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Synthetic and Combined Estimators in Statistical Disclosure
Control

Jeroen Pannekoek and Ton de Waal1

1. Introduction

A common concern of statistical of®ces that release microdata for use by external

researchers is to diminish the risk of disclosure of con®dential information on individuals.

It is generally accepted that it is insuf®cient to discard directly identifying variables like

names, addresses, etc. because individuals may also be recognized on the basis of their

values on other, indirectly, identifying variables such as a geographical indicator, profes-

sion, age and sex. If certain combinations of values of identifying variables, or keys, occur

only once in the population, the associated individuals score uniquely on these variables. If

a researcher, i.e., a potential discloser, knows the values of the identifying variables for

certain unique individuals he or she can establish a link between the record and the

individual it belongs to. Such a link (identi®cation) leads to disclosure of the remaining

information in the record, which was not known beforehand.

To guard the con®dentiality of the information provided by the respondents, statistical

An often applied procedure in the statistical disclosure control of microdata sets is to prescribe
a minimum number of population elements for each category of a combination of identifying
variables and to take measures to ensure that there are no categories with a population
frequency less than the prescribed minimum. In many cases the population frequencies will
be unknown and the disclosure protection procedure can only be applied if a reasonable
estimator for these frequencies is available. The usual unbiased direct estimator cannot be
applied because it is based on too few sample observations. Since one of the identifying
variables is almost always a regional indicator, it seems natural to consider small area
estimators for this problem. In this article a synthetic and a combined estimator are proposed
and studied, and expressions for their expected mean squared errors are derived. The proposed
estimators are compared by means of an example based on data from the Dutch Labour Force
Survey.
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of®ces apply disclosure limitation techniques (see e.g., Greenberg (1990), Fienberg

(1994), Marsh et al. (1994) and the 1993 special issue of the Journal of Of®cial Statistics

on con®dentiality and data access). An often applied technique for categorical identi®ers is

to ensure that in the data set combinations of, say, up to three identifying variables do not

lead to rare value combinations, i.e., combinations for which the population frequency is

less than a prescribed minimum number. This is attained by combining values of identify-

ing variables (recoding) or setting the value of identi®ers in some records at ``unknown''

(suppression). The motivation behind such procedures is that unusual value combinations

can attract the attention of a researcher who then may be tempted to try and single out

unique individuals by using additional identifying variables. Therefore, it is better to try

to avoid the occurrence of combinations of scores in the data set that are rare in the

population instead of trying to avoid population-uniques only.

Statistics Netherlands applies the above idea for the two kinds of microdata sets it

disseminates. The ®rst kind of microdata sets are so-called public use ®les. A public

use ®le can be obtained by everybody. These data sets are protected rather severely,

e.g., variables referring directly to a region of residence are not included to prevent

identi®cation. Moreover, very sensitive variables such as variables on sexual behaviour

or criminal activities are also not included, to limit the consequences in the unlikely event

that despite all precautions an identi®cation still happens.

The second kind of microdata sets are so-called microdata sets for research. A micro-

data set for research can only be obtained by well-respected (statistical) research of®ces.

The information content of a microdata set for research is much more extensive than that

of a public use ®le. For instance, geographical indicators with much regional detail, such

as ``Place of residence,'' may be included in a microdata set for research. Because of the

extensive information content of a microdata set for research, researchers have to sign a

declaration stating that they will protect any information about an individual respondent

that might be disclosed by them. In the remainder of this article we will only consider

microdata sets for research.

The disclosure avoidance policy of Statistics Netherlands prescribes that the keys that

have to be examined for a microdata set for research consist of three identifying variables,

one of which is always a geographical indicator. The (estimated) population frequency of

these trivariate combinations should be at least d, where d is a certain well-chosen

threshold parameter. When a certain combination does not occur frequently enough in the

population, disclosure limitation techniques (see e.g., Greenberg (1990), Marsh et al.

(1994)) are applied. Examples of such techniques are combining values of identifying

variables (recoding) or setting the value of identi®ers in some records at ``unknown''

(suppression).

This rule, including an appropriate value for the threshold parameter d, has been found

after a time-consuming trial-and-error process. Many different kinds of combinations have

been checked, using many values for the threshold parameter. The ®nal result, the above-

mentioned rule, seems to be satisfactory: On the one hand the microdata sets resulting

from application of this rule are considered suf®ciently protected against disclosure,

and on the other hand their information content is still rich enough to suit many statistical

analyses. For more information on the kinds of microdata sets released by Statistics

Netherlands and their rules we refer to Keller and Willenborg (1993).
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Application of the above procedure is trivial if the number of population elements (the

population frequency) is known for each category for which a minimum population

frequency is required. Often this will not be the case, however, and in such situations

one can consider estimating these population frequencies from the sample data. If the

sampling fraction is suf®ciently large the usual direct estimator for the population

frequency (the sample frequency divided by the sampling fraction) can be applied to

estimate the population frequencies accurately. If the sampling fraction is not large

enough, however, the direct estimator will be too imprecise to be useful. For instance,

suppose that the minimum population frequency of a certain category were set at, say,

100, then with a sampling fraction a little less than 1:100, the direct estimator would be

zero for zero sample frequencies and more than the minimum of 100 for sample

frequencies of 1 or larger. This would imply that no disclosure protection measures

were necessary for small samples, a highly implausible result. Of course, no one would

consider estimating a population frequency on the basis of only a single sample

observation.

As an alternative, we will describe in this article the application of small area estimators,

such as synthetic and combined (or compromise) estimators for the required population

frequencies. Small area estimators are based upon the sample data as well as upon a model

for the population proportions rather than, as is the case with direct estimators, upon the

sample only. The model is of vital importance for the quality of the synthetic estimator. If

an appropriate model is used then the resulting estimator will usually be quite good, but

when an inappropriate model is used the estimator can be severely biased. The combined

estimator is hampered less by the use of an inappropriate model because the bias of the

synthetic component of the combination is, to some extent, compensated for by the

zero bias of the direct component.

For more detailed discussions on the disclosure problem in general we refer to Duncan

and Lambert (1989), Bethlehem et al. (1990), Mokken et al. (1992), and Skinner et al.

(1994). For a discussion on the disclosure problem in general, and a discussion on the

approach based on protecting the individuals with value combinations that occur rarely

in the population we refer to De Waal and Willenborg (1996), and Willenborg and De

Waal (1996).

The remainder of this article is organized as follows. In Section 2 the synthetic and

combined estimators are described and estimators for the expected mean squared errors

are derived. In Section 3 the proposed estimators are compared by means of an example

based on data from the Dutch Labour Force Survey (LFS). A summary of our conclusions

is given in Section 4.

2. Synthetic and Combined Estimators for Proportions in Small Areas

2.1. The synthetic estimator

The proportion mi j of population elements in an area i that belong to category j is equal to

Yi j=Ni, where Ni is the number of inhabitants of area i and Yi j is the number of inhabitants

of area i belonging to category j.

Assuming simple random sampling with replacement, the sample proportion Zi j is an
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unbiased estimator for mi j, given by

Zi j �
yi j

ni

�1�

where ni is the sample size in area i and yi j is the corresponding number of units in the

sample in area i that belong to category j. An unbiased estimator for the number of units

Yi j in the population in area i that belong to category j is NiZi j. As is well-known, the

variance and the mean squared error (MSE) of Zi j with respect to the sample distribution

is given by

Vars�Zi j� � MSEs�Zi j� �
1

ni

mi j�1 ÿ mi j� �2�

We can use the overall sample proportion, Si j, as a synthetic estimator for mi j. So, we

de®ne Si j by

Si j �
y�j

n
�3�

where y�j � Siyi j and n � Sini. The synthetic estimator Si j will, in general, be a biased

estimator for mi j. Only if the mi j are equal for all areas i will Si j be unbiased for mi j. A

corresponding synthetic estimator for the number of units Yi j in the population in area i

that belong to category j is NiSi j.

The variance of Si j with respect to the sample distribution is given by

Vars�Si j� �
1

n
m�j�1 ÿ m�j� �4�

where m�j � SiNimi j=N � SiYi j=N

The variance of Zi j is at least equal to the variance of Si j because ni # n. On the other

hand, the synthetic estimator Si j is biased whereas the direct estimator Zi j is not. The bias

of Si j is given by

bi j � EsSi j ÿ mi j � m�j ÿ mi j �5�

where Es denotes the expectation with respect to the sample distribution. The mean

squared error of Si j is given by

MSEs�Si j� � Vars�Si j� � b2
i j �6�

2.2. Estimators for the EMSE of Zi j and Si j

The MSE (variance) of Zi j depends on mi j (see, (2)) and the MSE of Si j depends on bi j,

which in turn depends also on mi j (see (5) and (6)). The dependence on mi j causes dif®culty

when it comes to estimating these MSE's since there is no satisfactory unbiased estimator

for mi j available (this was the reason for using synthetic estimation in the ®rst place). The

usual approach to solving this problem is to assume that bi j is a random variable with

expectation Ebbi j equal to zero and variance Varb�bi j� equal to, say, j2
j . Here Eb and

Varb denote the expectation and the variance with respect to the distribution of bi j.

With these assumptions we can use, instead of the MSE, the expected value with respect

to the distribution of bi j of the MSE (EMSE) as a measure of the precision of both Zi j and
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Si j. These EMSE's do not depend on the area speci®c mi j's but on both m�j and j2
j which do

not depend on the area i but only on the category j which makes it possible to estimate the

EMSE's.

The expected mean squared error (EMSE) of Zi j is given by

EMSE�Zi j� � EbEs�Zi j ÿ mi j�
2
� Ebmi j�1 ÿ mi j�=ni

� m�j�1 ÿ m�j�=ni ÿ j2
j =ni �7�

The expected mean squared error of Si j is given by

EMSE�Si j� � EbEs�Si j ÿ mi j�
2
� Vars�Si j� � Ebb2

i j

� m�j�1 ÿ m�j�=n � j2
j �8�

In order to evaluate EMSE�Zi j� and EMSE�Si j� it is necessary to estimate m�j and j2
j . An

estimator for m�j is Si j, i.e., y�j=n. An estimator for j2
j can be obtained by means of the sum

of the squared differences between the estimated numbers niSi j and niZi j. The expectation

of this squared difference is equal to

EbEsn
2
i �Si j ÿ Zi j�

2
� m�j�1 ÿ m�j�ni�1 � ni=n� � j2

j ni�ni ÿ 1� �9�

if EbEsSi jZi j � m2
�j. This latter assumption is justi®ed if the number of different areas is

suf®ciently large. By setting the sum of all squared differences equal to the expectation

of this sum, we obtain the following moment estimate for j2
j :

Ãj2
j �

Sin
2
i �Si j ÿ Zi j�

2
ÿ Si j�1 ÿ Si j�Sini

ni

n
� 1

ÿ �
Sini�ni ÿ 1�

�10�

Spjùtvoll and Thomsen (1987) apply a simpler estimator instead of (10). Their estimator

is equal to

Ãj2
j �

Si�Si j ÿ Zi j�
2
ÿ mSi j�1 ÿ Si j�

�I ÿ m�
�11�

where m � Si1=ni and I � Si1, i.e., I is equal to the number of different areas in the

sample. When the variance of the synthetic estimator Si j is negligible and all ni's are equal,

the estimator given by (10) is the same as the estimator given by (11).

2.3. The combined estimator

It is well known that it is possible to construct an estimator with a smaller EMSE than both

the direct estimator and the synthetic estimator by using a convex combination of these

two estimators. This combined estimator, Ci j, is given by

Ci j � Wi jZi j � �1 ÿ Wi j�Si j �12�

where

Wi j �
EMSE�Si j�

EMSE�Zi j� � EMSE�Si j�
�13�

The weight Wi j is chosen such that the expected mean squared error of Ci j is minimal.

Formula (13) shows that the weight approaches 1 if the EMSE of Si j is large compared to

403Pannekoek and de Waal: Synthetic and Combined Estimators in Statistical Disclosure Control



the EMSE of Zi j. Since the variance of Si j is small this will happen when the ``working

assumption'' of homogeneous proportions, i.e., that the mi j are equal for all i, does not

at all hold and, consequently, the bias of Si j will be large. In this case, the combined esti-

mator Ci j will be close to the unbiased estimator Zi j. At the other extreme, if the bias of Si j

is small (resulting in a small EMSE for Si j) or if the variance of Zi j is large (resulting in a

large EMSE for Zi j), the weight will approach 0 and the combined estimator will be close

to the synthetic estimator Si j.

The expected mean squared error of Ci j is approximately given by

EMSE�Ci j� � W2
i jEMSE�Zi j� � �1 ÿ Wi j�

2EMSE�Si j� �14�

The expected mean squared error of Ci j is thus at most equal to the minimum of the

expected mean squared error of Zi j and Si j.

An estimator of the form (12) can also be obtained by an empirical Bayes argument

(Bishop, Fienberg, and Holland (1975), Ch. 12, Albert and Gupta (1983), Gelman et al.

(1995), Ch. 2.) In this approach, for each j, the parameters mi j are viewed as realizations

of a random variable, Mj say, with expectation m�j and variance j2
j . If we take the

distribution of Mj (the prior distribution) to be the beta (aj;bj) distribution we have

m�j � aj= �aj � bj) and j2
j � m�j�1 ÿ m�j�=�aj � bj � 1�. Furthermore, if it is assumed

that the conditional distribution of yi j given Mj � mi j is binomial with parameters ni

and mi j then the posterior distribution (the conditional distribution of Mj given yi j) is a

beta (yi j � aj; ni ÿ yi j � bj) distribution. This beta-binomial model is a special case of

the more general Dirichlet-multinomial model discussed in Bishop et al. (1975).

The posterior expectation is a Bayesian estimator for mi j, given by

CB
i j �

yi j � aj

ni � ai � bj

� WB
i jZi j � �1 ÿ WB

i j�m�j �15�

with

WB
i j �

ni

ni � ai � bj

�
j2

j

j2
j � m�j�1 ÿ m�j�=ni ÿ j2

j =ni

�
j2

j

j2
j � EMSE�Zi j�

The Bayesian estimator can only be calculated if the parameters of the prior distribution

are known. Alternatively, an empirical Bayesian estimator can be used in which the

parameters j2
j and m�j are replaced by estimates obtained from the data values yi j (see

e.g., Carlin and Louis 1996). If m�j is estimated by Si j the empirical Bayes estimator

will be a linear combination of Zi j and Si j just like the combined estimator (12); it will

use different weights, however, because the sampling variance of Si j is not taken into

account. If in the combined estimator the sampling variance of Si j is ignored then

EMSE�Si j� � j2
j (see, (8)) and the combined estimator used in this article will be an

empirical Bayes estimator. If the variance of Si j is ignored and the ni are all equal or j2
j

is estimated by (11) instead of (10) then our estimator is equal to the estimator used by

Spjùtvoll and Thomsen (1987).

2.4. Strati®ed estimators

The synthetic estimator Si j is based on the ``working assumption'' of homogeneity of the
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population proportions mi j, i.e., the mi j are equal for all areas i. Although this assumption

does not have to be satis®ed exactly for the synthetic estimator to perform well, since

the bias that is introduced by deviations from the assumption may be compensated for

by the small variance of the synthetic estimator, it is worthwhile to investigate if this

homogeneity assumption can be relaxed. A straightforward way to proceed is to divide

the areas into a small (compared to the number of areas) number of groups of areas and

to assume that the mi j are equal within groups of areas but allow them to vary between

groups. This requires that an auxiliary variable is available that indicates to which group

each area belongs. For instance, in the application of this article, the areas are municipa-

lities and the auxiliary variable is ``degree of urbanization'' in ®ve categories. Using this

auxiliary information allows for a strati®ed synthetic estimator Ti j based on ®ve different

values for mi j (one for each category) instead of only one value for the synthetic estimator

Si j. Using Ti j we can also construct a strati®ed combined estimator Di j.

3. Example

3.1. Introduction

The data we have used for this example have been obtained from the Dutch LFS 1991. The

microdata set from this survey consists of 84,796 records. Of these records 42,248 have

been obtained from male respondents and 42,548 from female respondents. These respon-

dents ranged in age from 15 to 75. From this data set we have used as identifying variables:

sex, an area indicator consisting of 646 municipalities and the variable ``profession'' with

90 different categories. For this example it is supposed that there is a disclosure avoidance

rule requiring the population frequency for the combination of profession and sex within

each municipality to be above a certain value. So the problem is to estimate these

frequencies. For convenience we will use in this example the records for males only.

For each of the 646 municipalities and for each of the 90 categories of ``profession,'' the

population proportions and frequencies have been estimated using the estimators

described in the previous sections of this article. To describe the performance of these

estimators in a concise manner, averages of the EMSE's of the estimated proportions

were calculated: an average over all 90 categories, an average over categories that did

not conform to the homogeneity assumption underlying the synthetic estimator and an

average over categories that did conform to this assumption (in the next subsection

(3.2) it is explained how ``conforming to the model'' is de®ned). As is apparent from

the discussion in Section 2.3, the synthetic and combined estimates are similar for

categories for which the homogeneity model is a good approximation to reality. In

Sections 3.3 and 3.5 it is illustrated how these estimates can diverge for categories that

are considered outliers with respect to the homogeneity model. The use of auxiliary infor-

mation to improve the synthetic and combined estimators is studied in Section 3.4. As

auxiliary variable we have made use of ``degree of urbanization,'' a categorical variable

with ®ve categories that is available for each municipality. In Section 3.6 we show the

consequences of the various estimators for the statistical disclosure control problem.

3.2. De®nition of outliers

The combined estimator Ci j will be approximately equal to the synthetic estimator Si j for
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areas that are in accordance with the homogeneity assumption, i.e., for which the propor-

tions for a certain category are close to the mean proportion m�j � Simi j=n for that category

(see, Section 2.3). It will be of interest to see how these estimators compare for areas that

deviate from the homogeneity assumption (outliers). For this, we need to determine

whether or not a number yi j of units in the sample in an area i have to be considered to

be outliers with respect to the homogeneity assumption for category j.

A simple test for outliers is based on the distribution under homogeneity of the number

of units in the sample per area. These numbers yi j are approximately independently

Poisson distributed with parameter nim�j. If the probability that a Poisson (nim�j)

distributed random variable is at least yi j is less than a certain threshold value t, then

area i is considered to be an outlier for category j. Likewise if the probability that a Poisson

(ni m�j) distributed variable is at most yi j is less than t, then area i is also considered to be

an outlier for category j. The probabilities can be used to order the outliers. In this way the

twenty most severe outliers can be listed. This list will be used in Section 3.4 to illustrate

the results for the estimators considered.

3.3. Comparison of expected mean squared errors

The average expected mean squared errors over three groups of categories of variable

``occupation'' of the direct estimator Zi j, the synthetic estimator Si j and the combined

estimator Ci j are given in Table 1. The ®rst group of categories considered consists of

all 90 categories of ``occupation,'' the second group of the categories with many outliers

and the third group of the categories with a few outliers. A category is considered to have

many outliers when the number of outlying municipalities is at least 7, otherwise the

category is considered to have few outliers.

For all three groups of categories listed in Table 1 we see that the average expected

mean squared error of the synthetic estimator Si j is clearly less than the average expected

mean squared error of the direct estimator Zi j.

Table 1 moreover clearly demonstrates that the differences between the results for the

synthetic estimator Si j and the combined estimator Ci j are to be found for categories with

many outliers. In Section 3.5 we will therefore examine the results of Zi j, Si j, and Ci j for

the twenty most severe outliers.

3.4. Using auxiliary information

As auxiliary information we have made use of ``the degree of urbanization.'' This ``degree

of urbanization'' consists of ®ve categories, ranging from very urbanized municipalities

(Category 1), to rural municipalities (Category 5). The average expected mean squared
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Table 1. Comparison between the average expected mean squared errors (´10ÿ4) of Zi j, Si j , and Ci j for all

categories and for two groups of categories

Zi j Si j Ci j

All categories 1.06 0.17 0.11
Many outliers 2.93 0.69 0.42
Few outliers 0.52 0.02 0.02



errors of the strati®ed synthetic and combined estimators (Ti j and Di j) were 0:08 ´ 10ÿ4

and 0:06 ´ 10ÿ4, respectively.

The use of more auxiliary information will generally lead to a decrease of the bias of the

resulting estimator. However, the variance of this estimator usually increases as a result of

using more auxiliary information. This increase of the variance may be so large that the

expected mean squared error also increases. In the extreme case an auxiliary variable

could be so detailed that each category describes only one municipality. The resulting

estimator would then be the direct estimator, without bias but with a large variance. In

this case only ®ve categories are used and the results for the strati®ed synthetic estimator

do not indicate an increase in expected mean squared error relative to the synthetic

estimator. However, if a number of auxiliary variables would be available, it would

become important to consider alternatives to using a strati®cation based on the full cross-

ing of all auxiliary variables. In such cases an estimator could be based, for instance, on a

parsimonious logit model for the cell proportions with the auxiliary variables as explana-

tory variables.

3.5. Results for categories with many outliers

The results of Zi j, Si j, Ci j, Ti j, and Di j for the twenty most severe outliers are given in

Table 2. These results indicate that if there are many respondents the combined estimators

Ci j are almost the same as the direct estimator Zi j. This is a positive feature of Ci j and Di j,

because when the number of respondents is large the variance of Zi j is relatively small, i.e.,

Zi j is rather reliable. When the number of respondents is small the differences between the

combined estimates and the direct estimates can be rather large because the combined

estimator is then drawn strongly towards the synthetic estimator. This is desirable, because

when the number of respondents is small, Zi j will be quite unreliable and one would be

willing to accept a ``more synthetic'' estimate. The difference between Zi j and the

synthetic estimators Si j and Ti j is of course rather large in all cases of Table 2 because

only outliers are considered here.

3.6. Consequences of the estimators for statistical disclosure control

In this subsection we illustrate the results of the various estimators for the statistical dis-

closure control problem. As we have indicated in Section 1, we apply a disclosure control

rule of the following kind:

A combination of values of identifying variables is considered safe, i.e., may be

published without further protection, if this combination occurs at least d times in the

population, where d is a suitable chosen threshold.

Because the population frequency of a combination of values of identifying variables is

generally unknown, the above rule is in practice replaced by the rule that the estimated

population frequency should be at least equal to threshold d in order for a combination

of values to be safe.

Table 3 gives the percentage of unsafe combinations of municipality and profession

among the combinations that occur at least once in the survey for various values of the

threshold d. The total number of combinations equals 646 ´ 90 � 58,140, and the number
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of combinations that occur at least once in the survey equals 14,432. So the percentage of

unsafe combinations of municipality and profession among all possible combinations can

be obtained from Table 3 by multiplying the numbers in Table 3 by 14,432/58,140.

The direct estimator reveals no unsafe combinations for threshold values less than 100.

This is not surprising, because in this example the sampling fraction is not the same for

each municipality but varies around an average of 1/130, with a maximum of 1/50.

This leads to direct estimates that are 50 or larger for combinations with one sample obser-

vation. These are implausible estimates but we cannot expect a reasonable estimate for a

population frequency on the basis of only one sample observation.

The synthetic and combined estimators produce more plausible estimates, in the sense

that it is possible to conclude that combinations are unsafe for threshold values less than

100. The large percentages of unsafe cells for the larger threshold values are also plausible
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Table 2. The results of Zi j, Si j, Ci j, Ti j , and Di j for the twenty most severe outliers

Category Municipality ni niZi j niSi j niCi j niTi j niDi j

1. Members of the armed forces Den Helder 326 28 1.0 20.9 1.5 17.9

2. Farmers Amsterdam 2,694 0 33.0 1.0 1.7 0.0

3. Fishermen, hunters, etc. Urk 58 6 <0.1 1.4 <0.1 1.4

4. Farmers Rotterdam 2,202 0 27.0 1.0 1.4 0.0

5. Fishermen, hunters, etc. Wieringen 45 5 <0.1 1.0 <0.1 0.4

6. Biologists, biochemists, etc. Wageningen 203 8 0.3 2.5 0.4 2.2

7. Plumbers, welders, etc. Amsterdam 2,694 4 28.1 6.5 17.5 5.5

8. Bricklayers, carpenters, etc. Edam-Volendam 187 18 3.4 10.3 2.9 6.9

9. Professional workers n.e.c.1) Amsterdam 2,694 41 15.7 38.6 27.4 36.8

10. Not reporting any occupation Enschede 749 170 110.5 161.1 115.4 154.9

11. Chemical processors Terneuzen 243 8 0.6 3.1 0.6 2.8

12. Farmers Naaldwijk 166 13 2.0 9.3 2.8 5.1

13. Farmers Nistelrode 70 9 0.9 4.5 2.1 2.5

14. Bricklayers, carpenters, etc. Amsterdam 2,694 18 48.7 20.2 24.5 18.7

15. Legal professionals Amsterdam 2,694 19 4.7 17.6 9.8 16.0

16. Farmers The Hague 1,966 4 24.1 4.8 1.2 4.0

17. Not reporting any occupation Haarlemmermeer 655 53 96.6 60.3 94.9 65.3

18. Musicians, actors, etc. Amsterdam 2,694 15 3.1 13.8 7.0 12.3

19. Sculptors, painters, etc. Amsterdam 2,694 20 5.4 18.4 9.4 17.4

20. Wood preparation workers, etc. Pekela 110 4 0.1 1.0 0.1 0.7

1) n.e.c.� not elsewhere classi®ed.

Table 3. Percentage of unsafe combinations among the combinations that occur at least once in the survey for

various values of d

Estimator Threshold

d � 10 20 50 100 200

Zi j (Direct estimator) 0 0 0 1.5 43.0
Si j (Synthetic estimator) 3.3 7.7 21.8 39.3 62.0
C

i j
(Combined estimator) 1.8 4.9 17.2 35.0 58.8

T
i j

(Strati®ed synthetic estimator) 3.2 7.9 22.0 38.3 59.5
Di j (Strati®ed combined estimator) 1.9 5.5 18.5 35.9 57.9



because the population cell frequencies are 94 on average and will vary considerably

around this average since there are small and large municipalities and the distribution

over the professions is also far from uniform. The combined estimators of course give

results that are between those of the direct estimator and the synthetic estimators.

As one of the referees pointed out, a more formal comparison of the estimators could be

made by investigating the probability of publishing a cell whose population count is below

the threshold. This would involve the evaluation of the probability that the estimated

population cell count is equal to or larger than the threshold given that the true population

count is below the threshold. Such probability statements, however, require a number of

assumptions and some further investigation of these assumptions seems necessary. For

instance, if we want to calculate the probability that the estimated population count is

below the threshold value given that the true population count Yi j has a value Y0, say,

which is smaller than the threshold, we need the distribution of the estimator under the

hypothesis H0 : Yi j � Y0. For the direct estimator one could simply assume a binomial

distribution with the probability Y0=Ni (see Pannekoek 1999), but appropriate assump-

tions for the synthetic and combined estimators are less obvious. For the combined esti-

mator Ci j, for example, we could assume, in line with the assumptions used in the

Bayesian approach outlined in Section 2.3, that the distribution under H0 is a beta dis-

tribution with expectation Y0=Ni. To fully specify this distribution we also need an esti-

mate of the variance under H0 and further assumptions are needed to obtain such an

estimate.

4. Conclusions

An often applied procedure for disclosure protection of microdata sets is to prescribe a

minimum number of population elements for each category of a combination of identify-

ing variables and to take measures to ensure that there are no categories with a population

frequency less than the prescribed minimum. In many cases the population frequencies

will be unknown and the disclosure protection procedure can only be applied if a reason-

able estimator for these frequencies is available. The usual unbiased direct estimator

cannot be applied because it is based on too few sample observations.

Small area estimators are proposed in this article as an alternative: a synthetic estimator

and a combined estimator. Both kinds of estimators were applied with and without using

an auxiliary variable with respect to the municipalities (degree of urbanization). With

respect to the disclosure problem, the results for all small area estimators were similar.

Of the 58,140 estimated population frequencies (90 professions times 646 municipalities)

slightly fewer than 40% were below a minimum of 100, so according to these estimators

substantial disclosure protection measures will be necessary. This is in line with practices

at statistical of®ces which will almost always use much less detailed area indicators than

``municipality'' and also use classi®cations of ``profession'' with much less than 90

categories (a one-digit classi®cation is common).
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