
the small negative bias of (i) will persist. Here, an estimator based on a lognormal-logistic
superpopulation model is proposed.

A particular strength of the model estimator is that the lognormal structure of the survey
variable is used for estimation — even in the absence of extremely large values in the
sample. Another advantage of the model estimator is that it can be applied to situations
in which the survey variable, while highly skewed, may assume the value zero for a
number of units.

The model estimator is applied to an agricultural survey variable in a simulation study, in
which it is compared to a design-based (regression) estimator as well as a Winsorization-
based estimator specifically constructed for outlier treatment. The simulation results indicate
that the lognormal-logistic model estimator constitutes a sensible alternative to the other
estimators, in particular when the sample size is small.
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1. Introduction

There are many surveys of very skewed populations which contain a few extreme values.
This is particularly true of surveys of business enterprises and agriculture, as well as of
surveys of personal income and fortune. Although the values are extreme, they need not
necessarily be false; extremely large observations constitute a natural ingredient in e.g.,
establishment survey populations, which often are skewed to the right. In this article,
we will address the estimation of the population total of a highly skewed survey variable,
for which the occurrence of outliers lies in the nature of the variable.

In the Australian Agricultural and Grazing Industries Survey (data from which has
previously been used by e.g., Chambers 1996), the variable Beef cattle has many extreme
values. From the symmetric distribution of the logarithms of the positive Beef cattle values
(see Figure 1), it is evident, however, that the extreme values fit rather well into the overall
distribution of the variable; in the terminology of Chambers (1986) they are referred to as
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representative outliers. In this article, we will study estimation when the extreme values
are in line with the overall distribution of the data, i.e., representative.

Previous efforts within outlier treatment include outlier robust inference (see e.g.,
Chambers 1986 and Lee 1995 for applications), which is discussed by Barnett and Lewis
(1994), and weight modification (see for instance Hidiroglou and Srinath 1981) or value
modification (see for instance Kokic and Smith 1998a, who discuss one-sided Winsoriza-
tion, in which the largest observations are replaced by a smaller value) strategies. The two
latter approaches are compared by Chambers and Kokic (1993). Robust methods, as well
as weight and value modification strategies, are most suitable for situations where the
outliers encountered are nonrepresentative.

Thorburn (1991) suggested the use of a lognormal superpopulation model for estimation
in this context. Karlberg (2000) has extended the applicability of the model-based
estimator of Thorburn to situations in which there are a number of auxiliary variables
available. Still, under this lognormal superpopulation model, the survey variable only
can have strictly positive values. There are many survey variables like Beef cattle
that, while having extremely large values for some units, also are equal to O for other
units.

A conceivable extension of the lognormal superpopulation model is to introduce (in
addition to the scale and shape parameters) a third shift parameter <. Initially, this
approach seems appealing, since if y < 0, there is a positive probability density for 0;
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Fig. 1. Distribution of the variable Beef cattle for 1,652 Australian farms.
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the zero-valued observations appear to be accommodated by this distribution. However,
while the positive values of Beef cattle can be modeled rather well by a lognormal
distribution (with the mode somewhere in the interval 100—1,000), the entire empirical
distribution of Beef cattle (including the zeroes) seems to be bimodal, and thus not very
well accommodated by a (unimodal) 3-parameter lognormal distribution. In addition,
the qualitative difference between units with positive and zero-valued observations
(e.g., farms with and without beef cattle) is missed out by this approach. From Figure
1, we see that many farms have no cattle at all; Beef cattle is thus equal to O for those
farms. Such variables should be modeled by a distribution that has a large point probability
at the value 0O, rather than by a distribution that has a positive probability density within the
interval (v, 0). Here, we consequently address this by combining the lognormal model of
Karlberg (2000) with a logistic component, which determines whether the survey variable
is positive or zero.

In Section 2, we derive the approximately model unbiased population total estimator.
We use model-based inference under a lognormal-logistic superpopulation model, and
we attempt to demonstrate that this is a sensible alternative to traditional methods. In a
simulation study, presented in Section 3, two relevant alternative estimators are compared
to the model estimator. A concluding discussion is offered in Section 4.

2. The Lognormal-Logistic Model Estimator

2.1. Preliminaries

The approach used for inference here would, in the terminology of Brewer and Mellor
(1973), be regarded as model-based descriptive inference, since the target population
for inference is the finite population from which the sample was drawn. This is to be
contrasted with model-based analytic inference (cf. Deming 1950), where the target is
some other population (and even a perfect census thus leaves uncertainty).

When model-based inference is used, it is assumed that the survey variable has been
generated according to some superpopulation model. If we can find a distribution model
that closely resembles the distribution of the survey variable, a model-based estimator will
generally have a smaller mean squared error than a design-based one. In essence, the
model-based approach draws its strength from the knowledge of the survey variable
distribution in such situations.

Strictly speaking, the unobserved values of the survey variable should be viewed as
stochastic, and being distributed according to the assumed superpopulation model.
What we refer to as estimation in this article, is therefore generally referred to as
model-based predictive inference in the terminology of Smith (1999). However, we will
use the more common term ‘‘estimation’’ throughout.

Throughout this article, we are (like Brewer 1995) going to use the notation of Sdrndal
et al. (1992), letting E;(e) and Varg(e) denote the expected value and variance, respec-
tively, of the quantity (e) under the superpopulation model £. We use the terms moments
and probabilities to refer to model moments and model probabilities; they are thus not
related to the sampling design. Similarly, by referring to an estimator as being unbiased,
we indicate that it is model unbiased.
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2.2.  The superpopulation model

We are interested in estimating

T=3 Y=Y+ Y

i=1 iE€s i€r

the population total of the survey variable Y, which is assumed to be highly skewed to the
right. We assume that for each unit i, Y; is non-negative, and that the values of this survey
variable are known only for a sample s consisting of n units out of the N units of the
population. Further, we assume that for i = 1,..., N, we have access to the auxiliary
variable vector X; = (1,X;,,...,X;;)’; k, the number of auxiliary variables, may be any
non-negative integer (including 0).

According to our lognormal-logistic superpopulation model £, the survey variable

Yi=17,-Ai

is a product of a lognormal component ¥; and a logistic component A;.

For the lognormal model component, we adopt the lognormal model of Karlberg (2000).
For all i, we assume that Z; = In(Y;), conditional on X;, follows a normal distribution with
mean

pi = wX;) = aX;
and variance
oiz = ozv(Xi)

Here v; = v(X,) is a known function of X.
For the logistic model component, we assume that A;, conditional on X;, are
independently Bernoulli (p;) distributed for all i, where

X,

Here 8 is a vector of unknown logistic model parameters. The three unknown model
parameters to be estimated are thus «, 8 and o.

A central assumption is that the sampled values of the survey variable follow the super-
population model and that the sampling is uninformative. The estimation method used
here holds as long as the sampling design only depends on the survey variable through
the auxiliary variables. It must not depend on the survey variable in any other way.
Generally, the preferred sampling design thus depends on the known auxiliary
information. Here, however, we only focus on the model and not on the sample design;
as a consequence, the complexities in the calculation process stem from the assumed
superpopulation distribution.

Throughout this article, we regard the auxiliary variable values as fixed, and in what
follows we will condition implicitly on those auxiliary variables: that is, we will use
E¢() to mean E¢(s[X, ..., Xy).
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2.3.  Estimating the lognormal component

Letting s, = {i € s : ¥; > 0} denote the subset of the sample for which the survey variable
is positive, and letting n, = ’s+| = Y ies A; denote the number of positive sample units,
we assume that n, >k + 1.

We let Z,,, X,, and V, denote the vector of the logarithmed values of the strictly
positive survey variable values of the sample, the matrix of auxiliary variables and the diag-
onal matrix containing the variance coefficients raised to the —1:th power, respectively. We
assume that X, VX is positive definite (and thus non-singular) and may thus define

a; = Xi(X,; Vo X)X
We further assume that when n, N — oo in a way such that (N — n) — oo, then n+—p> o and
a; =0 )

for each pair of nonsample units, i,j € r. For simplicity, we will regard the sample vector
of A;-values, Ag, as fixed in the rest of this section; we will thus use E¢(e) when referring to
E:(s|A)). .

We define, for each nonsample unit i € r, an unbiased estimator Z; of Z; (if A; = 1, i.e.,
if Z; exists) as

Zi = &X,
where the parameter « is ML estimated by

a= (ZH-VH-X;+)(Xs+VS+X;+)71
We now have that
o a;

N 2 2 ) 5
Eg(exp(Z)|A; = 1) = exp <ax,- +% ) # exp (ax,- +%> = EexpZ)|ai = 1) @)

Exp(Z-) is thus a severely biased estimator of ¥; and the bias is a function of the shape
parameter o”. We estimate the lognormal shape parameter by

ot = 2,V Zyy — &(X, Ve X))@

n, —k—1

which is a bias-corrected estimator of o°. If we were to use exp(% &2(\/,- — a;;)) to compen-
sate for the bias demonstrated in (2), we would obviously introduce a new bias stemming
from the randomness of 6°. In order to compensate for this bias, we will use the moment
generation function of 6%; an approximation of this function is given in Lemma 1. We then
use this approximation in Lemma 2 for deriving an approximately £-unbiased estimator of
Y;; this estimator has a bias that is an order of approximation smaller than the simple
“‘plug-in’’ estimator exp(aX; + %azv,-).

LemMA 1. The moment generating function of the estimated variance can be written as

42
't
Eg(exp(?f,?t)) = exp (aizt + U’)
ny

for large n .
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Proor. It is well known (see e.g., Casella and Berger 1990, p. 569) that the variance
estimator &> follows a xz-distribution

A2
(ny —k—1)o 2
T X(ny—k—1)

when the observations (i.e., Z;) follow a normal distribution. Using the moment generating
function of the xz-distribution, we have that

5 _
Eg(exp(671)) = (1 - #)

Using both binomial and exponential expansion, it can be proven that

ny—k=1
2

ny—k=1

( 207t ) 2 < 5 0?1‘2)
l—— ~exp| —ojt — —
ngy —k—1 ny

for large n . (Q.E.D)

LemMmA 2. Conditional on A, we have

A2 ~4

2 2 o o;

Y; = exp(Z;) exp (— i —a;) — )
2 4n,

is an approximately &-unbiased estimator of Y; for all nonsample units i € r.

Proor. Using the fact that 67 and Z are ¢-independent (see Casella and Berger 1990, p.
569), it follows that

Eg(f/i —-¥la=0n

. 7 5 )
— E(exp(Z))|Ai = DE; (exp ("7 v —a) = ) A = 1) — Eg(exp(Z|A; = 1)
+
2 o 6
~ Eg(exp(Z[)|A,- = 1)exp (— j) E; (exp (7 v; — a,,»)) ‘A,- = l)
+
— E¢(exp(Z)|A; = 1) 3

In the sequel, we are going to use the approximation

A4 4
a(on(;) ~on()
+ +

Using (1) and Lemma 1 with ¢ = (v; — a;;)/2, we have that

A2 2 4
o o a5
E¢| exp < (vi — aii))> = exp ( (vi —a;) + Vi)
¢ ( 2 2 4n,

From this, and by using the right-hand side of the inequality of (2) in (3), we have that

A - 2 . 2 2 .
Eg(Y, - Yi’A,- = 1) = exp (aXi + a;“) exp (%(vi — aii)> — (exp (aXi + o;’))

=0.
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For each nonsample unit i € r, it follows that if the survey variable ; is positive, then ¥; is
an approximately model unbiased estimator of Y;.

(QE.D)
2.4. Estimating the logistic component

Using B, the estimator of the logistic parameter (8, obtained using the ML method as
described in e.g., McCullagh and Nelder (1989, p. 116), we compute

5, — _SXP(BX)
RS eXP(BXi)

the estimated probability of a positive value of Y; for all nonsample units i € . From
McCullagh and Nelder (1989, p. 119) we have

E;(p) — E¢(A) = E¢(p)) — p; = O(n™ ") “
Thus, p; is a biased estimator of p;. In the sequel, we will however work under the
assumption that the £-bias of p;, i.e., the residual term of (4), is negligible.

2.5. An approximately unbiased population total estimator

To obtain an unbiased estimator of the survey variable, we assume that p; and f’,- are
uncorrelated. This is not exactly true, but as can be seen from Section 3, the estimator
performs well in reality, so the error made by this assumption is in no way crucial.
From the zero correlation, we have for all i € r, that

Ee(p;) = E¢(Ee(p;V1]A)

= E(piEy(Y;]A,)

= E(p)E(Ee(Y,|A,) 5)
From the conditional approximate unbiasedness of I:/,- proven in Lemma 2, we have that
EE,(Y; — Vj|A; = 1,A)|A; = 1] = E,(0) = 0

Hence

s . 2
E(Yi|A; = 1)~ E((Y,]A; = 1) = exp (axi + %) (6)
Using (4) and (6) in (5), we obtain
2

s ;
E¢(p;Y;) = piexp (OlXi + 2> = E¢(Y)

An approximately model unbiased estimator of the population total of the survey variable
Y; is thus given by
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2.6. Estimation error variance of the population total estimator

Letting 6,j(oz, B,0) denote the covariance between Y; and Y, it is obvious that
0;(a, B, 0) = O for i # j. Using the properties of the lognormal and Bernoulli distributions,
we obtain

Si(a, B, 0) = Varg(A,Y)
= E;(ATY)) — (E¢ (A7)
= P(A; = DE(Y7|A; = 1) — (P(A; = DE(,]A, = 1))
=~ piexp(2aX, + 207) — p; exp2aX; + o)

= piexp(2aX; + o7)(exp(a?) — p;)

Defining
oiz + sz
Ae, B,0) = Z pipjexp| aX; +X;) + >
iL,jEr
o 01‘202
X (bij exp (7 (A;(B) + A;(B) + 2n.(é)> - 1)
+ 6[j(a’ B’ 0)
where
A,jj(ﬁ) = Eg(al;j)
and

n(8) = E¢(n,)

it can be proven that Varg(T —T) = Ua, B, 0). The estimation error variance can thus be
estimated using the ‘‘plug-in’’ expression Q(a, B.5). One could also estimate the variance
by using bootstrap technology (see Shao and Tu 1995), or some version of the robust
variance estimator of Royall and Cumberland (1978).

3. Application of the Model Estimator

3.1. Alternative estimators

As the first alternative estimator to compare to the model estimator we use a standard
linear regression (LR) estimator (see Sérndal et al. 1992)

TLR=ZY:'+3LRZX:‘

iE€s i€er
where
BLR = YsX;(XsX;)_I

is the ML estimator of the regression coefficient vector 8;. Here, the vector Y, contains
the sample values of the survey variable. For obvious reasons, we have to assume that
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X/X, is nonsingular. Since 7 is virtually design unbiased in many applications (as noted
by e.g., Sdrndal et al. 1992), and thus does not depend on the superpopulation model &, it
will not be biased when the survey variable is not distributed according to £; on the other
hand, it is likely to be inefficient (although unbiased) in comparison to a model-based
estimator when £ holds.

A comparison of the model estimator to estimators specially designed for dealing with
outliers would be of interest. The second alternative estimator is therefore the estimator
based on one-sided Winsorization as defined as by Kokic and Smith (1998a). For k = 0
and 1, we denote the ratio between the population and sample totals of the auxiliary
variable by

N
Ry = ZXU/ZXU
i=1

i€s
The population total estimator based on one-sided Winsorization is
Tw =Ry W,
i€s
where
Y; it ¥; <K;
o { K; + (Y, — K)Rx' otherwise

Here the upper bound K;, which is a function of (among other quantities) Xy;, is defined as
in Kokic and Smith (1998a). We have estimated the Winsorization cutoff parameter by
sampling from the survey variable Beef cattle itself. This is obviously a more favorable
situation than in practice, when only historic data is available; the potential bias resulting
from this will most likely be in favor of the Winsorization-based estimators. We have
used five replicate samples in this first estimation step; this is in accordance with the
recommendations of Kokic and Smith (1998b).

3.2.  Results

We have used the number of Beef cattle for N = 1,652 farms that have participated in
the Australian Agricultural and Grazing Industries Survey (AAGIS) carried out by the
Australian Bureau of Agricultural and Resource Economics. Data from this survey has
previously been used by, for instance, Chambers (1996). As the auxiliary variable, we
have used the Farm area (in hectares). We have used the logarithmed farm area for the
model estimator and the ‘‘raw’’ unlogarithmed farm area for the other estimators. In
all, there were 1.5 million beef cattle on the 1,652 farms, thus 7 = 1.50-10%. The
correlation between the logarithmed Beef cattle and the logarithmed Farm area is 0.575.

Although the sampling is assumed to be uninformative under the model assumptions,
the practical feasibility of an estimator is often evaluated using repeated sampling from
one population. We comply with this general practice when assessing the applicability
of the estimator to survey data; there is no real choice, since in principle only one
population is available. The presence of the constant auxiliary variable X;; (which is equal
to 1 for all i) is implied without comment. We have used v; = 1 (implying a constant
coefficient of variation) for the model estimator.
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Table 1. Relative efficiency of the model estimator when applied to Beef cattle

n
Relative efficiency of 7 vs 50 100 150 200 250

7:"LR 1.74(0.07) 1.88(0.04) 1.86(0.04) 1.94(0.04) 1.94(0.03)
Ty 1.51(0.04) 1.10(0.03) 1.03(0.02) 1.03(0.02) 1.00(0.02)

The auxiliary variable is Farm area. The cell entries are mean values over 50 replicate runs of 250 samples each
(the estimated standard errors are shown within brackets).

Table 2. Relative bias of the estimators when applied to Beef cattle

n
Relative bias of 50 100 150 200 250

7:" 2.90(0.46) 4.48(0.29) 4.83(0.22) 5.01(0.16)  4.89(0.18)
Trr —5.09(0.57) —2.68(0.35) —1.64(0.29) —0.63(0.27) —0.77(0.23)
Ty 8.11(0.49) 0.46(0.33) —0.82(0.26) —1.00(0.21) —1.37(0.18)

The relative bias is expressed in percent of the true population total 7 = 1.50 *10%. The auxiliary variable is Farm
area. The cell entries are mean values over 50 replicate runs of 250 samples each (the estimated standard errors
are shown within brackets).

Table 3. Relative RMSE of the estimators when applied to Beef cattle

n
Relative RMSE of 50 100 150 200 250
T 45.05(0.62) 31.10(0.26) 25.15(0.22) 21.50(0.16) 18.83(0.13)
Tir 58.54(0.99) 42.50(0.45) 34.13(0.26) 29.79(0.27) 26.13(0.16)
T 54.86(0.81) 32.40(0.33) 25.34(0.22) 21.75(0.14) 18.78(0.12)

The relative RMSE is the root of the MSE expressed in percent of the true population total 7 = 1.50°10°. The
auxiliary variable is Farm area. The cell entries are mean values over 50 replicate runs of 250 samples each
(the estimated standard errors are shown within brackets).

We have assessed the model estimator performance by computing (for both of the
alternative estimators) the relative efficiency, which is defined as the ratio between the
MSE of the alternative estimator and that of the model estimator. A relative efficiency
exceeding 1.0 thus implies that the model estimator is more efficient than the alternative
estimator is. In addition, we have (for all estimators) computed the relative bias, i.e., the
bias of the estimator divided by the true population total.

In order to assess the precision in the relative efficiency and relative bias estimates, we
have made 50 replicate runs. In each run, we have drawn 250 simple random samples
(without replacement) of each of the sizes n = 50, 100, 150, 200 and 250. Over all 50
runs, the average (and standard error) of the relative efficiency (see Table 1), the average
(and standard error) of the relative bias (see Table 2), as well as the average (and standard
error) of the relative RMSE (see Table 3), have been computed for all four alternative
estimators.

As we see from Table 1, the model estimator is always the most efficient one for Beef
cattle, but the relative efficiency versus the Winsorization-based estimators decreases with
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increasing sample size. For all three estimators, we see from Tables 2 and 3 that the bias is
small in relation to the overall MSE.

4. Discussion

4.1. Possible generalizations of the model estimator

For the applied survey statistician, it is of little significance that the model estimator is
better than a design-based alternative under the simple random sampling design. In
many situations, a sampling design more conducive to efficiency, e.g., stratified sampling,
is a natural choice. This modified model estimator may use the sampling design when
estimating « and ¢ and yet retain the efficiency advantages of model-based inference.
A practical ‘‘plug-in’’ approach in this case would replace the simple random sampling
based ML estimates of the mean and variance of the logarithms of the survey variables
by their corresponding ML estimates under the actual sampling design used (Breckling
et al. 1994) or by pseudo-ML estimates calculated using inverse sample inclusion
probability weighted versions of the simple random sampling estimating equations for
these parameters (Sédrndal et al. 1992).

For skewed data with extreme outliers, we could follow Brewer and Ferrier (1966) and
replace the lognormal assumption used in this article by one where the logarithms of the
positive valued survey variable have a ¢-distribution. However, this will have the effect of
complicating the theory considerably.

Many populations have negative extreme values as well as positive ones. Assume that
the survey variable Y; is the sum of two lognormal-logistic components. The parameters of
the two lognormal distributions can be estimated separately (using the positive and
negative values of Y;). The proportions of positives, negatives and zeros could all be
estimated simultaneously using logistic methods (cf. McCullagh and Nelder 1989,
p-149). The estimation of 7 can then be carried out as in Section 2.

If we have access to two auxiliary variables, and the first auxiliary variable is highly
correlated with the positive values of the survey variable while the other auxiliary variable
is a good predictor of whether the survey variable is positive or zero, we will use the first
variable to estimate « and ¢ while using the second variable for the estimation of 8. If the
model of Section 2 is slightly generalized, different auxiliary variables may be used for the
two model components. The generalization required is straightforward, and will increase
the applicability of the model estimator to situations similar to the one described above.

4.2. Conclusions

In this article, we have developed a population total estimation method for non-negative
skew variables; the practical applicability of the estimator, which is derived in Section 2, is
enhanced by the possibility of using any number of auxiliary variables.

As we have seen from the simulation study in Section 3, the model estimators are most
useful when the sample size is small. If one can afford drawing a large sample, the
potential benefit of the model-based estimator (relative to the alternative estimators)
does not outweigh the risk of bias due to model misspecification.

One might argue that the model estimators are useless, since we never know for certain
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that the survey variable is lognormal distributed. The estimator is of course not of any use
in situations when the survey variable has a nice symmetric distribution with no outliers. In
such a situation, even the arithmetic mean of the survey variable may be more efficient
than the model estimator is. Some prior knowledge about the type of survey variable is
thus required.

As can be seen from Section 3, the lognormal estimator works well when applied to
survey variables that are known to be skewed to the right (e.g., economic variables). In
applications to such variables, a particular strength of the model estimator is that, even
in the absence of extremely large values in the sample, the assumed lognormal structure
(which implies the presence of extremely large values) of the survey variable is used
for estimating the population total. Neither the design-based estimators nor the traditional
weight or value modification estimators have this feature.
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