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Several statistical agencies use, or are considering the use of, multiple imputation to limit the
risk of disclosing respondents’ identities or sensitive attributes in public use data files. For
example, agencies can release partially synthetic datasets, comprising the units originally
surveyed with some values, such as sensitive values at high risk of disclosure or values of key
identifiers, replaced with multiple imputations. This can be coupled with multiple imputation
for missing data in a two-stage imputation approach. First the agency fills in the missing data
to generate m completed datasets, then replaces sensitive or identifying values in each
completed dataset with n imputed values. Methods for obtaining inferences with the mn
datasets have been developed for scalar quantities, but not for multivariate quantities. We
present methods for testing multivariate null hypotheses with such datasets. We illustrate the
tests using public use files for the Survey of Income and Program Participation that were
created with the two-stage imputation approach.
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1. Introduction

Statistical agencies and other organizations that disseminate data to the public are

ethically, practically, and often legally required to protect the confidentiality of

respondents’ identities and sensitive attributes. To satisfy these requirements, Rubin

(1993) and Little (1993) proposed that agencies utilize multiple imputation approaches.

For example, agencies can release the units originally surveyed with some values, such as

sensitive values at high risk of disclosure or values of key identifiers, replaced with

multiple imputations. These are called partially synthetic datasets (Reiter 2003).

In recent years, statistical agencies have begun to use partially synthetic approaches to

create public use data for major surveys. For example, in 2007 the U.S. Census Bureau

released a partially synthetic, public use file for the Survey of Income and Program

Participation (SIPP) that includes imputed values of Social Security benefits information

and dozens of other highly sensitive variables (www.sipp.census.gov/sipp/synth

data.html). The U.S. Census Bureau also plans to protect the identities of people in

group quarters (e.g., prisons, shelters) in the next release of public use files from the

American Communities Survey by replacing demographic data for people at high
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disclosure risk with imputations. Partially synthetic, public use datasets are in the

development stage for the U.S. Census Bureau’s Longitudinal Business Database,

Longitudinal Employer-Household Dynamics survey, and American Communities Survey

veterans and full sample data. Statistical agencies in Canada, Germany (Drechsler et al.

2007), and New Zealand (Graham and Penny 2005) also are investigating the approach.

Other applications of partially synthetic data are described by Kennickell (1997), Abowd

and Woodcock (2001, 2004), Abowd and Lane (2004), Little et al. (2004), Reiter (2005b),

Mitra and Reiter (2006), Reiter and Mitra (2008), An and Little (2007), and Reiter and

Raghunathan (2007).

In addition to protecting confidentiality, statistical agencies releasing public use data

nearly always have to deal with survey nonresponse. Agencies conveniently can handle

the missing data and confidentiality protection simultaneously with a two-stage multiple

imputation approach (Reiter 2004). First, the agency uses multiple imputation to fill in the

missing data, generating m completed datasets. Second, the agency replaces the values at

risk of disclosure in each imputed dataset with nmultiple imputations, ultimately releasing

mn datasets. The nesting of imputations enables analysts to simply and properly account

for the different sources of variability arising from the two types of imputations, which is

not straightforward without nesting (Reiter 2004). This two-stage approach was used to

create synthetic public use files for the Survey of Income and Program Participation and is

being considered for other partially synthetic products at the U.S. Census Bureau.

Methods for obtaining inferences with such two-stage synthetic datasets have been

developed for scalar quantities but not for multivariate quantities. Given the importance of

the SIPP – it is the largest and most widely used data source on people on public assistance

in the U.S. – and the growing interest in using multiple imputation for releasing

confidential data, there is a clear need for methodology for obtaining multivariate

inferences with such datasets. This article helps address this need by presenting methods

for large sample tests of multivariate null hypotheses when multiple imputation is used

simultaneously for missing and partially synthetic data.

The remainder of the article is organized as follows. In Section 2, we review the two-

stage procedure of Reiter (2004) and extend its distributional theory to multivariate

estimands. In Section 3, we use this theory to derive a Wald-like test for multivariate null

hypotheses and illustrate the test on the partially synthetic, public use data for the SIPP.

In Section 4, we describe an asymptotically equivalent test based on likelihood ratio

statistics. Finally, in Section 5, we provide some concluding remarks.

2. Multiple Imputation for Missing Data and Disclosure Limitation

For a finite population of size N, let Il ¼ 1 if unit l is included in the survey, and Il ¼ 0

otherwise, where l ¼ 1; : : : ;N. Let I ¼ ðI1; : : : ; INÞ, and let the sample size s ¼
P

I1.

Let X be the N £ d matrix of sampling design variables, e.g., stratum or cluster indicators

or size measures. We assume that X is known approximately for the entire population, for

example from census records or the sampling frame(s). Let Y be the N £ p matrix of

survey data for the population. Let Y inc ¼ ðYobs; YmisÞ be the s £ p submatrix of Y for all

units with Il ¼ 1, where Yobs is the portion of Yinc that is observed and Ymis is the portion of

Yinc that is missing due to nonresponse. Let R be an N £ p matrix of indicators such that
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Rlk ¼ 1 if the response for unit l to item k is recorded, and Rlk ¼ 0 otherwise. The observed

data is thus Dobs ¼ ðX; Yobs; I;RÞ.
To generate the synthetic data, the agency first fills in values for Ymis with draws from

the conditional distribution of (YmisjDobs), or approximations of that distribution such as

those of Raghunathan et al. (2001). These draws are repeated independently i ¼ 1; : : : ;m

times to obtain m completed datasets, Dcom ¼ Dði Þ
com ¼ Dobs; Y

ði Þ
mis

� �
; i ¼ 1; : : : ;m

. /
.

Having dealt with the missing data, the agency limits disclosure risks by replacing selected

values in each Dði Þ
com with multiple imputations. For each Dði Þ

com, imputations are made

independently j ¼ 1; : : : ; n times to yield n different partially synthetic data sets.

Let Z l ¼ 1 if unit l is selected to have any of its data replaced with synthetic values, and

let Z l ¼ 0 for those units with all data left unchanged. Let Z ¼ ðZ1; : : : ; ZsÞ. Let Y ði; jÞ
rep be

all the imputed (replaced) values in the jth synthetic dataset associated with Dði Þ
com, and let

Y ðiÞ
nrep be all unchanged (not replaced) values of D

ði Þ
com. The Y

ði; jÞ
rep are generated from the

conditional distribution of
�
Y ði; jÞ
rep jDði Þ

com; Z
�
, or a close approximation of it. Each synthetic

dataset, Dði; jÞ
syn , then comprises

�
X; Y ði; jÞ

rep ; Y
ði Þ
nrep; I;R; Z

�
. The entire collection of M ¼ mn

datasets, Dsyn ¼
.
Dði; jÞ
syn ; i ¼ 1; : : : ;m; j ¼ 1; : : : ; n

/
, with labels indicating the nests,

is released to the public.

We now extend the distributional theory in Reiter (2004) to multivariate quantities. Let

Q be a k £ 1 vector-valued estimand, such as a vector of regression coefficients. LetQ (i, j )

be the estimate of Q computed with Dði; jÞ
syn , and let U

(i, j ) be the estimate of the k £ k

covariance matrix of Q (i, j ). The following quantities are needed for inferences.

Q
 ¼ 1

mn

Xm
i¼1

Xn
j¼1

Q ði; jÞ ¼ 1

m

Xm
i¼1

Q
 ði Þ


U ¼ 1

mn

Xm
i¼1

Xn
j¼1

U ði; jÞ


W ¼ 1

m

Xm
i¼1

1

n2 1

Xn
j¼1

ðQ ði; jÞ 2 Q
 ði ÞÞðQ ði; jÞ 2 Q
 ði ÞÞ0 ¼ 1

m

Xm
i¼1

W ði Þ

B ¼ 1

m2 1

Xm
i¼1

ðQ
 ði Þ 2 Q
ÞðQ
 ði Þ 2 Q
Þ0

We also define B1 ¼ limB asm!1 and n!1, W ði Þ
1 ¼ limW ði Þ as n!1; and,


W1 ¼ Pm
i¼1W

ði Þ
1 =m. All posterior distributions presented in this and subsequent sections

are based on diffuse prior distributions.

To begin, we utilize the assumptions described by Rubin (1987, Chapter 3) for multiple

imputation for missing data. Let Qði Þ
com be the estimate of Q that would be obtained from

Dði Þ
com prior to replacement of confidential values, and let Q
 com ¼ Pm

i¼1Q
ði Þ
com=m. We then

can write Rubin’s (1987) well-known result as

ðQjDcom;B1; 
W1Þ , NðQ
com; 
Uþ ð1þ 1=mÞB1Þ ð1Þ
An implicit assumption here is that each U (i, j ) has sufficiently low variability so that

U ði; jÞ < Uði Þ
com, where Uði Þ

com is the variance estimate of Qði Þ
com computed from Dði Þ

com.

Similarly, we assume that the Uði Þ
com < U, and hence 
U < U, where U is the variance that

Kinney and Reiter: Tests of Multivariate Hypotheses 303



would be obtained from Dinc ¼ ðX; Y inc; IÞ, i.e., if all the data were observed. These are
typical assumptions in multiple imputation, motivated by the fact that posterior variances

generally have lower order variability than posterior means (Rubin 1987, p. 89).

Following Reiter (2004), we assume the sampling distributions Q ði; jÞ , N Qði Þ
com;W

ði Þ
1

� �
for all (i, j ), so that

Qði Þ
comjDsyn;B1;W ði Þ

1
� �

, N Q
 ði Þ;W ði Þ
1 =n

� � ð2Þ
Integrating (1) and (2) with respect to the collection of Qði Þ

com, we have

QjDsyn;B1; 
W1
� �

, N Q
 ; T1
� � ð3Þ

where T1 ¼ 
Uþ ð1þ 1=mÞB1 þ 
W1=ðmnÞ. We note that the fractional increase in the

variance of Q due to missing data is ð1þ 1=mÞB1 
U21 and due to replacement data is

{ 
W1=ðmnÞ} 
U21.

In practice, B1 and W̄1 are not known and must be integrated out of (3). To do so, we

utilize the sampling distributions for Qði Þ
com from Rubin (1987), Qði Þ

com , NðQobs;B1Þ for
all i. Here, Qobs is the estimate of Q that would be obtained from Dobs. Combining these

distributions with the sampling distribution underlying (2), we have

Q
 ði ÞjDobs;B1;W ði Þ
1

� �
, N Qobs;B1 þW ði Þ

1 =n
� � ð4Þ

Using the sampling distribution of Q (i, j ), we have

W ði Þ W ði Þ
1

� �21jDsyn

n o
, Wiðn2 1; IÞ ð5Þ

where Wi(n 2 1, I) is a Wishart distribution with (n 2 1) degrees of freedom and scale

matrix I.

Finally, from (4) and (5) and the simplifying assumption thatW ði Þ
1 ¼ 
W1 for all i, we have

{BðB1 þ 
W1=nÞ21jDsyn; 
W1} , Wiðm2 1; IÞ ð6Þ
{ 
Wð 
W1Þ21jDsyn} , Wiðmðn2 1Þ; IÞ ð7Þ

For sufficiently large s, m, and n, we can replace B1 and each 
W1 with their approximate

expected values, resulting in the variance estimate T ¼ ð1þ 1=mÞB2 ð1=nÞ 
Wþ 
U.

Analysts can base inferences for Q on the distribution,

ðQ2 Q
Þ , Nð0; TÞ ð8Þ
The fractional increase in variance due to missing data is estimated from Dsyn to be

ð1þ 1=mÞðB2 
W=nÞ 
U21. The estimated fractional increase due to replacement data is

{ 
W=ðmnÞ} 
U21. For each of these, the average fractional increase across components of

Q equals the average of the diagonal elements of these matrices.

3. Wald-type Tests

Using the M released datasets, an analyst seeks to test the null hypothesis Q ¼ Q0, for

example to test if k regression coefficients equal zero. In this section, we first argue and

demonstrate that the natural test based on the Wald test statistic for (8) can be poorly

calibrated. We then derive an alternative test that tends to have better properties.
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3.1. Poor Properties of Test Based on Wald Test Statistic

Given the normal approximation for inferences about Q in (8), it may appear reasonable to

use the test statistic, D ¼ ðQ0 2 Q
Þ 0T 21ðQ0 2 Q
Þ, and the p-value equal to pr x2k . D
� �

,

where x2k is a chi-squared random variable with k degrees of freedom. However, this test is

unreliable when k is large andm and n are moderate, as is frequently the case, because B or

W̄ can have large variability. Estimating B or W̄ in such cases is akin to estimating a

covariance matrix using few observations compared to the number of dimensions.

We can illustrate the poor properties of tests based on D with simulation studies.

For sample size s ¼ 1;000, we simulate the complete data, {Y0; Y1; : : : ; Y20}, from

independent normal distributions with EðY iÞ ¼ 0 for all i, varðY0Þ ¼ 1, and

varðY iÞ ¼ 2 for i . 0. To simulate missing data, for computational simplicity we make

30% of the observations have {Y1; : : : ;Y20} missing completely at random and Y0 always

fully observed. We obtain the set of completed datasets, Dcom, by drawing values of the

missing data from f ðY1; : : : ; Y20jDobsÞ, using a multivariate normal distribution with an
unrestricted covariance matrix. To simulate partial synthesis, we replace all values of Y0.

The replacement imputations for each Dði; jÞ
syn are drawn independently from f ðY0jDði Þ

comÞ. We

vary the number of imputations according to m [ (4,8) and n [ (2,4,8), which are in the

range of values likely to be used by agencies releasing data. For example, the SIPP

synthetic data use (m ¼ 4, n ¼ 4).

We test the null hypothesis Q ¼ 0, where Q is the vector of coefficients for the

regression of Y0 on Y1; : : : ; Yk, excluding the intercept, for k [ (5, 10, 20). Table 1

summarizes the simulated rejection rates of the test based on pr x2k . D
� �

. Results are

based on 10,000 runs of the simulation for each combination of m, n, and k, for

significance levels a [ (1%, 5%, 10%). The rejection rates for the test far exceed the

nominal a levels, often by so much as to make the test essentially useless. This problem is

alleviated by making m and n excessively large. In the simulation scenario just described,

setting m and n to 50 yielded rejection rates much closer to the desired levels; however,

doing so in practice is impractical. In addition to computational and analytic burden,

releasing so many datasets can result in increased risk of disclosure.

Another problem with the test statistic D is that the variance T can have negative

diagonal elements, which can result in negative values of D. This is most likely to occur for

large values of k when n is small. This occurred in a simulation test about 20% of the time

Table 1. Simulated rejection rates in percentages for significance levels a using pr x2k . D
� �

a ¼ 1% a ¼ 5% a ¼ 10%

k Value: 5 10 20 5 10 20 5 10 20

m ¼ 4
n ¼ 2 10.0 11.3 21.8 16.0 21.3 38.6 20.7 28.2 49.1
n ¼ 4 26.0 32.4 33.3 37.1 40.9 40.0 43.9 45.6 43.7
n ¼ 8 8.0 21.1 54.1 19.4 37.7 72.0 27.6 48.1 79.8

m ¼ 8
n ¼ 2 11.8 10.7 10.2 17.2 15.1 16.8 21.0 18.7 22.8
n ¼ 4 11.7 36.0 39.3 22.2 48.0 45.9 30.0 55.1 49.8
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with small values of n, with the percentage fading to zero when m ¼ 4 and n ¼ 8.

An ad-hoc adjustment, used in Table 1, is to replace Twith 
Uþ ð1þ 1=mÞB (Reiter 2008).

3.2. An Improved Wald-type Test

Rubin (1987), Li et al. (1991a,b), and Reiter (2005a) identified similar issues in

multivariate testing in single-stage multiple imputation procedures. To mitigate the effects

of variability, they reduce the number of unknown parameters in B1 (there is no 
W1 in one
stage imputation) and derive an alternative to the natural Wald test statistic. We adapt this

strategy for two-stage partially synthetic data to propose an improved Wald-like test. Our

adaptation deals with both variance estimates (B and 
W) that can make D unstable.

We first present the test statistic and its reference distribution for the improved Wald-

like test, followed by the derivation. The statistic is

S ¼ ðQ0 2 Q
Þ0U21ðQ0 2 Q
Þ={kð1þ r ðbÞ 2 r ðwÞÞ}
where

r ðbÞ ¼ ð1þ 1=mÞtrðB 
U21Þ=k ð9Þ
r ðwÞ ¼ ð1=nÞtrð 
W 
U21Þ=k ð10Þ

The reference distribution is approximated by an Fk;ws
distribution where

ws ¼ 4þ {1þ ððr ðbÞvbÞ=ðvb 2 2ÞÞ2 ððr ðwÞvwÞ=ðvw 2 2ÞÞ}2
ððr ðbÞvbÞ2Þ=ððvb 2 2Þ2ðvb 2 4ÞÞ þ ððr ðwÞvwÞ2Þ=ððvw 2 2Þ2ðvw 2 4ÞÞ ð11Þ

for vb . 4 and vw . 4, and vb ¼ kðm2 1Þ and vw ¼ kmðn2 1Þ. We provide an alternate

degrees of freedom for the special case where vb # 4 or vw # 4 at the end of this section.

The approximate p-value for testing Q ¼ Q0 is given by prðFk;W s
. SÞ.

3.2.1. Derivation of Test

Conditional on T1 and using standard multivariate theory with (3), the p-value for testing

Q ¼ Q0 is pr x2k . ðQ0 2 Q
Þ 0T21
1 ðQ0 2 Q
Þ� �

. Since T1 is unknown, we average this

probability over the distribution of T1, or equivalently over the distributions of

ðB1jDsyn; 
W1Þ and ð 
W1jDsynÞ in (6) and (7). Averaging over the variance parameters, the
p-value equalsð

pr x2k . ðQ0 2 Q
Þ 0T21
1 ðQ0 2 Q
ÞjDsyn;B1; 
W1

. /
£ prðB1jDsyn; 
W1Þprð 
W1jDsynÞdB1d 
W1

This integral can be evaluated numerically, but it is desirable to have a simple, closed-form

approximation for analysts of public use data, who may not have the skills or desire to

perform the numerical integration.

For the approximation, we set B1 ¼ rðbÞ1 
U1 and 
W1 ¼ rðwÞ1 
U1, where rðwÞ1 and rðbÞ1 are

scalar quantities not assumed to be equal. These equations are true if (i) the fractions of

missing information are equal for all components of Q, and (ii) the fractions of replaced

information are equal for all components of Q. These conditions do not strictly hold in all
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surveys; however, in practice, rates of missing and replaced information often do not vary

substantially by variable. In such cases, the stabilization in the estimate of T1 resulting

from these approximations can lead to tests with better properties than tests based on D.

We illustrate this using simulations in Section 3.2.2.

Under these conditions, T1 ¼ 
U1 1þ ð1þ 1=mÞrðbÞ1 þ rðwÞ1 =mn
. /

, so that the number

of parameters to be estimated for each of B1 and 
W1 is reduced from k(k þ 1)/2 to 1,

thereby stabilizing the estimation of T1. Assuming 
U < 
U1, the p-value becomes

ð
pr x2k .

ðQ0 2 Q
Þ0 
U21ðQ0 2 Q
Þ
1þ ð1þ 1=mÞrðbÞ1 þ rðwÞ1 =ðmnÞ jDsyn; r

ðbÞ
1 ; rðwÞ1

( )

£ pr rðbÞ1 jDsyn; r
ðwÞ
1

� �
pr rðwÞ1 jDsyn

� �
drðbÞ1 drðwÞ1

¼
ð
pr x2k=k

� � 1þ ð1þ 1=mÞrðbÞ1 þ rðwÞ1 =ðmnÞ
ð1þ r ðbÞ þ r ðwÞÞ . SjDsyn; r

ðbÞ
1 ; rðwÞ1

# $
£ pr rðbÞ1 jDsyn; r

ðwÞ
1

� �
pr rðwÞ1 jDsyn

� �
drðbÞ1 drðwÞ1

ð12Þ

The posterior distributions of rðbÞ1 jDsyn; r
ðwÞ
1

� �
and of rðwÞ1 jDsyn

� �
can be obtained from (6)

and (7). Applying standard multivariate normal theory, we have

kðm2 1ÞtrðB 
U21Þ=k
rðbÞ1 þ rðwÞ1 =n

jDsyn; r
ðwÞ
1

( )
, x2kðm21Þ ð13Þ

kmðn2 1Þtrð 
W 
U21Þ=k
rðwÞ1

jDsyn

# $
, x2kmðn21Þ ð14Þ

Substituting (13) and (14) into (12), after some algebra we have

pr x2k=k
� � 1þ vbr

ðbÞ=x2vb 2 vwr
ðwÞ=x2vw

1þ r ðbÞ 2 r ðwÞ
. S

( )
ð15Þ

We approximate the random variable in (15) as proportional to an F-distributed random

variable, Fk;ws
, so that the p-value is prðdFk;ws

. SÞ. The approximation is obtained

by matching the first two moments of dFk;ws
to those of the left-hand side of the inequality

in (15). Equivalently, we approximate 1þ x22vb vbr
ðbÞ 2 x22vw vwr

ðwÞ
� �

as proportional

to an inverse chi-square distributed random variable with degrees of freedom ws by

matching the first two moments to the distribution hx22ws
. Using iterated expectations and

variances, we have

E hx22ws

� �
¼ h

ðws 2 2Þ < 1þ vbr
ðbÞ

vb 2 2
2

vwr
ðwÞ

vw 2 2
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and

E hx22ws

� �2# $
¼ h2

ðws 2 2Þðws 2 4Þ

<
2ðvwr ðwÞÞ2

ðvw 2 2Þ2ðvw 2 4Þ þ
2ðvbr ðbÞÞ2

ðvb 2 2Þ2ðvb 2 4Þ þ E hx22ws

� �n o2
Solving yields the expression in (11) for ws and d ¼ {ðws 2 2Þ=ws}

{1þ vbr
ðbÞ=ðvb 2 2Þ2 vwr

ðwÞ=ðvw 2 2Þ}=ð1þ r ðbÞ 2 r ðwÞÞ. When vb and vw are suffi-

ciently large, d < 1, and the approximate p-value is prðFk;ws
. SÞ.

It is possible that vb # 4 or vw # 4, in which case ws is not defined. This can occur for

small k when m ¼ 2, a choice for m that is not recommended due to the potentially high

probability that estimated variances for scalar quantities are less than zero (Reiter 2008).

Nonetheless, if analysts find that vb # 4, we suggest the alternate denominator degrees of

freedom,

w*s ¼
ðr ðbÞÞ2

vbð1þ r ðbÞ 2 r ðwÞÞ2 þ
ðr ðwÞÞ2

vwð1þ r ðbÞ 2 r ðwÞÞ2
# $21

ð16Þ

This is a generalization of the degrees of freedom used in the t-distribution of Reiter

(2004) for inferences for scalar Q. Details of its derivation can be found in Kinney (2007).

3.2.2. Illustration of Improved Performance

To illustrate the improved performance of this test, we repeat the simulations of

Section 3.1. In this simulation scenario, the fractions of missing information on each

component ofQ are equal, as are the fractions of replaced information for each component

of Q. Table 2 displays the simulated significance levels for the null hypothesis Q ¼ 0,

where Q is the vector of coefficients for the regression of Y0 on Y1, : : : ,Yk, excluding the

intercept, for k [ (5, 10, 20). The simulated levels are much closer to the a-levels than

those based on tests with D (displayed in Table 1). Additionally, S was observed to be

positive in all 10,000 runs for each scenario.

In some applications of partially synthetic data, including SIPP, several variables are

replaced in entirety while others are left unchanged. In such cases, when Q involves both

Table 2. Simulated rejection rates in percentages for significance levels a using prðFk;ws
. SÞ

a ¼ 1% a ¼ 5% a ¼ 10%

k Value: 5 10 20 5 10 20 5 10 20

m ¼ 4
n ¼ 2 0.1 0.3 0.6 1.8 3.0 4.2 5.1 7.3 9.2
n ¼ 4 0.7 1.0 1.2 3.9 5.1 5.3 8.7 10.2 10.7
n ¼ 8 1.0 1.2 1.0 4.7 5.0 5.4 9.4 10.3 10.5

m ¼ 8
n ¼ 2 0.4 0.7 0.9 3.1 4.2 5.1 7.2 9.1 10.3
n ¼ 4 0.8 1.2 1.2 5.1 5.3 5.6 10.3 10.7 10.9
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replaced and unreplaced variables the fractions of replaced information are not equal

across components of Q, i.e., 
W1 – rðwÞ1 U1. Additionally, it is commonly the case that the
fraction of missing information is not equal across components of Q and so 
W1 – rðwÞ1 U1.
To gain insight on the performance of the procedures when the proportionality conditions

do not hold, we can turn to the literature on significance testing in multiple imputation for

missing data only. Using simulations, Li et al. (1991a) show that tests based on the

condition, B1 ¼ r1U1, are robust in cases of practical interest when that condition does
not hold. That is, tests based on the proportionality condition are better calibrated than

those based on the corresponding natural Wald test. This suggests that tests based on S still

should outperform those based on D in cases of practical interest.

We illustrate the robustness of the proposed test to violations of both proportionality

assumptions by modifying the simulation scenario of Table 2. We create unequal fractions

of missing information by letting Y0, : : : ,Y10 be completely observed and Y11, : : : ,Y20 be

30% missing. We create unequal fractions of replaced information by replacing all values

in Y0, : : : ,Y10 with imputations in the second stage and leaving Y11, : : : ,Y20 unchanged in

the second stage of imputation. We set k ¼ 20 and test Q ¼ 0, where Q is the vector of

coefficients from the regression of Y0 on Y1, : : : ,Y20. Table 3 gives the simulated

rejection rates over 1,000 iterations. These are slightly conservative but close the desired

levels. While not shown, tests based on D continue to be very poorly calibrated.

3.3. Application With SIPP Public Use Data

We now illustrate the application of the Wald-like test using the partially synthetic data

from the SIPP public use files. We first provide a brief overview of the SIPP, followed by

the application.

The SIPP is a continuous series of national panels designed to collect data on income,

labor force information, participation and eligibility for governmental assistance

programs, and general demographic characteristics for individuals on public assistance.

It can be used for both longitudinal and cross-sectional analyses, including assessments of

the effectiveness and impacts of changes in public assistance programs, the distributions of

wealth across different demographic groups, and the factors that affect changes in

household and family structures (www.sipp.census.gov/sipp/analytic.html). The national

panels range in size from approximately 14,000 to 36,700 interviewed households and last

from two and a half to four years. Households are selected in a multistage, stratified

Table 3. Simulated rejection rates in percentages for significance levels a with k ¼ 20 using prðFk;ws
. SÞ

when the proportionality assumptions are not valid

a ¼ 1% a ¼ 5% a ¼ 10%

m ¼ 4
n ¼ 2 1.1 5.3 10.4
n ¼ 4 1.2 5.8 10.6
n ¼ 8 1.5 5.3 10.4

m ¼ 8
n ¼ 2 1.2 5.7 10.9
n ¼ 4 1.3 5.5 10.5
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sampling design (www.sipp.census.gov/sipp/overview.html). Analysts can download

de-identified data from the SIPP website.

In 2001, the U.S. Census Bureau, the Internal Revenue Service, and the Social Security

Administration decided to supplement the information on SIPP panels from 1990–1996

with detailed earnings and Social Security benefits histories. Linking these data allows

researchers to study retirement and disability programs and their interactions with other

public assistance programs. Because of the highly sensitive nature of these supplemental

data, the three agencies agreed to release a version of the linked data only if sensitive and

identifying information was synthesized. In the end, the agencies determined that it was

necessary to synthesize all but four out of over six hundred variables in the linked data.

The linked data (before synthesis) also contains a large number of missing values, some

due to the panel structure and others to survey or administrative database nonresponse.

Therefore, the team developing the synthesis used the two stage approach to creating

synthetic data. First, they generated m ¼ 4 completed datasets using a combination of

sequential regression multivariate imputation (Raghunathan et al. 2001) and Bayesian

bootstraps (Rubin 1981). Then, for each completed dataset, they generated n ¼ 4 synthetic

copies by replacing all values of the sensitive variables. The synthesis was done using

sequential regression multivariate imputation and a kernel density regression technique

developed by Woodcock and Benedetto (2006). TheseM ¼ 16 datasets are released to the

public and available for downloading on the SIPP website. For details of the synthesis

procedure, see Abowd et al. (2006).

Abowd et al. (2006) report on several estimands and regressions of interest using SIPP

data, providing univariate confidence intervals computed using the methods of Reiter

(2004), and comparing with estimates from the completed data prior to synthesis. As a

practical example, we illustrate a multivariate test using the regression of log total family

income in 1999 against number of children, year of birth, indicators for gender, black,

Hispanic, foreign born, and disabled, and categorical variables indicating education level,

marital status, and type of benefits received. The multivariate test was applied to see if a

4-level categorical variable indicating industry type should be included in the regression

model. In this case, test statistic D was negative, yielding a p-value of 1 when compared

to a x23-distribution; when adjusted as in Section 3.1, the test statistic was 203, yielding a

p-value of 10. On the other hand, the test statistic S had a value of 32, which yielded

a p-value of .0004 when compared to the F3,w-distribution, where w ¼ 8:89, suggesting

that the industry variable is a significant predictor of income.

4. Test Based on Likelihood Ratio Statistics

The Wald-like test requires access to all elements of the U (i, j ) matrices. This may be

cumbersome when the dimension of U (i, j ) is large. We now present a test based on the set

of log-likelihood ratio statistics from the completed datasets. This test is similar in spirit

to those developed by Meng and Rubin (1992) and Shen (2000) for multiple imputation

for missing data only and by Reiter (2005a) for multiple imputation for synthetic data only.

As before, we first present the test before outlining its derivation.

Following the notation in Schafer (1997), let c be the vector of parameters in

the analyst’s model. Let ĉ
ði; jÞ
0 and ĉ ði; jÞ be the maximum likelihood estimates of
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Q computed with Dði; jÞ
syn under the null and alternative hypotheses, respectively. Let


c ði Þ ¼ Pn
j¼1ĉ

ði; jÞ=n; 
c
ði Þ
0 ¼ Pn

j¼1ĉ
ði; jÞ
0 =n; 
c ¼ Pm

i¼1ĉ
ði Þ=m; and, 
c0 ¼

Pm
i¼1 
c

ði Þ
0 =m.

We write the log-likelihood ratio statistic evaluated at any two values a and b for any

dataset Dði; jÞ
syn as d 0 a; bjDði; jÞ

syn

� �
¼ 2 log f Dði; jÞ

syn ja
� �

2 2 log f Dði; jÞ
syn jb

� �
. The test statistic is

~S ¼ 
L={kð1þ ~r ðbÞ 2 ~r ðwÞÞ} ð17Þ

where

~r ðbÞ ¼ {ðmþ 1Þð 
Lm 2 
LÞ}={kðm2 1Þ}

~r ðwÞ ¼ ð
l2 
LmÞ={kðn2 1Þ}

and


L ¼
Xm
i¼1

Xn
j¼1

d 0 
c0; 
cjDði; jÞ
syn

� �
=ðmnÞ


Lm ¼
Xm
i¼1

Xn
j¼1

d 0 
c
ði Þ
0 ; 
c ði ÞjDði; jÞ

syn

� �
=ðmnÞ

l
¼
Xm
i¼1

Xn
j¼1

d 0 ĉ
ði; jÞ
0 ; ĉ ði; jÞjDði; jÞ

syn

� �
=ðmnÞ

The reference distribution for ~S is an F-distribution with k degrees of freedom in the

numerator and ~ws degrees of freedom in the denominator, where ~ws is the expression in

(11) with the terms r (b) and r (w) replaced by ~r ðbÞ and ~r ðwÞ. When vb # 4 or vw # 4, we use

the denominator degrees of freedom in (16), substituting in ~r ðbÞ and ~r ðwÞ as above.
The derivation parallels the strategy of Meng and Rubin (1992), namely (i) find a

statistic asymptotically equivalent to S based only on the Wald statistics from each

synthetic dataset; (ii) use the asymptotic equivalence of Wald and log-likelihood ratio test

statistics for individual datasets to define the test statistic ~S; and, (iii) find a reference

F-distribution as in the Wald tests.

To begin, let dðQ ði; jÞ;U ði; jÞÞ ¼ ðQ ði; jÞ 2 Q0Þ 0U ði; jÞ21ðQ ði; jÞ 2 Q0Þ for all (i, j ). Because
of the asymptotic equivalence of Wald and log-likelihood ratio test statistics, each

dðQ ði; jÞ;U ði; jÞÞ is asymptotically equivalent to its corresponding d 0 ĉ
ði; jÞ
0 ; ĉ ði; jÞjDði; jÞ

syn

� �
.

Furthermore, because of the low-order variability in the U (i, j ), we can interchange the

U (i, j ) with 
U in any of dðQ ði; jÞ;U ði; jÞÞ, dðQ
 ði Þ;U ði; jÞÞ, or dðQ
 ;U ði; jÞÞ.
Let d
¼ Pm

i¼1
Pn

j¼1dðQ ði; jÞ;U ði; jÞÞ=ðmnÞ; let d
ði Þ ¼ Pn
j¼1dðQ
 ði Þ;U ði; jÞÞ=n; and, let

d̂ ¼ Pm
i¼1

Pn
j¼1dðQ
 ;U ði; jÞÞ=ðmnÞ. Then S is equivalent to

S* ¼ ðd
=kÞ2 ðn2 1Þr ðwÞ 2 ðm2 1Þr ðbÞ=ðmþ 1Þ
1þ r ðbÞ 2 r ðwÞ

ð18Þ

where r (b) and r (w) are defined in (9) and (10). To show this, we assume without loss of

generality that Q0 ¼ 0 and U
 is a k £ k identity matrix, as in Rubin (1987, p. 100). Then,
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S ¼ Q
 0Q
={kð1þ r ðbÞ 2 r ðwÞÞ} and, using a sums-of-squares decomposition,

d
¼ 1

mn

Xm
i¼1

Xn
j¼1

ðQ ði; jÞ 2 Q
 ði ÞÞ 0ðQ ði; jÞ 2 Q
 ði ÞÞ

þ 1

mn

Xm
i¼1

Xn
j¼1

ðQ
 ði Þ 2 Q
Þ0ðQ
 ði Þ 2 Q
Þ þ Q
 0Q


¼ kðn2 1Þr ðwÞ þ kðm2 1Þ
mþ 1

r ðbÞ þ Q
 0Q


Substituting the above expression into (18) yields S.

Computing r (b) and r (w) requires access to 
U, which we do not want these tests to

depend on. Expressions that rely only on Wald statistics are obtained by using sums-of-

squares decompositions. Under the canonical conditions, and without loss of generality,

for r (b) we have

r ðbÞ ¼ ðmþ 1Þ
kmðm2 1Þ

Xm
i¼1

ðQ
 ði Þ 2 Q
Þ0ðQ
 ði Þ 2 Q
Þ

¼ ðmþ 1Þ
kmðm2 1Þ

Xm
i¼1

ðQ
 ði Þ 0Q
 ði ÞÞ2 mQ
 0Q

( )

<
ðmþ 1Þ
kðm2 1Þ

Xm
i¼1

d
ði Þ=m2 d̂

� !
¼ rðbÞw

since
Pm

i¼1d

ði Þ=m is asymptotically equivalent to

Pm
i¼1ðQ
 ði Þ 0Q
 ði ÞÞ, and d̂ is asymptotically

equivalent to Q
 0Q
 . For r (w), we have

r ðwÞ ¼ 1

kmnðn2 1Þ
Xm
i¼1

Xn
j¼1

ðQ ði; jÞ 2 Q
 ði ÞÞ0ðQ ði; jÞ 2 Q
 ði ÞÞ

¼ 1

kmnðn2 1Þ
Xm
i¼1

Xn
j¼1

ðQ ði; jÞ 0Q ði; jÞÞ2 n
Xn
i¼1

ðQ
 ði Þ 0Q
 ði ÞÞ
( )

< kðn2 1Þ d
2
Xm
i¼1

d
ði Þ=m

� !
¼ rðwÞw

Using d̂ to approximate the numerator of S, and rðbÞw and rðwÞw to approximate r (b) and r (w) in

the denominator of S, we obtain the asymptotically equivalent statistic S *.

We next utilize the asymptotic equivalence between the Wald statistics and the log-

likelihood ratio statistic to show that ~S in (17) is asymptotically equivalent to S *. The

equivalence of 
l and d
 follows directly from the asymptotic equivalence of the d(Q (i, j ),Uij)

and their corresponding d 0 ĉ ði; jÞ; ĉ
ði; jÞ
0 jDði; jÞ

syn

� �
. The equivalence of 
L and d̂, and of d
m ¼Pm

i¼1d

ði Þ=m and 
Lm, is more subtle. Using arguments similar to those of Meng and Rubin

(1992) and Shen (2000), for quadratic complete-data log-likelihood functions, we have

d 0ð 
c0; 
cjDði; jÞ
syn Þ < dðQ ði; jÞ;U ði; jÞÞ2 dðQ ði; jÞ 2 Q
 ;U ði; jÞÞ

d 0ð 
cði Þ
0 ; 
c ði ÞjDði; jÞ

syn Þ < dðQ ði; jÞ;U ði; jÞÞ2 dðQ ði; jÞ 2 Q
 ði Þ;U ði; jÞÞ
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Thus, we have


L ¼ 1

mn

Xm
i¼1

Xn
j¼1

d 0 
c0; 
cjDði; jÞ
syn

� �

<
1

mn

Xm
i¼1

Xn
j¼1

{dðQ ði; jÞ;U ði; jÞÞ2 dðQ ði; jÞ 2 Q
 ;U ði; jÞÞ}

<
1

mn

Xm
i¼1

Xn
j¼1

{dðQ ði; jÞ 2 
UÞ2 dðQ ði; jÞ 2 Q
 ; 
UÞ}

< dðQ
 ; 
UÞ 1
mn

Xm
i¼1

Xn
j¼1

dðQ
 ;U ði; jÞÞ ¼ d̂

Similar reasoning shows that
Pm

i¼1d

ði Þ=m is asymptotically equivalent to 
Lm. Thus, we can

replace 
l with d
, 
L with d̂, and 
Lm with d
m to obtain the test statistic ~S and reference

F-distribution.

5. Concluding Remarks

The simulations suggest that the improved Wald-like test provides appropriate rejection

rates when the null hypothesis is true. To get a sense of the power properties of these tests,

we can turn to the results of Li et al. (1991b), who examined the power properties of large

sample significance tests for multiple imputation of missing data only. These tests are

derived from similar assumptions and approximations as the Wald-like test proposed here.

Based on extensive simulation studies, Li et al. (1991b) report that power curves for their

tests are similar to the power curves for Wald tests based on the observed data. The

greatest losses in power occur when the data deviate substantially from the proportionality

assumption. The losses are largest whenm is small, and mostly disappear for largem. Shen

(2000) reported similar findings for nested imputation, with greatest power loss for small

m and n and for large deviations from proportionality. The tests proposed here are

expected to have similar properties, though further study is needed.

Popular software packages contain routines for obtaining confidence intervals for scalar

quantities and p-values for multicomponent tests from multiply-imputed datasets. These

routines can be easily modified to perform the tests proposed here.

As resources available to malicious data users continue to expand, the alterations

needed to protect data with traditional disclosure limitation techniques – such as

swapping, adding noise, or microaggregation – may become so extreme that, for many

analyses, the released data are no longer useful. Synthetic data, on the other hand, has the

potential to enable data dissemination while preserving data utility. The methods in this

article enable analysts of multiply-imputed, partially synthetic public-use data to obtain

closer to nominal levels when testing multicomponent null hypotheses than previously

possible, thereby increasing the utility of synthetic data approaches.
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