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The statistical treatment of seasonality and calendar effects in the estimation of quarterly
national accounts raises a number of issues that bear important consequences for the
assessment of current economic conditions. In many European countries, the quarterly
national accounts are constructed by national statistical institutes by disaggregating the
original annual measurements using related monthly indicators. In this article we propose and
evaluate an alternative approach that hinges upon the estimation of a bivariate basic structural
time series model at the monthly frequency, accounting for the presence of seasonality and
calendar components. Its main virtue is to enable the adjustment and temporal disaggregation
to be carried out simultaneously. The proposed methodology also complies with the
recommendations made by the Eurostat – European Central Bank task force on the seasonal
adjustment of quarterly national accounts. The overall conclusion is that the identification and
consequently the separation of seasonal and calendar effects from aggregate data is highly
controversial.

Key words: Structural time series models; calendar effects; Kalman filter and smoother;
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1. Introduction

The topic of the article is the temporal disaggregation of economic flow series that are

available only at the annual frequency. The resulting quarterly or monthly estimates

incorporate the information available from related indicators at the higher frequency.

However, since the indicators are affected by seasonal and calendar variation, there arises

the problem of adjusting the estimates for those effects.

Seasonality and calendar components explain a relevant part of the fluctuations of

economic aggregates. While the former refers to the intra-year movements in economic

activity caused by various factors, among which climatic and institutional ones are

prominent, calendar effects result from essentially three sources (see Cleveland and

Devlin 1980; Bell and Hillmer 1983):
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. Weekly periodicity: the level of economic activity depends on the day of the week.

Temporal aggregation of a flow or a stock variable into a monthly or quarterly series

is such that the level of the series will be affected by the number of trading days (TD)

or working days (WD) in that month or quarter.

. Moving festivals, such as Easter, which change their position in the calendar from

year to year.

. The different length of the month or quarter: once TD/WD and seasonal effects have

been accounted for, the differential effect is due only to the leap year effect.

Providing quarterly national accounts estimates corrected for seasonality and calendar

components satisfies a well-established information need for both business cycle and

structural analyses. This is officially acknowledged in Eurostat’s Handbook of Quarterly

National Accounts (Eurostat 1999). A task force established by Eurostat and the European

Central Bank (Eurostat 2002) has also set forth some guidelines for calendar adjustment,

some of which motivate this contribution. In particular, the use of regression methods is

recommended in place of proportional adjustment, with the regressors constructed so as to

take into account the country-specific holidays. When available, adjustment should be

performed on monthly series, as calendar effects are more easily identified at that

frequency. Essential and up-to-date references on the problem of temporal distribution are

Di Fonzo (2003), Guerrero (2003), Dagum and Cholette (2006), to which we refer the

reader for more details on regression-based methods and their dynamic generalisations.

The Italian Statistical Institute, ISTAT, started trading day adjustment of quarterly

national accounts in June 2003 and has published seasonally adjusted and trading day

corrected series since then. See ISTAT (2003) for a description of the methodology. The

French methodology is documented in INSEE (2004). Essentially, the current practice

involves at least three operations: a separate seasonal and calendar adjustment of the

indicator series, and two temporal disaggregations of the annual aggregate using the two

versions of the indicator, raw and adjusted. The disaggregation method adopted is based

on the technique proposed by Chow and Lin (1971).

We argue that the current practice is unnecessarily complicated. Indeed, the main aim of the

article is to show that all these operations can easily be brought under the same umbrella.

Within the unifying framework represented by the estimation of a multivariate structural time

series model formulated at the higher time frequency, seasonal adjustment of the indicators

and the correction for calendar variation are carried out in one step. The multivariate setup also

provides a more consistent framework for using the information on related series.

The plan of the article is the following. The next section introduces the disaggregated

basic structural model with regression effects which lies at the basis of our approach.

Section 3 discusses the effects of temporal aggregation on the seasonal component and

considers the consequences regarding modelling and data dissemination policies. The

modelling of the calendar component is considered in Section 4. Section 5 illustrates the

statistical treatment of the model, whilst Section 6 presents illustrations that are drawn from

our experience as members of a research commission set up by ISTAT with the objective of

assessing the current practice by which quarterly accounts are built, and of proposing

methodological advances. Finally, in Section 7 we compare our proposal with the

disaggregation practice currently in use at ISTAT and draw our conclusions (Section 8).
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2. The Bivariate Basic Structural Model

The basic structural model (BSM henceforth), proposed by Harvey and Todd (1983) for

univariate time series and extended by Harvey (1989) to the multivariate case, postulates

an additive decomposition of the series into a trend, a seasonal and an irregular

component. Its name stems from the fact that it provides a satisfactory fit to a wide range of

seasonal time series, thereby playing a role analogous to the Airline model in an

unobserved components framework.

Without loss of generality we focus on a bivariate series yt ¼ ½y1t; y2t�
0

, t ¼ 1; : : : ; n,

where t is time in months and n is the number of observations; in the sequel y1t will

represent the indicator series, whereas y2t is subject to temporal aggregation, being

observed only at the annual frequency.

The BSM is such that each of the component series has the representation

yit ¼ mit þ git þ x
0

itdi þ 1it; i ¼ 1; 2; t ¼ 1; : : : ; n; 1it , NIDð0;s 2
i1Þ

where the series-specific trend, mit, is a local linear component

mi;tþ1 ¼ mit þ bit þ hit; hit , NIDð0;s 2
ihÞ

bi;tþ1 ¼ bit þ zit; zit , NIDð0;s 2
izÞ

ð1Þ

The disturbances hit and zit are mutually and serially uncorrelated, but are

contemporaneously correlated with the disturbances hjt and zjt, respectively, affecting

the same equation of the trend for the other series.

The seasonal component, git, arises from the combination of six stochastic cycles

defined at the seasonal frequencies lj ¼ 2pj=12, j ¼ 1; : : : ; 6, l1 representing the

fundamental frequency (corresponding to a period of 12 monthly observations) and the

remaining being the five harmonics (corresponding to periods of 6 months, i.e., two cycles

in a year, 4 months, i.e., three cycles in a year, 3 months, i.e., four cycles in a year, 2.4, i.e.,

five cycles in a year, and 2 months)

git ¼
X6

j¼1

gijt;
gij;tþ1

g*
ij;tþ1

2
4

3
5 ¼

cos lj sin lj

2 sin lj cos lj

" #
gij;t

g*
ij;t

2
4

3
5þ

vij;t

v*
ij;t

2
4

3
5;

j ¼ 1; : : : ; 5

ð2Þ

and gi6;tþ1 ¼ 2gi6t þ vi6t. For the ith series, the disturbances vijt and v*
ijt are normally and

independently distributed with common variance s 2
iv for j ¼ 1; : : : ; 5, whilst Varðvi6tÞ ¼

Varðv*
i6tÞ ¼ 0:5s 2

iv (see Proietti 2000 for further details).

The symbol 1it denotes the irregular component, which is taken to be idiosyncratic in that it

is assumed to be uncorrelated with the irregular component in the other series. This restriction,

which is not critical and which can be removed if one wishes to, assigns this source of variation

to series-specific measurement error.

The vector xt contains the values ofK regressors accounting for calendar effects, which will

be specified in Section 4; di is a vector of unknown regression coefficients for the ith series.
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According to the model specification, the indicator variable y1t and the national account

flow y2t form a Seemingly Unrelated Time Series Equations system (Harvey 1989). There

is no cause and effect relationship between them, but they are subject to the same

underlying economic environment. In particular, the first series can be viewed as a partial,

possibly noisier, measurement of the same underlying phenomenon.

3. The Effects of Temporal Aggregation on the Seasonal Component

The flow series y2t is not observed at the original frequency. If it is assumed that time t ¼ 1

represents January, the actual observations pertain to the yearly aggregate series

Y2t ¼
X11

k¼0

y2;12t2k; t ¼ 1; 2; : : : ; ½n=12�

where ½a=b� denotes the integer part of a=b. If the bivariate BSM holds for the logarithms

of the series, rather than the original levels, a nonlinear measurement constraint arises; this

situation is dealt with by Proietti and Moauro (2006).

If the original monthly series is seasonal, how will the component g2t contribute to the

dynamics of Y2t? It is helpful to think of Y2t as arising from a systematic sample of every

twelfth observation of the filtered process
P11

j¼0yt2j. As the sum of 12 consecutive values

of g2t is a zero mean invertible moving average process of order equal to 10 months, it

immediately follows that the aggregation of g2t,
P11

k¼0g2;12t2k, yields a white noise

process. Indeed, the order of the moving average process is smaller than the sampling step,

so that the process
P11

k¼0g2;12t2k, t ¼ 1; 2; : : : ; ½n=12�, has zero mean, constant variance

and zero autocorrelation at all annual leads and lags. Without the aid of external

information on the indicator series, this white noise process would be indistinguishable

from the aggregation of the series specific measurement error, that is
P11

k¼012;12t 2k.

As the seasonal disturbances in y2t are contemporaneously correlated with those driving the

seasonal component in the indicator, the bivariate model could in principle identify the

component resulting from the aggregation of g2t, as the white noise source of variation that is

independent of
P11

k¼012;12t 2k and that is due to the interaction with the disturbances v1jt’s.

However, in the situations typically occurring in practice, where seasonality has a slow

and weak evolution and sample sizes are small, this source of variation is negligible to an

extent that trying to disentangle it from the measurement error would be asking too much

of the available data.

One possibility is to assume it away, as will soon be argued. An alternative feasible

strategy is to borrow the seasonal pattern from the indicator as suggested by Moauro and

Savio (2005). This is also the strategy adopted by national statistical institutes, who

produce disaggregate estimates according to the regression framework

ŷ2t ¼ b0 þ b1y1t þ et

where b0 and b1 are the generalised least squares estimates of the regression coefficients

based on the Chow and Lin (1971) model, and et is the distribution residual.

The estimates ŷ2t are referred to as the “raw” estimates; quotation marks are necessary

here, since the seasonality of the disaggregated series is a statistical artifact. The

underlying assumption is that the seasonal component in the national accounts aggregate is
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proportional to that in the indicator, the factor of proportionality being the same b1 which

relates the annual series. As a matter of fact, it must be recalled that the Chow–Lin

regression coefficients are estimated on the aggregate, e.g., annual, data, which do not

contain information about seasonality. Trading day adjusted series are produced by the

same scheme, in which y1t is replaced by the series corrected for the TD component.

The conditions under which the seasonal behavior of the aggregate series can be

borrowed from y1t via standard generalised regression are indeed rather stringent. Not only

are common seasonal features required, but we also need to impose restrictions on the

covariance structure of the nonseasonal component, as is illustrated below.

Denoting by zt ¼ ½z1t; z2t�
0

the nonseasonal component, we rewrite the disaggregate

bivariate model as yit ¼ zit þ git; i ¼ 1; 2. Assume now that g2t ¼ lg1t (i.e., the seasonal

component of the second series is proportional to that of the first series) and that the

nonseasonal component follows a seemingly unrelated system of equations

zt ¼
u ðLÞ

fðLÞ
kt; kt , NIDð0;SkÞ; Sk ¼

s 2
1k s 12;k

s 12;k s 2
2k

0
@

1
A ð3Þ

where u ðLÞ and fðLÞ are suitable scalar lag polynomials. If zt results from the sum

of several orthogonal components, zt ¼
P

jðujðLÞ=fjðLÞÞujt, ujt , NIDð0;SjuÞ, such

as zt ¼ mt þ 1t, then (3) requires homogeneity (see Harvey 1989, Section 8.3), which

amounts to having Sju ¼ qjSk, where the qj’s are suitable proportionality factors. If further

s 12;k ¼ ls 2
1k, then it is possible to write

y2t ¼ ly1t þ z*
2t; z*

2t ¼
u ðLÞ

fðLÞ
k*

2t; k*
2t , NIDð0;s 2

2k 2 l2s 2
1kÞ

and thus we can safely attribute the portion l of the seasonality in the indicator to the

aggregate series. The restriction s 12;k ¼ ls 2
1k implies that for Sk to be positive

semidefinite l has to lie in the interval 2s 2k=s 1k;s 2k=s 1k

� �
.

We believe that the strategy of giving up the idea of estimating the seasonality in y2t

altogether is more neutral. Thus, in the sequel we shall assume that

X11

k¼0

g2;12t 2k ¼ 0 ð4Þ

in lieu of E
P11

k¼0g2;12t 2k

� �
¼ 0. Notice that (4) strictly holds when seasonality is

deterministic (that is, s 2
2v ¼ 0). In situations where seasonality is not rapidly changing,

our assumption seems plausible.

In the light of the previous discussion, the “raw” series are more a statistical artifact than

a useful addition to the available menu of official economic statistics. If the primary

interest of the investigation were the seasonal fluctuations on their own, it would seem

more informative to investigate the monthly indicators from the outset.

A final important point arises as a consequence of (4). The simplification preserves the

accounting relationship that the sum of the disaggregated series over 12 months adds up

exactly to the annual total, which would not hold otherwise. As for the series corrected for
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the calendar component, this would sum up to the annual estimate with the calendar effects

removed.

In conclusion, the proposed solution has the additional merit of complying with the

recommendation of the Eurostat/ECB task force concerning time consistency with annual

data (Recommendation 3.c):

Time consistency of adjusted data should be maintained for practical reasons.
The reference aggregates should be the annual total of quarterly raw data for
seasonally adjusted data and annual total of quarterly data corrected for trading
day effects for seasonally and trading day adjusted data. Exceptions from the
time consistency may be acceptable if the seasonality is rapidly changing.

4. Calendar Components

Calendar effects have been introduced as regression effects in the model equation for yit.

Three sets of regressors are defined to account for each of the three sources of variation

mentioned in the introduction.

Trading day (working day) effects occur when the level of activity varies with the

day of the week, e.g., it is lower on Saturdays and Sundays. Letting Djt denote the

number of days of type j, j ¼ 1; : : : ; 7, occurring in month t and assuming that

the effect of a particular day is constant, the differential trading day effect for series i is

given by

TDit ¼
X6

j¼1

dijðDjt 2 D7tÞ

The regressors are the differential number of days of type j, j ¼ 1; : : : ; 6, compared to

the number of Sundays, to which Type 7 is conventionally assigned. The Sunday effect

on the ith series is then obtained as 2
P6

j¼1dij

� �
. This expedient ensures that the TD

effect is zero over a period corresponding to multiples of the weekly cycle.

The regressors are then corrected to take into account the national calendars. For

instance, if Christmas falls on a Monday and for a particular application a holiday can be

assimilated to a Sunday, one unit should be deducted from D1t and reassigned to D7t. This

type of correction is recommended by Eurostat and is adopted in this article, giving

TDit ¼
X6

j¼1

d*
ijðD

*
jt 2 D*

7tÞ

It is often found that the effect of the working day from Monday to Friday is not

significantly different and that it helps to avoid collinearity among the regressors to

assume that d*
ij ¼ d*

i for j ¼ 1; : : : ; 5. In such case a single regressor can validly be

employed, writing

TDit ¼ d*
i D

*
t ; D*

t ¼
X5

j¼1

D*
jt 2

5

2
ðD*

6t þ D*
7tÞ
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As far as moving festivals are concerned, the only occurrence for Italy is Easter. Its

effects are modelled as Et ¼ dht, where ht is the proportion of the 7 days before

Easter that fall in month t. Subtracting the long run average, computed over the first

400 years of the Gregorian calendar (1583–1982), from ht yields the regressor

h*
t ¼ ht 2 �ht, where �ht takes the values 0.354 and 0.646 respectively in March and

April, and zero otherwise. Finally, the length of month (LOM) regressor results from

subtracting from the number of days in each month,
P

j Djt, its long-run average,

which is 365.25/12.

What are the consequences of temporal aggregation from the monthly frequency to

the annual one? The holiday effect becomes constant ðht ¼ 1; h*
t ¼ 0Þ, whilst the

LOM regressor takes the value 3/4 in leap years and 21/4 in normal years, describing

a four-year cycle, which is an identifiable, though not necessarily significant, effect.

Moreover, as shown by Cleveland and Devlin (1980), the presence of trading day

effects in a monthly time series induces a peak in the spectrum at the frequency

0:348 £ 2p in radians, and a secondary peak at 0:432 £ 2p. For yearly data the

relevant frequencies are 0:179 £ 2p and 0:357 £ 2p, corresponding to a period of 5.6

years and 2.8 years, respectively. In conclusion, the presence of a calendar component

in yearly data produces peaks at the frequencies 0:358p (TD), 0:5p (leap year),

0:714p (TD) and p (leap year).

In conclusion, the calendar component has detectable effects on the annually

aggregated time series Y2t, with the notable exception of moving festivals. As a

consequence, one possibility is to estimate its effects by including in the time series

equation for the second variable the component x
0

2td
*
2 among the fixed effects. It is

understood that xt will be aggregated to a yearly series. An alternative parsimonious

strategy is to assume that d*
2 ¼ kd*

1 for a scalar k, which amounts to assuming that the

calendar effects on the second series are proportional to those affecting the first. This

would require the estimation of a single coefficient. The difference with the approach

of estimating the vector d*
2 without the above restriction is that the disaggregated time

series including the calendar component would feature the Easter effect. The latter,

which would otherwise be absent, as it is nonidentifiable without imposing that

particular restriction, is proportional to the Easter effect on the series y1t, k being

the proportionality factor.

5. Statistical Treatment

The state space methodology provides the necessary inferences, starting from the

estimation of unknown parameters, such as the variances of the disturbances driving the

components, the regression coefficients, the estimation of the disaggregated values y2t and

the assessment of their reliability. Moreover, diagnostic checking can be carried out on the

model’s innovations, so as to detect any departure from the stated assumptions and

possibly carry out the corrective action against it.

As a first step, the monthly bivariate model, with temporal aggregation concerning

solely the second variable, is cast in the state space form using an approach due to Harvey

(1989, Section 6.3), which translates the aggregation problem into a missing value
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problem. According to this approach, the following cumulator variable is defined for the

second variable:

yc2t ¼ cty
c
2;t21 þ y2t; ct ¼

0; t ¼ 12ðt 2 1Þ þ 1; t ¼ 1; : : : ; ½n=12�

1; otherwise

(
ð5Þ

In the case of monthly flows whose annual total is observed,

yc21 ¼ y21; yc22 ¼ y21 þ y22; · · · yc2;12 ¼ y21 þ · · · þ y2;12;

yc2;13 ¼ y2;13; yc2;14 ¼ y2;13 þ y2;14; · · · yc2;24 ¼ y2;13 þ · · · þ y2;24;

..

. ..
.

· · · ..
.

Only a systematic sample of every 12th value of yc2t process is observed,

yc2;12t; t ¼ 1; : : : ; ½n=12�, so that all the remaining values are missing.

The cumulator is included in the state vector and the state space representation if

formed. The associated algorithms, and in particular the Kalman filter and smoother, are

used for likelihood evaluation and for the estimation of the missing observations and thus

of the disaggregated values of the series. The smoothed estimates of the monthly series are

then aggregated to the quarterly frequency. All the computations concerning the

illustrations presented in the next section were carried out in Ox.3 The statistical treatment

of the model was performed using the augmented Kalman filter and smoother due to de

Jong (1991), (see also de Jong and Chu-Chun-Lin 1994), suitably modified to take into

account the presence of missing values, which is accomplished by skipping certain

updating operations. The unknown parameters are estimated by maximum likelihood,

where the likelihood is evaluated with the support of the augmented Kalman filter. More

technical details, which we purposively omit for the sake of brevity, and computer

programs are available from the authors.

6. Illustrations

Recently, ISTAT has set up a Commission for the assessment of current temporal

disaggregation practices and the proposal of methodological advances in this important

area. A set of representative national accounts series were selected and submitted to

the Commission as case studies. The applications that we present in this section refer

to this set.

Our first illustration deals with the problem of disaggregating the annual production

resulting from the National Accounts (NA) for the electrical and optical equipment

industry (subsection DL of the Nace Rev.1 economic activity classification), hereinafter

denoted Y2t, using the related information available from the monthly industrial

production (IP) index of the same industry, denoted y1t. The NA annual aggregate is

measured at constant prices ð1995 ¼ 100Þ, and covers the years from 1977 to 2003. The

monthly IP index (base year 2000 ¼ 100) is available in seasonally unadjusted form for

3 Ox is a matrix programming language developed by J.A. Doornik (2001).
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the sample period January 1977–December 2003. The original series are plotted in

Figure 1 (the NA production series has been rescaled to fit in the same graph).

The bivariate basic structural time series model discussed in Section 2, subject to the

temporal aggregation constraint for the NA series, was estimated by maximum likelihood.

The variance matrix of the slope disturbances zit was estimated equal to a zero matrix and

thus the dynamic representation of the trend component is a random walk with constant

drift. The estimates of the parameters are

ŝ1h ¼ 1:334 ŝ2h ¼ 6:137 r̂h ¼ 0:737

ŝ11 ¼ 1:916 ŝ21 ¼ 0:035

ŝ1v ¼ 0:224

rh denotes the correlation between the trend disturbances h1t and h2t. The suffix 1 is used

for the IP index, whilst 2 refers to the NA series. The trend disturbances are positively

correlated, although the correlation is not perfect, which suggests that the series are not

cointegrated. Seasonality is present only in the time series equation for the monthly

indicator. The nonzero value for the seasonal variance parameter s 2
1v indicates that the

seasonal pattern changes in the sample period. Anyway, the size of the parameter estimates

hints that the variation in the seasonal disturbances is not very large, relative to the other

disturbances. As argued before, the assumption that seasonality is absent from the second

series appears to us more suitable in this framework.

Figure 2 plots the estimated components of the IP monthly series resulting from the

application of the Kalman filter and smoother to the relevant state space model using the

maximum likelihood estimates. The seasonal pattern extracted for the monthly industrial

production index is plotted in the top right-hand panel of Figure 2, whilst the seasonally

adjusted series is displayed in the top left panel.

Fig. 1. Annual production (rescaled by 1021) and monthly industrial production index for electrical and optical

equipment
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The model specification also includes 3 regressors representing the calendar effects: the

single trading days regressor D*
t , the Easter variable h*

t using seven days before Easter, and

the length of the month (LOM) variable. The trading day variable accounts for the Italian

specific holidays (e.g., New Year’s Day, Easter Monday, First of May, 8th of December,

Christmas), which are regarded as Sundays. The estimated coefficients for the industrial

production index, denoted respectively by d̂
*

1, d̂
Easter

1 and d̂
LOM

1 , are

d̂
*

1 ¼

ð0:060Þ

0:946; d̂
Easter

1 ¼

ð0:781Þ

22:774; d̂
LOM

1 ¼

ð1:252Þ

2:026

where in parenthesis are reported the standard errors. The estimated calendar effect is

shown in the bottom panels of Figure 2. All the parameters are significant, with the

exception of LOM, and have the expected signs.

For the second series the calendar effects have been restricted to be proportional to the

coefficients of the indicators. The scale factor k was significant with estimated value

k̂ ¼ 2:955 and standard error 0.238. We may thus conclude that the calendar effect is

significant for the NA aggregate. The calendar component for the NA production series is

obtained by multiplying by 2.955 the estimates reported in the bottom right panel of

Figure 2.

One of the advantages of the state space approach outlined in this article is the

availability of a set of diagnostics that are immediately available from the output of

the Kalman filter. It is important to stress that such diagnostics based on the innovations

are not immediately available in the regression implementation of the Chow–Lin

Fig. 2. Bivariate BSM model for the industrial production index (monthly) and the NA production series

(annual) for electrical and optical equipment. Seasonally adjusted series and seasonal component of monthly

indicator (upper panels). Monthly and quarterly calendar effects (lower panels)
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approach. Figure 3 plots the Kalman filter innovations for the IP series and the NA

aggregate, along with 2 standard deviation error bounds and the density of standardised

innovations. Diagnostics based on these values suggest that the fit is satisfactory for both

the equations. In particular, the Box–Ljung statistic based on 15 and 6 autocorrelations for

the two series is equal to 10.078 and 0.183, respectively. The Bowman–Shenton normality

test gives 8.054 for the IP index and 0.915 for the annual NA aggregate.

The smoothed estimates of the disaggregate NA production series are available at both

the monthly and quarterly observation frequency. They are presented in unadjusted form

in Figure 4, along with their 95% upper and lower confidence limits. The size of the

confidence interval embodies the uncertainty surrounding the estimation of the calendar

effects (but not that ascribed to the estimation of the hyperparameters – namely the

variance parameters).

The quarterly estimates, adjusted for calendar effects, are presented and compared to the

raw ones in the last two panels of Figure 4. The last plot refers to the estimated growth

rates on an annual basis and highlights not only that the adjusted series is smoother, but

also the adjustment influences the location and sharpness of turning points.

In this first illustrative example we were able to identify and estimate the calendar

component. An important empirical issue is whether this finding is general and can be

extended to a wider range of case studies. For this purpose we extended our application to

the remaining 14 case studies making up the ISTAT database, which refers to

manufacturing. For each NA annual series, the monthly IP index for the same variable is

available. The bivariate BSM was fitted to all the industries, such that the calendar

component for the monthly series is C1t ¼ d*
1D

*
t þ dEaster

1 h*
t þ dLOM

1 LOM, whilst for the

aggregate series we assume that C2t ¼ kC1t. The estimation results, reported in Table 1,

display the maximum likelihood estimates of the coefficients associated to the calendar

Fig. 3. Kalman filter innovations of the model for production of electrical and optical equipment
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regressors for the monthly series and of the proportionality factor k. The symbol (–) is

used to signify that the estimate is not significant.

The evidence is clear-cut. The calendar components are always significant for the

monthly indicator, whereas as far as the annual aggregate is concerned, in 9 cases k̂ is not

significantly different from zero, and in three cases the estimated coefficient is positive but

unreliable. The reliability was assessed by a rolling estimation experiment, according to

which the coefficient k is reestimated adding one observation at a time. If the estimates are

unstable then we consider them unreliable. This is the case for Chemical products and

Mining and quarrying. In the remaining applications the estimates were both significant

and stable.

In conclusion, what emerges from the experiment is that moving from a finer timing

interval towards a larger one reduces the accuracy of the estimates of calendar components

to the extent that these are no longer detectable under annual temporal aggregation.

Despite the fact that from a theoretical standpoint the calendar components are observable

over the annual period, their estimation is not an easy matter. In these situations it may be

advisable to give up the estimation of a disaggregated series adjusted for the calendar

component.

7. Comparison with Current Practice

In this section we compare our proposal (which will be referred to as the BSM method)

with the methodology currently adopted by some European National Statistical Institutes

for estimating the quarterly national accounts. As hinted in the introduction, the latter is a

multi-step procedure requiring a separate seasonal and calendar adjustment of the monthly

indicator and two distinct distributions of the annual aggregate to the quarters, typically by

Fig. 4. Temporal disaggregation of annual production electrical and optical equipment by a bivariate BSM

formulated at the monthly frequency. Monthly and quarterly disaggregated production series
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Table 1. Estimation of calendar components

Industry d̂
*

1 d̂
Easter

1 d̂
LOM

1 k̂

Mining and quarrying 0.552 (0.094) – – 1.714 (0.038)
Food, beverages and tobacco 0.767 (0.048) 22.264 (0.685) – –
Textiles 0.924 (0.063) 21.721 (0.922) 4.433 (1.464) –
Leather products 1.071 (0.078) 21.931 (1.068) 5.002 (1.714) –
Wood products 0.762 (0.065) 21.717 (0.948) 4.703 (1.507) –
Paper, publishing and printing 0.430 (0.047) 22.265 (0.712) – –
Chemical products 0.403 (0.042) 21.292 (0.632) – 23.278 (0.613)
Rubber and plastic products 0.769 (0.045) 22.255 (0.647) 2.126 (1.026) 3.732 (0.154)
Nonmetallic mineral products 0.561 (0.039) 20.983 (0.561) 2.548 (0.910) –
Metal products 0.881 (0.060) 21.864 (0.923) 2.267 (1.457) –
Machinery 0.713 (0.052) 22.075 (0.723) 2.317 (1.161) 7.431 (0.537)
Electrical and optical equipment 0.947 (0.060) 22.774 (0.800) 2.024 (1.283) 2.955 (0.238)
Cars 0.969 (0.090) 21.935 (1.398) 2.396 (2.232) 1.060 (0.237)
Other transport equipment 0.966 (0.090) 21.930 (1.326) 4.249 (2.135) –
Other manufacturing products 0.733 (0.080) – 2.106 (1.883) –
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performing a Chow–Lin regression on the quarterly raw and adjusted indicator.

Henceforth it will be referred to as the MS (multi-step) method. For the comparison we

turn back to our original case study concerning the disaggregation of annual production of

the electrical and optical equipment industry, using the monthly industrial production

index as an indicator.

The quality of the two disaggregation strategies is assessed by looking at their revision

histories. The revision histories are generated as follows. Starting from the year 1997 we

perform a rolling nowcast experiment such that at the beginning of each year t nowcasts

are made for its four quarters, using the annual information available up to the year t 2 1

for the annual aggregate and the information on the monthly indicator up to and including

the quarter of interest. At the same time the estimates concerning the four quarters of the

previous year, t 2 1, are revised. This exercise assumes that the annual aggregate for the

year t 2 1 accrues between the end of the fourth quarter of the year t 2 1 and the first

quarter of the year t. Let us denote by Ŷt;j; j ¼ 1; 2; 3; 4, the estimates of quarterly

production conditional on the annual total of year t 2 1, and by ~Yt;j; j ¼ 1; 2; 3; 4, those

conditional also on the annual total of the year t; their difference, Ŷt;j 2 ~Yt;j, denotes the

revision due to the accrual of the information on the annual total.

We shall base the comparison on the seasonally adjusted production levels, not

corrected for the calendar effects. This choice is motivated by the fact that the estimates
~Yt;j arising from the two methods add up to the same annual total. The quarterly nowcasts

from the BSM method result from the aggregation of the three monthly nowcasts. For the

MS method, seasonal adjustment of the indicator is carried out in real time by the

TRAMO-SEATS procedure (see Gómez and Máravall 1996). The latter automatically

identifies the Airline model on the monthly levels of the indicator and uses exactly the

same calendar regressors as the BSM method. For the temporal disaggregation step of the

MS method we consider three variants of the Chow–Lin procedure, which differ solely for

the regressors set, which includes, along with the quarterly seasonally adjusted indicator, a

constant and a linear trend.

The models are reestimated by maximum likelihood in real time, as a new annual

observation becomes available. At the end of the experiment seven sets of revision errors

are available for four horizons (one quarter to four quarters). These are employed to

construct the root mean squared revision error (RMSRE)

RMSREj ¼
1

7

X7

t¼1

ðŶt;j 2 ~Yt;jÞ
2

" #1=2

We also compute the root mean squared revision error for the estimated quarterly and

yearly growth rates

RMSREðkÞ
j ¼

1

7

X7

t¼1

ĝðkÞt;j 2 ~g
ðkÞ
t;j

� �2

" #1=2

; k ¼ q; y

where ĝ
ðqÞ
t;j is the quarterly growth rate estimated without using the year t annual total,

where, for instance, ĝ
ðqÞ
t;j ¼ ðŶt;j 2 Ŷt;j21Þ=Ŷt;j21; j . 1, and ĝ

ðqÞ
t;1 ¼ ðŶt;1 2 Ŷt21;4Þ=Ŷt21;4,
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ĝ
ð yÞ
t;j denotes the yearly growth rate, and ~g

ðqÞ
t;j and ~g

ð yÞ
t;j denote, respectively, the quarterly and

yearly growth rates computed on the series which uses the annual total for year t.

The RMSRE measures are presented in Table 2 for the four quarterly horizons. The last

column, labelled “Annual,” refers to the estimation of the annual aggregate level and

evaluates the mean squared revision
P4

j¼1Ŷt;j 2 Yt, where the subtrahend is the observed

annual total. Dividing by Yt21 we obtain the RMSRE concerning the annual growth rates,

also reported in the last column. The overall evidence is that our proposed one-step

disaggregation methodology based on the bivariate BSM outperforms the multi-step

methodology, since it provides more accurate estimates in that the revisions concerning

the levels and the growth rates display on average smaller size. It should also be noted that

for the Chow–Lin disaggregation the inclusion of a constant or a linear trend does not

improve upon the specification with no deterministic variable.

The results of this comparison are by no means conclusive, as they refer to a particular

case study, although they extend to the series considered in the previous section. They

nevertheless suggest that the proposed methodology stands up to the comparison with the

traditional methodology, which is much more elaborate. We also recall that the estimation

error variance of the estimates, which incorporates the uncertainty arising from using the

seasonally adjusted estimates, is not available in the MS method. We end our discussion

by comparing in Figure 5 the estimated disaggregated series arising from the BSM and the

MS. The remarkable feature emerging from this comparison is that the former is smoother

than the latter. This is the likely consequence of the different ways in which the calendar

effects are treated by the two methods. In the BSM case these were restricted to be

proportional to the indicators, and the estimated scale factor k turned out to be significant.

Thus to a certain extent the calendar effects are treated separately from the other

components. For the MS method, on the contrary, the Chow–Lin regression is conducted

on the indicator adjusted for seasonality but not for the calendar component. As a result the

Table 2. Comparison of the root mean squared revision error in the estimation of the levels and the growth rates

of quarterly production for electrical and optical equipment. The rolling nowcast experiment was carried out

over the years 1997–2003

1 step 2 steps 3 steps 4 steps Annual

Levels: RMSREj

BSM 36.7185 47.2979 56.2062 64.4361 51.0829
Chow–Lin 33.8068 50.7653 55.0599 66.4720 51.2611
Chow–Lin (constant) 33.7470 50.7120 56.2294 66.2994 51.5216
Chow–Lin (trend) 41.0146 58.9855 65.7329 73.6705 59.7332

Quarterly growth rates: RMSRE
ðqÞ
j

BSM 1.9263 1.6960 1.9392 0.9210
Chow–Lin 2.2247 1.3367 2.6722 1.2528
Chow–Lin (constant) 2.2550 1.3470 2.5923 1.1221
Chow–Lin (trend) 2.7474 1.5951 2.5727 0.8363

Yearly growth rates: RMSRE
ð yÞ
j

BSM 3.4218 4.0437 4.3221 3.6585 0.9088
Chow–Lin 3.4585 4.2064 4.7636 3.7258 0.9481
Chow–Lin (constant) 3.4554 4.2611 4.7791 3.7622 0.9517
Chow–Lin (trend) 4.3576 4.8933 5.3069 3.9270 1.0783
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calendar effects that are present in the indicator are fully transferred to the estimated

quarterly NA series along with the other components and are not treated as a separate

component.

8. Conclusions

This article has proposed a disaggregation strategy for the estimation of quarterly national

account series that has several advantages over current practice. The strategy is a novel

application of the ideas contained in Harvey (1989) and Harvey and Chung (2000).

The estimates of the quarterly national accounts aggregates originate from fitting a

multivariate structural time series model formulated at the monthly interval; the model

relates the annual national account series to the corresponding monthly indicator. The

monthly frequency allows more accurate estimation of the calendar effects. Maximum

likelihood estimation of the unknown parameters, the estimation of the disaggregated

observations and their reliability, diagnostic checking and the assessment of goodness of

fit are achieved through the state space methodology.

The approach proposed in this article has several advantages over the practice followed

by national statistical institutes for the estimation of quarterly national accounts variables.

First and foremost it yields simultaneously “raw” and adjusted (for seasonality and

calendar components) estimates without the need to iterate the disaggregation procedure.

The measurement model is transparent, as it takes into account the presence of

components of interest, whereas the treatment of seasonality and calendar components is

not explicit in the iterations of the Chow–Lin method, upon which the current practice is

based. Moreover, from a more philosophical standpoint, the approach has the merit of

moving away from the exogeneity assumption underlying the disaggregation methods

based on a regression framework, such as Chow and Lin (1971), according to which the

Fig. 5. Comparison between the quarterly seasonally adjusted estimates (no calendar adjustment) of

production for electrical and optical equipment, using the direct BSM method and the multi-step (MS)

methodology currently in use at ISTAT
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indicator is considered as an explanatory variable. Finally, although we have illustrated the

bivariate case, which is nevertheless the leading case of interest for statistical agencies, the

approach can be extended to higher-dimensional systems and other frequencies of

observations.

Our study has also cast some light on the limitations that are faced in the problem of

temporal disaggregation from the annual frequency. The limitations are related to the

statistical identifiability of a particular component. There are two facets that need to be

considered.

As far as seasonality is concerned, our discussion has spelled out the kind of restrictions

that one has to impose on the bivariate model of the aggregate series and its indicator, for

the optimality of the current practice of producing quarterly seasonal estimates,

inappropriately termed “raw,” borrowing the seasonal pattern from an indicator series.

Once the restrictions are understood, it is reasonable to conclude that they are indeed very

stringent and, perhaps, implausible. Therefore we have proposed forgetting about

estimating the seasonal component for the aggregate time series altogether, and

concentrating on the estimation of a quarterly (or monthly if one wishes) nonseasonal

series. The idea that the contribution of seasonality to the variability of an annual

aggregate is negligible appears more neutral and inevitable, perhaps, since that

contribution is not easily identifiable.

Secondly, the calendar effects associated with trading days and the leap years are

measurable. Nevertheless, extensive experimentation has shown that either the estimates

of these effects are not very accurate or they are insignificant for the aggregate series. In

these situations, our preferred strategy is to assume that they are absent from the latter. Be

that as it may, the bivariate structural model will select from the monthly indicator the

information, devoid of the seasonal and calendar components, that is needed for the

disaggregation of the annual series.
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