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In dealing with survey nonresponse, statisticians need to consider (a) measures to be taken at
the data collection stage, and (b) measures to be taken at the estimation stage. One may
employ some form of responsive design. In the later stages of the data collection in particular,
one tries to achieve an ultimate set of responding units that is “better balanced” or “more
representative” than if no special effort is made. The concept of “balanced response set”
introduced in this article extends the well-known idea of “balanced sample.” A measure of
“lack of balance” is proposed; it is a quadratic form relating to a multivariate auxiliary vector;
its statistical properties are explored. But whether or not good balance has been achieved in
the data collection, a compelling question remains at the estimation stage: How to achieve the
most effective reduction of nonresponse bias in the survey estimates. Balancing alone may not
help. The nonresponse adjustment effort is aided by a bias indicator, a product of three factors
involving selected powerful auxiliary variables.
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1. Representative Set of Units, Balanced Set of Units

Although probability sampling and design-based inference were dominating traditions in

survey sampling during the 20th century – particularly from the 1930’s and on following

path-breaking advances by Jerzy Neyman, by Morris Hansen and his associates –

purposive sampling still attracted attention and interest, among theoreticians as among

practitioners. Purposive sample selection was practiced already in the late 19th century,

as in “the representative method” used at the Norwegian Central Bureau of Statistics and

attributed to its head at the time, Anders Kiaer. It consisted roughly speaking in the

selection of units such that the sample would have the same or almost the same

characteristics as the whole population.

“Same characteristics” later received a more specific meaning. The term “balanced

sample” came to be used for a sample whose characteristic feature is the equality, or near-

equality, of the sample mean with the corresponding population mean, for observable

control variables. A balanced sample can thus be described in such appealing terms as

“representative of the finite population” or “a miniature of the whole population.”

Around 1970, the dominating probability sampling tradition faced a serious challenge

from the model-based, or model-dependent, approach. It was shown for example that if a
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certain model is true, an extreme sample, such as selecting purposively the n units with the

largest values on a continuous auxiliary variable x, would be optimal, in a purely model-

based assessment of precision. Not surprisingly, such selections (and the inferences they

generate) are highly sensitive to the truth of one particular model, and such practices

met with vigorous criticism from the design-based school.

Proponents of the model-based approach realized that there was a need to protect the

inferences against model breakdown. One avenue was to post a hypothesized model where

y has a polynomial dependence on the continuous auxiliary variable x, rather than just a

simple linear one. A balanced sample in that connection is one for which the first few

moments of the x-variable are equal for the sample and for the whole population.

Some early references to the model-based developments are Royall (1970) and Royall

and Herson (1973a, b). Among the critics who defended the probability sampling (design-

based) outlook were Hansen, Madow, and Tepping (1983). For objective review and

discussion, see Brewer (1994;1999). Balancing of samples for different models is

discussed extensively in the book by Valliant, Dorfman, and Royall (2000).

Proponents of the model-based approach did not deny that randomized selection

could provide added protection for their model-based estimates and inferences. But

balanced sampling belonged for a long time in the realm of purposive or non-probability

sampling methods and was viewed with skepticism by the design-based school.

A decisive step was taken by Deville and Tillé (2004) through their cube method.

They argued that auxiliary information can be used to advantage in the drawing of the

sample itself, more precisely so as to select a balanced sample that is also a probability

sample, with known and positive inclusion probabilities for all units. Two desirable

goals, balancing and probability sampling, are thus achieved simultaneously. If x k

denotes the auxiliary vector value for unit k, balancing the sample to the population

was defined in the cube method as the equality (or near-equality) between the unbiased

Horvitz-Thompson (HT) estimator of the population total of x k and that known total

itself. The mechanics of the procedure can be described as a series of randomized

moves, under restrictions, inside an N-dimensional cube, N being the population size.

Every sample that can result from the cube method is balanced – for a given

auxiliary vector – without being purposive, and the known inclusion probabilities leave

the field open for those traditional uses of design-based estimation where the inverses

of those probabilities act as weights for unbiased or nearly unbiased estimation.

Furthermore, the auxiliary information realizes already at the data collection stage an

objective – a reduced design-based variance in the estimates – that would otherwise be

realized later, at the estimation stage, by a regression adjustment to the HT estimator,

as in a generalized regression (GREG) estimator, or by calibrated weighting. Since any

sample resulting from the cube method is balanced, the regression adjustment in the

usual GREG estimator is always zero. The HT estimator is, in a manner of speaking,

all that is needed.

In its traditional usage, the term balancing involves the relationship between a

sample and the entire population, for example so that means for the sample agree with

means for the whole population, for the specified available variables. An extended idea

of balancing is needed in this article dealing with nonresponse. This leads to the

following formulation.
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General principle of balancing: A subset of a given larger set of units is balanced

when realized subject to an advantageous conformity or resemblance with the larger set.

An example is to realize the subset so as to make means for appropriate auxiliary

variables equal to corresponding means for the larger set.

In the context of surveys with nonresponse, this principle requires the ultimate set of

respondents to be balanced to the probability sample of which the respondents are a subset.

It is clearly advantageous to realize a response set with “the same characteristics” as the

whole probability sample, because the latter is a selection not skewed by nonresponse. In

this extended use of the term, balancing refers to a second phase of a selection, the first

phase being the drawing of a sample from the population.

In the cube method, the auxiliary information serves at the sample selection stage to

draw a balanced probability sample. Regression adjustment is then superfluous at the

estimation stage (unless more information becomes available at that stage). Alternatively

we can – with essentially the same benefit in terms of variance reduction – draw any, not

necessarily balanced, probability sample and postpone the role of that same information

until the estimation stage, to form a GREG estimator or a calibration estimator.

This article makes the point that a similar “before-or-after” option exists in regard to

nonresponse: Either the auxiliary information can serve at the data collection stage, where

it can be instrumental in realizing a well-balanced set of respondents, or the use of it can be

postponed until the estimation stage and then take the form of a nonresponse weighting

adjustment. But despite this similarity we shall find, in the nonresponse situation, some

differences between the two aspects: A well-balanced response set does not eliminate the

need to seek effective adjustment at the estimation stage.

2. Background

We assume having arrived at that stage of the survey process where a probability sample

has been drawn from the finite population, with known positive inclusion probabilities

for all units. The resulting set of identified units is targeted for data collection. But

nonresponse occurs. Only a subset will respond and supply the value(s) of the study

variable(s). Depending on how far the process has advanced, we consider two scenarios:

i) Action taken during the data collection, “prior action,” particularly in its later phases,

to achieve an ultimate response set that is “better balanced” or “more representative”

than if no special effort is made;

ii) Action taken after the termination of the data collection, “posterior action,”

consisting in nonresponse adjustment at the estimation stage.

Both kinds involve the use of an auxiliary vector, denoted generically by xk, on which

information exists over and beyond the set of responding units. That information may

serve either at the data collection stage or at the estimation stage.

In many surveys, data collection extends over quite a large length of time, perhaps

several weeks or months. It proceeds in an initial phase according to “an original plan.”

But at a certain point, one may wish to intervene, in the interest of efficiency, and take

initiatives to achieve in the end a better balanced ultimate set of respondents.

Särndal: Dealing with Survey Nonresponse 3



Prior action includes different forms of responsive design. Its general objectives are

formulated in Groves and Heeringa (2006). They use the term “phase capacity” for “the

stable condition of an estimate in a specific design phase.” When phase capacity has been

reached in a given phase, it is no longer effective to continue data collection in the same

mode or phase; there is an incentive to modify the design, if data collection is to be

continued at all. Options for responsive design in a Canadian setting are discussed in Mohl

and Laflamme (2007) and Laflamme (2009). With a view to improving the response rate,

different kinds of prior action have long been practiced. They include the use of more

skilled interviewers, different forms of call-back, subsampling of nonrespondents,

stronger incentives to participate, and so on.

In other forms of prior action, the interviewers are instructed to direct attention during

follow-up to specific sample categories, identified by age, sex and other important

characteristics, that turn out underrepresented in the earlier phases of the data collection.

Such efforts may not in the end maximize the particular interviewer’s own response rate,

nor the global response rate, because the targeted groups are hard to reach or unwilling to

respond. But more importantly, a changed emphasis in the data collection may bring the

benefit of a better balanced ultimate response set, and possibly a reduced bias in the survey

estimates. To make this work, auxiliary information must exist on every unit k in the

sample; the auxiliary vector value x k must identify the categories to be pursued.

As the data collection unfolds, there is a need to evaluate whether the responsive design

is effective, that is, if there is a momentum towards a better balanced set of respondents.

The rate of response is by itself insufficient as a measure of the state of the data collection.

There is a need for a more informative measure that can be computed continuously and

monitored during the data collection including the follow-up. Schouten, Cobben, and

Bethlehem (2009) propose an indicator of “representativity” of a response set. Their

“R-indicator” is defined as a function of the variance of estimated response probabilities.

They illustrate the indicator in the setting of the 2005 Dutch Labour Force Survey, where

they compute the R-indicator for the basic LFS response and then also for the larger data

set that combines the LFS response with the response from a call-back directed to a

subsample of nonrespondents. They note a somewhat improved representativity – a higher

value of the R-indicator – for the “LFS plus call-back” alternative.

A point of departure for this article is the concept of balanced response set: If means

for measurable auxiliary variables are the same for respondents as for all those sampled,

we call the response set perfectly balanced. Then, on average for the measured variables,

the respondents agree with the whole set of sampled units. When those means differ, the

response set is more or less imbalanced.

Once the data collection is terminated, the estimation phase begins. The study variable

values, observed only for the ultimate set of respondents, form together with auxiliary

data the material for estimating population totals and other parameters. The principal

objective in this posterior action is to produce estimates with low bias, through weighting

adjustment by calibration on selected auxiliary variables. Simple adjustment cell

weighting is too limited in scope; we require more extensive auxiliary information.

Nonresponse causes both bias and increased variance. We focus here on the bias. Its

square is typically the dominant portion of the Mean Squared Error (MSE). We address

primarily surveys on individuals and households with quite large sample sizes, as is typical
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for government surveys; consequently, the variance contribution to MSE is low by

comparison. Increased variance due to nonresponse is nevertheless an issue; striking a

balance between variance increase and bias reduction is considered, for example, in Little

and Vartivarian (2005).

Efficient adjustment requires powerful auxiliary information. The Scandinavian

countries and The Netherlands – and increasingly other countries especially in Europe –

are privileged. The available administrative registers guarantee a vast supply of potential

auxiliary variables especially for surveys on individuals and households.

Many published articles discuss adjustment weighting and the question of how to select

the best auxiliary variables. Kalton and Flores-Cervantes (2003) give many references.

Rizzo, Kalton, and Brick (1996) and Slud and Bailey (2010) discuss weighting adjustment

for panel nonresponse. Several recent contributions discuss adjustment though

calibration, for example Beaumont (2005), Crouse and Kott (2004), Deville (2002),

Kott (2006; 2008). Calibration, propensity to respond and the value of auxiliary data are

topics in Brick and Jones (2008).

The bias cannot be estimated or otherwise made known; this is the dilemma of

nonresponse. The realistic position in this article is that the bias is never entirely

eliminated, no matter how powerful the auxiliary information. Some bias always remains

after an adjustment. In this predicament we need an indicator to signal when a sizeable

reduction of the bias may have taken place. The indicator serves to select the most

effective or most promising auxiliary variables, in a perhaps long list of available ones.

Bias indicators were proposed in Särndal and Lundström (2005; 2008; 2010), while

Schouten (2007) uses a different perspective to motivate an indicator.

The role of the auxiliary vector(s) is different under the two scenarios:

i) Prior action focuses on a fixed auxiliary vector, that is, one with a fixed composition

of auxiliary variables, and we try to achieve a better balanced ultimate set of

respondents for that particular x-vector;

ii) Posterior action consists in building an x-vector from a supply of available

x-variables; in this process we need to compare alternative x-vectors and select one

that is likely to bring effective bias reduction in all or most estimates.

The contents of this article are arranged as follows. Section 3 presents the notation and the

survey background, in the form of probability sampling followed by nonresponse.

Section 4 reviews the features of the multidimensional auxiliary vector and the associated

auxiliary information. Section 5 introduces the concepts of balanced response set and lack

of balance for that set. Section 6 shows how lack of balance is related to the idea of

estimating the unknown response probabilities uk with the aid of the auxiliary data. Three

alternative indicators of balance, all contained in the unit interval, are proposed in

Section 7; the idea is to monitor the phases of the data collection with the aid these

indicators. Section 8 addresses “the dual estimation problem,” that of estimating the

inverse response probabilities fk ¼ 1=uk. This leads to the nonresponse adjusted

estimators described in Section 9; they are identified alternatively as calibration

estimators. A sizeable nonresponse adjustment indicates that there is substantial bias

needing to be compensated for. As Section 9 also shows, the adjustment is a product

of three factors, each with simple interpretation. One of those is, as one might expect,

Särndal: Dealing with Survey Nonresponse 5



the degree to which the auxiliary vector explains the study variable. But in itself this factor

is insufficient to produce a sizeable adjustment. The levels of other two factors are also

important. Section 10 focuses on the stepwise construction of the auxiliary vector, given

the objective of effective nonresponse adjustment for all of the often numerous study

variables in the survey. Empirical data from Statistics Sweden are used to illustrate the

auxiliary variable selection.

3. Probability Sample and Responding Subset

A probability sample s is drawn from U ¼ {1; : : : ; k; : : : ;N}. Out of a realized

sample s, only a subset r of units responds; the value yk of the study variable y, which may

be continuous or categorical, is observed only for k [ r. Conceptually, r is the result of an

unknown response mechanism operating on s. The data {yk: k [ r} provide, together with

auxiliary data, the material for estimating the population total Y ¼
P

U yk. (A sum
P

k[A

over a set of units A # U will be written as
P

A). Under the sampling design used to draw

s, the unit k has the known inclusion probability pk ¼ Pr ðk [ sÞ . 0 and the known

design weight dk ¼ 1=pk. The (design-weighted) survey response rate and its inverse

value are, respectively,

P ¼
X

r
dk

.X
s
dk; Q ¼ 1

.
P ¼

X
s
dk

.X
r

dk ð3:1Þ

We assume 0 , P , 1. We call ð1 2 PÞ=P ¼ Q 2 1 the (empirical) nonresponse odds.

For example, when the response rate is P ¼ 80%, the nonresponse odds are 1:4, or 0.25;

for P ¼ 60%, the nonresponse odds are 1:1.5, or 0.67.

Denote further the unknown response probability of k by uk ¼ Pr ðk [ rjsÞ. Its inverse,

fk ¼ 1=uk, also unknown, is called the influence of k. We prefer this term to “weight,”

because “weight” is something known, or at least computable. For all k, both uk and

fk ¼ 1=uk are conceptually defined, nonrandom, nonobservable entities.

The response indicator I is a binary random variable, observed for k [ s, with value

Ik ¼ 1 for k [ r and Ik ¼ 0 for k [ s 2 r. Then EðIkjsÞ ¼ uk. Let ak be a nonrandom

(scalar or vector) value tied to unit k; consider two linear forms in Ik:X
s
dkðIkfk 2 1Þak;

X
s
dkðIk 2 ukÞak ð3:2Þ

Both are theoretical entities, not computable, since uk and fk ¼ 1=uk are unknown. Both

have expected value equal to zero, given s, because EðIkjsÞfk 2 1 ¼ EðIkjsÞ2 uk ¼ 0 for

all k. Both have frequency interpretations with respect to repeated realizations of response

sets r, given s: On average over such repetitions,
P

r dkfkak is equal to
P

s dkak, andP
r dkak is equal to

P
s dkukak. We can let ak ¼ yk in (3.2), because the study variable

values yk, observed only for k [ r, are viewed as nonrandom, as in traditional probability

sampling theory.

4. Auxiliary Vector and Auxiliary Information

Auxiliary information plays a central role in dealing with survey nonresponse, both

at the data collection stage and at the estimation stage. The auxiliary vector value
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xk ¼ ðx1k; : : : ; xjk; : : : ; xJkÞ
0 is assumed available for k [ s, where xjk is the value for

unit k of the jth auxiliary variable, xj. The values xjk may be continuous measurements

or category indicators, equal to 1 or 0 to code presence or absence of a given trait

or property.

An important special case involves a single categorical auxiliary variable defined by

J $ 2 mutually exclusive and exhaustive traits, as when the variable Age is defined by

J ¼ 3 traits, Young, Middle-aged, and Elderly. The trait of unit k is coded by the J-vector

xk ¼ ðg1k; : : : ; gjk; : : : ; gJkÞ
0 ¼ ð0; : : : ; 1; : : : ; 0Þ0 (with a single entry “1”), or

equivalently by the J-vector xk ¼ ð1; g1k; : : : ; gjk; : : : ; gJ21;kÞ
0, where gjk ¼ 1 if k has

the trait j and gjk ¼ 0 otherwise.

In practice the auxiliary vector x k often serves to code several categorical auxiliary

variables. If the ith variable has Ji traits, i ¼ 1; : : : ; I, and the I variables are arranged

“side by side” in xk (rather than as cross-classified), then the dimension of x k is

J ¼ 1 þ
PI

i¼1 ðJi 2 1Þ. One trait, regardless of which one, is omitted in each categorical

variable, to avoid a singular matrix. The number of variables I is often 10 or more, the

dimension J often 50 or more. The vector xk is typically built (in Scandinavia) from a vast

supply of x-variables, including income class, level of education, level of indebtedness,

marital status, country of birth, unemployment pattern; the “usual variables” age and sex

may not be among the most effective ones. The vector xk may be coded to also include

relevant interactions.

We consider auxiliary vectors of the following type: For some constant vector m – 0,

m0xk ¼ 1 for all k [ U ð4:1Þ

This is not a severe restriction on x k. Most vectors of interest in practice are covered.

For example, if xk ¼ ð1; xkÞ
0, where xk is a continuous variable value, then take

m ¼ ð1; 0Þ0; if xk ¼ ðg1k; : : : ; gjk; : : : ; gJkÞ
0 ¼ ð0; : : : ; 1; : : : ; 0Þ0, where the one and

only “1” codes class membership of k, then take m ¼ ð1; : : : ; 1; : : : ; 1Þ0.

We define two computable J-dimensional mean vectors and two computable J £ J cross

product matrices (or weighting matrices), assumed nonsingular:

�xr;d ¼
X

r
dkxk

.X
r

dk; Sr ¼
X

r
dkxkx

0
k

.X
r

dk ð4:2Þ

�xs;d ¼
X

s
dkxk

.X
s
dk; Ss ¼

X
s
dkxkx

0
k

.X
s
dk ð4:3Þ

Notation for weighted means and other aggregates obeys to the following rule: Out of

two indices separated by semi-colon, the first specifies the set of units in the sum, the

second specifies the weighting. The simpler notation for the matrices Sr and Ss does not

fully respect that rule but is sufficiently clear. We need several quadratic forms and

bilinear forms in the mean vectors �xr;d and �xs;d. By (4.1) we have for all outcomes (s,r)

�x 0 r;dS
21
r �xr;d ¼ �x 0 r;dS

21
r �xs;d ¼ �x 0r;dS

21
s �xs;d ¼ �x 0 s;dS

21
s �xs;d ¼ 1 ð4:4Þ

Properties shown and used later are:

�x 0 r;dS
21
s �xr;d $ 1; �x 0 s;dS

21
r �xs;d $ 1 ð4:5Þ
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5. Balanced Response and Measuring Lack of Balance

The important J-vector D ¼ �xr;d 2 �xs;d ¼ ðD1; : : : ;Dj; : : : ;DJÞ
0 reflects similarity, or

balance, between the response set r and the sample set s. The computable difference

Dj ¼ �xj r;dj 2 �xj s;dj contrasts the respondent mean of the auxiliary variable xj,

�xj r;dj ¼
P

r dkxjk=
P

r dk, with the full sample mean of the same variable,

�xj s;dj ¼
P

s dkxjk=
P

s dk. If D ¼ 0, the null vector, so that �xr;d ¼ �xs;d , we say that the

response set r is perfectly balanced with the probability sample s, for the specific

vector xk. Then the respondent set r mirrors the sample s, in so far as the means of

the variables in x k goes. We can expect perfect balance to be an asset in dealing with

nonresponse. Normally, D – 0, suggesting a more or less pronounced departure from

balance. We need to transform the multivariate D into a univariate statistic to quantify

the lack of balance or imbalance, for given outcome (s, r) and given composition of

the vector xk. This need is filled by the quadratic form D 0S
21
s D. Perfect balance, that

is D ¼ 0, gives D 0S
21
s D ¼ 0. Increased differences Dj between respondent mean and

full sample mean tend to increase the value of D 0S
21
s D. We assume that Ss is full

rank, so that D 0S
21
s D $ 0.

To illustrate the quadratic form D 0S
21
s D in an important special case, consider a single

categorical auxiliary variable defined by J mutually exclusive and exhaustive traits coded

by the J-vector xk ¼ ðg1k; : : : ; gjk; : : : ; gJkÞ
0 ¼ ð0; : : : ; 1; : : : ; 0Þ0, where gjk ¼ 1 or 0

indicates presence or absence for unit k of the trait j. Let sj and rj be the subsets (out of the

whole sample s and out of the whole response set r, respectively) of units with trait j;

rj # sj. For that trait, Wjs ¼
P

sj
dk=

P
s dk and Wjr ¼

P
rj

dk=
P

r dk represent the

respective shares. Then D 0S
21
s D is akin to a chi-squared statistic,

D0S
21
s D ¼

XJ

j¼1

ðWjr 2 WjsÞ
2=Wjs

Zero lack of balance implies, for this particular x-vector, that each trait’s share of the

response set r equals its share of the whole sample s. Equivalently, it implies that the group

response rate
P

rj
dk=

P
sj

dk is the same for all groups j ¼ 1; : : : ; J. If Gender were the

only available auxiliary variable, then x k has dimension J ¼ 2 to indicate male or female,

and the response set is perfectly balanced with respect to Gender if men and women have

the same response rate. In practice, the auxiliary vector is usually much more extensive,

so as to code a number of categorical auxiliary variables.

We note that �xr;d 2 �xs;d ¼ ð1 2 PÞð�xr;d 2 �xs2r;dÞ, where �xs2r;d ¼
P

s2r dkxk=
P

s2r dk.

Using also (4.4) we can then write

0 # D0S
21
s D ¼ �x 0 r;dS

21
s �xr;d 2 1 ¼ ð1 2 PÞ2ð�xr;d 2 �xs2r;dÞ

0S
21
s ð�xr;d 2 �xs2r;dÞ ð5:1Þ

The first part of (4.5) now follows from (5.1). For D – 0 and a fixed dimension J $ 2,

(5.1) shows that the lack of balance D0S
21
s D increases (i) with increased rate of

nonresponse 1 2 P, and (ii) with increased separation between respondents and

nonrespondents, considering that ð�xr;d 2 �xs2r;dÞ
0S

21
s ð�xr;d 2 �xs2r;dÞ is a form of

Mahalanobis distance squared between the two groups. The lack of balance D 0S
21
s D

has important properties shown in Section 6:
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. Property 1: D 0S
21
s D is bounded from above by the nonresponse odds: D 0S

21
s D #

Q 2 1 for any outcome (s,r) and any composition of the vector x k;

. Property 2: ðD 0S
21
s DÞ1=2 is the coefficient of variation (standard deviation divided

by mean) of response probabilities estimated by least squares.

Consequently, D 0S
21
s D=ðQ 2 1Þ measures lack of balance on a unit interval scale, for the

given vector specification xk; the complement 1 2 D 0S
21
s D=ðQ 2 1Þ measures balance.

A very similar lack of balance statistic, D 0S
21
r D, is also important starting in Section 8.

It differs from D 0S
21
s D only in regard to the weighting matrix, Sr instead of Ss.

Their numeric difference is often small. Pronounced mean differences

Dj ¼ �xj r;dj 2 �xj s;dj ; j ¼ 1; : : : ; J, tend to increase the value of both D 0S
21
s D and

D0S
21
r D. The upper bound Q 2 1 ¼ ð1 2 PÞ=P on D 0S

21
s D is a function only of the

response rate P. For example, regardless of the choice of x-vector, the upper bound is 0.25

for P ¼ 80% and 0.67 for P ¼ 60%. For data encountered in practice, D 0S
21
s D usually lies

considerably below its upper bound. We cannot specify an upper bound on D 0S
21
r D,

as discussed in Section 8. In the example with a single categorical auxiliary variable

with J traits, xk ¼ ðg1k; : : : ; gjk; : : : ; gJkÞ
0, we have D 0S

21
r D ¼

PJ
j¼1 ðWjr 2 WjsÞ

2=Wjr.

It is zero if all J trait groups have the same response rate. On the other hand, D 0S
21
r D

can be very large if some category shares Wjr are very small; one should avoid groupings

that give rise to small Wjr.

6. Estimated Response Probabilities

We derive estimated response probabilities ûk from two requirements: (i) they are to be

linear in xk, so that ûk ¼ l 0xk for some constant vector l, and (ii) they verify the constraint

inspired by the second statistic in (3.2) with ak ¼ xk and uk ¼ ûk, that is,P
s dkðIk 2 ûkÞxk ¼ 0, or

P
r dkxk ¼

P
s dkûkxk. These conditions determine l, and we

obtain ûk ¼ tk, where

tk ¼
X

r
dkxk

� �0 X
s
dkxkx

0
k

� �21

xk ð6:1Þ

There is no guarantee that 0 # tk # 1 for all units k, outcomes (s,r) and vector

specifications x k, but it is not a drawback for this article if a small number of tk fall outside

the unit interval, because the tk appear in the form of always nonnegative aggregates.

We obtain the same result, ûk ¼ tk, by least squares fit, treating Ik as the dependent

variable: Determine l to minimize the weighted sum of squares
P

s dkðIk 2 l 0xkÞ
2.

The estimating equation is
P

s dkIkx
0
k 2 l 0

P
s dkxkx

0
k ¼ 00; solving for l leads to

ûk ¼ l 0xk ¼ tk as given in (6.1).

The tk are computable for k [ s. We need the mean over r, and the mean and variance

over s:

�tr;d ¼
X

r
dktk

� �� X
r

dk

� �
; �ts;d ¼

X
s
dktk

� �� X
s
dk

� �
;

S2
t s;dj

¼
X

s
dkðtk 2 �ts;dÞ

2
.X

s
dk
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A development making use of (4.1) and (4.4) and the fact that
P

s dkt2
k ¼

P
r dktk gives

�tr;d ¼ P £ �x0 r;dS
21
s �xr;d; �ts;d ¼ P; S2

t s;dj
¼ �ts;dð �tr;d 2 �ts;dÞ ¼ P2 £ D 0S

21
s D ð6:2Þ

where �xr;d and Ss are defined in (4.2) and (4.3). From (6.2) follows Property 2 in Section 5

concerning the coefficient of variation of ûk ¼ tk:

cvt s;dj ¼ St s;dj =�ts;d ¼ ðD 0S
21
s DÞ1=2 ð6:3Þ

To prove Property 1 in Section 5, consider the sum of squares
P

s dkðIk 2 PÞ2, and

let Ik 2 P ¼ ðtk 2 PÞ þ ðIk 2 tkÞ, where Ik is the response indicator with mean

P ¼ �Is;d ¼
P

s dkIk=
P

s dk. A development gives the orthogonal components decompo-

sitionX
s
dkðIk 2 PÞ2 ¼

X
s
dkðtk 2 PÞ2 þ

X
s
dkðIk 2 tkÞ

2 ð6:4Þ

where
P

s dkðtk 2 PÞ2 represents “variance explained”. The cross product term is zero

because
P

s dkðIk 2 tkÞx
0
k ¼ 0 0. Dividing through in (6.4) by

P
s dk we get

Pð1 2 PÞ ¼ S2
t s;dj

þ Pð1 2 PÞ2 S2
t s;dj

� �
ð6:5Þ

For another useful representation, divide through by P 2 and use (6.2) to obtain

Q 2 1 ¼ D 0S
21
s Dþ Q 2 1 2 D 0S

21
s D

� �
ð6:6Þ

or, in words, Nonresponse odds ¼ Lack of balance þ Residual. This proves Property 1:

0 # D 0S
21
s D # Q 2 1 ð6:7Þ

It also follows that

0 # S2
t s;dj

¼ P2 £ D 0S
21
s D # Pð1 2 PÞ # 1=4 ð6:8Þ

7. Implications for a Responsive Design

Data collection extends in many surveys over some period of time. One may wish to

modify the original design during the course of the data collection, with a view, in the later

stages, to getting a better balanced ultimate response set. We may decide to monitor the

follow-up effort and direct the data inflow in the direction of better balance. We need a

computable indicator to direct such responsive action. Since it is unlikely that a full 100%

response will be attained at a reasonable cost, one may have to stop data collection entirely

at a suitable moment. The response set r and the response rate P ¼
P

r dk=
P

s dk change

as the data collection proceeds, as a result of interventions in the original design. Even

though improved balance may be achieved, the ultimate nonresponse rate can still be

considerable, causing unknown bias in the survey estimates, as further discussed in

Sections 9 and 10.

A balance indicator (abbreviated BI), measured on the unit interval scale, is a useful tool

for responsive design. For any given composition of x k, the indicator should attain the
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maximal value of unity for the perfect balance D ¼ 0. We consider three such balance

indicators, all of them functions of D 0S
21
s D. By (6.2), they are corresponding functions of

the variance S2
t s;dj

of the response probability estimates ûk ¼ tk. Define first

BI1 ¼ 1 2
D 0S

21
s D

Q 2 1
¼ 1 2

S2
t s;dj

Pð1 2 PÞ
ð7:1Þ

By (6.7), 0 # BI1 # 1 for all outcomes (s,r) and any specification of the auxiliary vector

x k. It is akin to 1 2 R 2 in ordinary regression analysis, where R 2 is the coefficient of

determination, measuring the proportion of variation explained.

Balance indicators also contained in the unit interval can be built from various other

functions of D0S
21
s D. It follows from (6.8) that such alternatives include

BI2 ¼ 1 2 4P2D 0S
21
s D ¼ 1 2 4S2

t s;dj
ð7:2Þ

BI3 ¼ 1 2 2P D 0S
21
s D

� �1=2

¼ 1 2 2St s;dj ð7:3Þ

We have 0 # BI1 # BI2 # 1 and 0 # BI3 # BI2 # 1 for any survey outcome (s,r) and

any specification of xk. Under the perfect balance D ¼ �xr;d 2 �xs;d ¼ 0, all three balance

indicators take the maximal value of unity. All three are near unity if the lack of balance

D0S
21
s D is near zero, or, equivalently, if the variance S2

t s;dj
of the estimated response

probabilities is small. The choice in practice between the three is essentially a matter of

taste; one may prefer BI1 because it arises from of the orthogonal components

decomposition. A link to BI3 is mentioned at the end of the section. Table 1 illustrates the

three indicators for three selected situations.

Table 1 illustrates the following: (1) For one and the same situation (table column),

differences between the three balance indicators can be quite pronounced; (2) The two

columns with 1 2 P ¼ 40% illustrate that, by construction, the balance decreases when

the lack of balance D 0S
21
s D increases, and that when the nonresponse rate P is not far from

0.5, BI1 and BI2 are close; (3) It is not contradictory that the balance increases (by all three

indicators) despite a higher nonresponse, as in the comparison of the two columns with the

same lack of balance D 0S
21
s D ¼ 0:2. The explanation lies in Equation (5.1) for D 0S

21
s D:

although nonresponse has gone up from 20% to 40%, it is a considerably reduced squared

distance, ð�xr;d 2 �xs2r;dÞ
0S

21
s ð�xr;d 2 �xs2r;dÞ, between respondents and nonrespondents that

has kept D 0S
21
s D unchanged at 0.2. This emphasizes that the nonresponse rate is not an

adequate tool for assessing the consequences of nonresponse.

Table 1. Values of three balance indicators, as a function of the nonresponse rate 1 2 P and of the lack of

balance D0S21
s D

Balance
indicator

1 2 P ¼ 20%
D 0S

21
s D ¼ 0:2

1 2 P ¼ 40%
D 0S

21
s D ¼ 0:2

1 2 P ¼ 40%
D 0S

21
s D ¼ 0:4

BI1 0.20 0.70 0.40
BI2 0.49 0.71 0.42
BI3 0.28 0.46 0.24
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Interpreting the value of the balance indicator – whether the balance achieved so far in

the data collection is good or not so good, on the unit interval scale – is directly linked to

the choice of the x-vector used in D 0S
21
s D. We have decided at the outset – perhaps

somewhat arbitrarily – on a certain fixed vector composition x k on which to assess

balance. It may contain “traditional” variables such as age and sex, and/or x-variables

considered as good predictors of an important study variable y. The objective is to

influence the data collection in the direction of improved balance, for that particular

vector. One can continuously monitor the balance indicator, compute it several times,

before and after modifications of an original data collection design. To keep the x-vector

composition fixed is essential in comparing the balance achieved in different surveys

conducted in the same country, or in comparing different countries with respect to one and

the same survey, such as the Labour Force Survey. But achieving high balance for the

chosen x-vector is no guarantee of low or negligible bias in the estimates made in the

survey. The bias adjustment involves lack of balance as one out of three factors, as seen

when we come to the estimation stage in Sections 8 and 9.

We need to examine how the balance indicators behave when several alternative

x-vectors are at hand for defining D0S
21
s D, and thereby the three indicators. Suppose

the choice is between two auxiliary vectors x1k and x2 k, where the more extensive one, x2k,

contains all the variables in the weaker one, x1k, plus one or more additional ones, linearly

independent of those in x1k. Then D 0S
21
s D is greater for x2k than for x1k, because

the proportion “variance explained” in (6.4) is greater. Thus, at a given response rate P, the

balance, by any one of the three indicators, is greater for the weaker vector x1k than for the

stronger vector x2k. Although in a sense contradictory, this is logical, because x2k demands

more for achieving balance: it involves more means for which equality is required. It is

easier to obtain balance for a less extensive x-vector than for a more extensive one. The

most striking illustration of this is that the weakest possible auxiliary vector, xk ¼ 1, gives

an “automatic perfect balance,” BIj ¼ 1 for j ¼ 1; 2; 3, and for any outcome (s,r), yet that

vector is essentially useless for nonresponse adjustment.

An indicator similar to (and sometimes identical to) BI3 in (7.3) was proposed by

Schouten, Cobben, and Bethlehem (2009) and called by them “representativity indicator.”

Their derivation is based on the variability of estimated response probabilities, and on the

notion that a small variability of such estimates might indicate a “representative set of

respondents,” for a given x-vector. (As Section 1 points out, there are historical aspects on

the relation between “representativity” and “balance.”) The estimates ûk may be derived in

different ways; the authors use a logistic regression fit to obtain first b̂, then

ûk ¼ exp ðx0kb̂Þ=½1 þ exp ðx0kb̂Þ� for k [ s, and their variance, S2

û
, is computed. The

authors propose the “R-indicator” R ¼ 1 2 2S
û
, in close resemblance with (7.3). For one

and the same vector x k, the numerical difference between R and BI3 is often

inconsequential; sometimes the two indicators are equal, as in the case of simple random

sampling when the logistic model is estimated by maximum likelihood, and xk is the

classification vector, xk ¼ gk ¼ ð0; : : : ; 1; : : : ; 0Þ0. The authors illustrate the use of the

R-indicator for a follow-up study for the Dutch Labour Force Survey (LFS) in 2005. Two

follow-up samples of the LFS nonrespondents were “approached once more using either a

call-back approach : : : or a basic question approach.” They compute the R-indicator for

three data sets: LFS alone, LFS plus call-back, and LFS plus basic question. It is concluded
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that the basic question approach is likely to “give more of the same,” consequently the

R-indicator does not improve (does not get larger). But an increase, although modest, in

the R-indicator was noted when the call-back respondents are added to the LFS

respondents. In that study, 14 categorical auxiliary variables were used in estimating the

logistic regression model for the response probabilities.

8. Estimating Influences

A possibly improved balance at the data collection stage does not alter the fact that

adjustment weighting is necessary at the estimation stage. A duality exists between

“estimating the response probabilities uk” as in Section 6, and “estimating the influences

fk ¼ 1=uk” as in this section. We expect a correspondence between the two. The rationale

for estimating the fk is that if they were known,
P

r dkfkyk would be a preferred

estimator, unbiased for the total Y ¼
P

U yk. But since they are unknown,
P

r dkfkyk

is an unattainable ideal. Hence, we seek estimates f̂k of the fk, then construct

Ŷ ¼
P

r dkf̂kyk. Unavoidably, this compromise is biased, but possibly only to a modest

extent, if a powerful auxiliary vector can be specified to derive f̂k.

Predictions f̂k of the unknown fk are produced from two requirements, (i) a linear

form, f̂k ¼ l 0xk, and (ii) a calibration to the sample level, inspired by the first part of (3.2)

with ak ¼ xk and fk ¼ f̂k, that is,
P

r dkf̂kxk ¼
P

s dkxk. We get f̂k ¼ mk, where

mk ¼
X

s
dkxk

� �0 X
r

dkxkx
0
k

� �21

xk ð8:1Þ

The same predictions f̂k ¼ mk are also obtainable by a least squares fit. Consider

fk ¼ 1=uk as a conceptually defined number tied to unit k. Determine l to minimize the

weighted sum of squares
P

r dkðfk 2 l 0xkÞ
2. The estimating equation (by differentiating

with respect to l) is
P

r dkfkx
0
k 2 l 0

P
r dkxkx

0
k ¼ 0 0. It cannot be solved for l as is,

because
P

r dkfkxk contains the unknown fk. We replace that sum by its computable

expected value
P

s dkxk to obtain the equation
P

s dkx
0
k 2 l 0

P
r dkxkx

0
k ¼ 0 0; solving now

for l we get again the estimated influences f̂k ¼ mk. The resulting calibration estimator

of the total Y ¼
P

U yk is therefore

ŶCAL ¼
X

r
dkmkyk ð8:2Þ

where the mk given by (8.1) have the interpretation of estimates of the unknown influences

fk ¼ 1=uk; furthermore, they satisfy the calibration
P

r dkmkxk ¼
P

s dkxk.

Remark For some x-variables, information may exist up to the level of the population.

That is, for the vector x*
k composed of these variables, the population total

P
U x*

k is

known. The auxiliary vector is then

xk ¼
x*

k

x+k

0
@

1
A
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where x+k contains the x-variables whose unknown population total is estimated without

bias by
P

s dkx
+
k. The calibration equation is then

X
r

dkm*
kxk ¼

X
U
x*

kX
s
dkx

+
k

0
B@

1
CA

The bias of the resulting estimator
P

r dkm*
kyk is, in the leading term, the same as that of

(8.2) (see Särndal and Lundström 2005), but the variance may be significantly smaller.

Since we focus on bias, it is sufficient here to consider the factors (8.1). A

Different x-vectors are more or less effective for reducing the bias remaining in ŶCAL.

The primitive x-vector, xk ¼ 1 for all k, serves as a benchmark; it gives mk ¼ Q ¼ 1=P

for all k, and ŶCAL becomes ŶEXP ¼ N̂�yr;d, where �yr;d ¼
P

r dkyk

� �
=
P

r dk, N̂ ¼
P

s dk,

and EXP stands for “expansion” (of the respondent mean).

The weight factor mk given by (8.1) is computable for k [ s (but used in ŶCAL only for

k [ r). Moments can be computed. We need the mean over s, and mean and variance over r:

�ms;d ¼
X

s
dkmk

.X
s
dk; �mr;d ¼

X
r

dkmk

.X
r

dk;

S2
m r;dj

¼
X

r
dkðmk 2 �mr;dÞ

2
.X

r
dk

We have
P

r dkmk ¼
P

s dk by (4.1), and
P

r dkm2
k ¼

P
s dkmk. We develop to obtain

�ms;d ¼ Q £ �x 0 s;dS
21
r �xs;d; �mr;d ¼ Q ¼ 1=P;

S2
m r;dj

¼ �mr;dð �ms;d 2 �mr;dÞ ¼ Q 2 £ D 0S
21
r D

ð8:3Þ

where �xs;d and Sr are defined in (4.3) and (4.2), and D ¼ �xr;d 2 �xs;d as before. It follows

that 0 # D0S
21
r D ¼ �x 0 s;dS

21
r �xs;d 2 1, which proves the second part of (4.5). We have

cvm r;dj ¼ Sm r;dj = �mr;d ¼ D0S
21
r D

� �1=2

ð8:4Þ

The two coefficients of variation, cvm r;dj ¼ D 0S
21
r D

� �1=2

in (8.4) and cvt s;dj ¼�
D0S

21
s D

�1=2
in (6.3), are strikingly similar. Only the weighting matrices differ in D 0S

21
r D

and D 0S
21
s D. Both measure lack of balance. But whereas cvt s;dj # ðQ 2 1Þ1=2, we cannot

state an upper bound on D0S
21
r D or on cvm r;dj .

The decomposition (6.4) has a counterpart here, namely when we expand the sum of

squares
P

s dkðIkmk 2 1Þ2, which measures the variability of the quantities Ikmk for k [ s

around their mean
P

s dkIkmk=
P

s dk ¼ 1. Let Ikmk 2 1 ¼ Ikðmk 2 QÞ þ ðIkQ 2 1Þ, and

develop the square to obtain the orthogonal components decompositionX
s
dkðIkmk 2 1Þ2 ¼

X
s
dkIkðmk 2 QÞ2 þ

X
s
dkðIkQ 2 1Þ2 ð8:5Þ

The cross product term is zero because
P

s dkIkðmk 2 QÞðIkQ 2 1Þ ¼ 0. Simplifying

each term and dividing through by Q £
P

s dk

� �
, we can write the decomposition as

1 2 P þ D 0S
21
r D ¼ D 0S

21
r Dþ ð1 2 PÞ ð8:6Þ
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There is no upper bound apparent on D 0S
21
r D, but (8.5) and (8.6) do lead to an upper

bound, explained at the end of Section 9, on the deviation of ŶCAL from the unbiased but

unattainable estimate ŶFUL.

9. Consequences for the Estimation Stage

When the estimation stage begins, the objective has shifted from “obtaining a better

balanced response set” to “realizing an effective nonresponse bias adjustment,” given the

ultimate response set r. We can view this as a process starting with the primitive, or

benchmark, estimator ŶEXP ¼ N̂�yr;d, generated by xk ¼ 1, and proceeding in the direction

of improved (less biased) estimators, ŶCAL ¼
P

r dkmkyk with weight factors mk given by

(8.1), calibrated on increasingly powerful x-vectors. The ideal but unattainable unbiased

estimator for full response is ŶFUL ¼
P

s dkyk. Conceptually, two deviations are of

interest:

ŶCAL 2 ŶFUL ¼
X

s
dkðIkmk 2 1Þyk; ŶEXP 2 ŶFUL ¼

X
s
dkðIkQ 2 1Þyk

If computable, ŶCAL 2 ŶFUL would be an estimate of the bias remaining in ŶCAL, and

ŶEXP 2 ŶFUL would be an estimate of the usually larger bias of the benchmark ŶEXP.

We define the (empirical) bias ratio, for given outcome (s,r), given y-variable and given

x-vector, as

bias ratio ¼
ŶCAL 2 ŶFUL

ŶEXP 2 ŶFUL

A third important deviation measures the change in the estimate,

ŶEXP 2 ŶCAL ¼
X

s
dkIkðQ 2 mkÞyk ¼ N̂�yr;d 2

X
r

dkmkyk

Then

bias ratio ¼ 1 2
ŶEXP 2 ŶCAL

ŶEXP 2 ŶFUL

with a computable numerator ŶEXP 2 ŶCAL, called the adjustment. It serves to compare

alternative x-vectors, one of which will be finally used for ŶCAL. When the x-vector

becomes more powerful, the adjustment ŶEXP 2 ŶCAL tends to increase (in absolute value),

indicating a shrinking bias; the unknown denominator ŶEXP 2 ŶFUL stays constant.

The adjustment divided by N̂ ¼
P

s dk can be written with the aid of (4.1) and (4.4) as

the bilinear form

ŶEXP 2 ŶCAL

N̂
¼ D 0S

21
r C ð9:1Þ

where the component Cj of C ¼ ðC1; : : : ;Cj; : : : ;CJÞ
0 is the covariance between

auxiliary variable xj and the study variable y,

Cj ¼ Covðxj; yÞ ¼
P

r dkðxjk 2 �xj r;dj Þ ð yk 2 �yr;dÞ=
P

r dk.

Perfect balance, D ¼ 0, implies ŶEXP ¼ ŶCAL, and no adjustment occurs: the calibration

estimator will not distance itself from the primitive one. But this does not guarantee a
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small bias; the unknown deviation ŶCAL 2 ŶFUL may still be far from zero. The adjustment

is also null if C ¼ 0, that is, in a complete absence of y-to-x relationship.

It is convenient to measure the adjustment in standardized units. Let

S2
y ¼ S2

y r;dj
¼

P
r dkð yk 2 �yr;dÞ

2=
P

r dk, where �yr;d ¼
P

r dkyk=
P

r dk. The standardized

adjustment is defined as

StAdj ¼
ŶEXP 2 ŶCAL

N̂ £ Sy

ð9:2Þ

It measures the effectiveness for bias reduction of the auxiliary vector xk used in ŶCAL.

More specifically, StAdj is the number of standard deviations that the improved mean

estimate ŶCAL=N̂ has moved away from the primitive mean estimate ŶEXP=N̂. For example,

if StAdj ¼ 0:16, then ŶCAL=N̂ ¼ ŶEXP=N̂ 2 0:16Sy, stating that ŶCAL=N̂ has become 0.16

standard deviations removed (to the negative side) from the primitive mean estimate, and

there is reason to believe that part of the distance to the ideal estimate ŶFUL=N̂ has been

bridged. Although 0:16Sy may seem modest, it should be assessed in relation to an

indication of standard error of the estimated mean; a conservative one is Sy=
ffiffiffi
n

p
, which for

n ¼ 10; 000 takes the much smaller value 0:01Sy. In such a situation, the squared bias is

likely to be the completely dominating component of the MSE.

We write the standardized adjustment as a product of three easily interpreted and

computable factors,

StAdj ¼
ŶEXP 2 ŶCAL

N̂ £ Sy

¼ cvm r;dj £ Ryx £ RDC ð9:3Þ

where

cvm r;dj ¼ D 0S
21
r D

� �1=2

; Ryx ¼
C 0S

21
r C

� �1=2

Sy

;

RDC ¼
D 0S

21
r C

D 0S
21
r D

� �1=2

C 0S
21
r C

� �1=2

Their product equals D 0S
21
r C=Sy, confirming (9.1). In practice, a typical range for the

first factor, cvm r;dj ¼ ðD 0S
21
r DÞ1=2, is 0 # cvm r;dj # 0:8. As noted earlier, D 0S

21
r D $ 0 is

a measure of lack of balance with value zero under the perfect balance D ¼ 0. As for the

second factor, it can be shown that R2
yx ¼ C 0S

21
r C=S2

y is the coefficient of determination

(the proportion of variance explained) for the (dk-weighted) multiple regression fit of yk on

xk, k [ r. Hence 0 # Ryx # 1. Finally,
�
D 0S

21
r C

�2
=
�
D0S

21
r D

��
C 0S

21
r C

�
¼ R2

DC can be

interpreted as the coefficient of determination in a weighted least squares fit of a regression

through the origin of Dj on Cj, j ¼ 1; 2; : : : ; J. We have 21 # RDC # 1, and RDCj j ¼ 1 if

the perfect proportionality Dj ¼ K £ Cj; j ¼ 1; 2; : : : ; J, holds for some constant K.

Hence RDCj j measures the degree to which large differences Dj ¼ �xj r;dj 2 �xj s;dj between

respondents and full sample are matched with large correlations between y and xj. These

properties were shown in Särndal and Lundström (2010).

For data encountered in practice, StAdjj j is seldom greater than 0.30. To illustrate

with fairly typical numbers, if cvm r;dj ¼ 0:4, Ryx ¼ 0:8, RDC ¼ 0:5, then StAdj ¼ 0:16.
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In order for StAdj to be numerically important, each of its three factors needs to be

distinctly nonzero. Even if y and x are strongly related, with a coefficient of determination

R2
yx of say 0.90, StAdjj j is small if the other two factors are near zero.

We use the sum of squares on the left-hand side of (8.5) to establish an upper bound

on the deviation of ŶCAL from the unbiased estimate ŶFUL which we would prefer

but cannot obtain. Although the bound is not sharp, it shows the maximum deviation

that can occur given the survey outcome (s,r), and it can be of a certain guidance.

To establish the bound, define the full sample moments �ys;d ¼
P

s dkyk=
P

s dk and

S2
y s;dj

¼
P

s dkð yk 2 �ys;dÞ
2=

P
s dk, and the regression residuals for the (hypothetical)

full sample least squares fit, ek ¼ yk 2 x0kBs with Bs ¼
P

s dkxkx
0
k

� �21P
s dkxkyk.

Then �es;d ¼
P

s dkek=
P

s dk ¼ 0 by (4.1), and
P

s dkðIkmk 2 1Þx 0kBs ¼ 0. Hence

ŶCAL 2 YFUL ¼
X

s
dkðIkmk 2 1Þyk ¼

X
s
dkðIkmk 2 1Þek

By the Cauchy-Schwartz inequality

X
s
dkðIkmk 2 1Þ2

h i X
s
dk e2

k

� �h i
$

X
s
dkðIkmk 2 1Þek

h i2

¼ ðŶCAL 2 ŶFULÞ
2

Let S2
e s;dj

¼
P

s dke2
k=

P
s dk be the residual variance. Then with the use of (8.5)

and (8.6)

ŶCAL 2 ŶFUL

�� ��
N̂ £ Sy s;dj

# Q 2 1 þ Q £ D 0S
21
r D

� �1=2

£
Se s;dj

Sy s;dj

ð9:4Þ

Suppose the nonresponse rate is 1 2 P ¼ 20%, the lack of balance D 0S
21
r D ¼ 0:08,

and the explained portion of the y-variance

1 2
S2

e s;dj

S2
y s;dj

¼ 90%

Then

ŶCAL 2 ŶFUL

�� ��
N̂ £ Sy s;dj

# ð0:25 þ 1:25 £ 0:08Þ1=2 £ ð0:1Þ1=2 ¼ 0:19

This states that for any y-variable, the computable mean estimate ŶCAL=N̂ and the ideal

but unattainable mean estimate ŶFUL=N̂ differ by at most 0.19 standard deviations Sy s;dj
.

The size of the nonresponse is decisive. If the nonresponse rate increases to 1 2 P ¼ 40%

and the lack of balance to D0S
21
r D ¼ 0:32, while the explained portion of the y-variance

remains at 90%, then the upper bound in (9.4) increases considerably to 0.35.

For any given survey outcome (s,r), the upper bound in (9.4) applies to any y-variable

of interest in the survey, including for example those with markedly skewed distribution.

The bound conveys a certain message. To make it a computable indicator of the survey

situation, it is suggested that one replaces all sums over s in S2
y s;dj

and S2
e s;dj

by sums over

r and changes the weighting from dk into dkmk.
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10. Empirical Illustration

A realistic goal for the data collection is a high degree of balance in the ultimate response

set, as measured in Section 7 by BI1 ¼ 1 2 D 0S
21
s D=ðQ 2 1Þ, or two alternatives. But

whether or not a satisfactory balance has been achieved at that stage, the estimation stage

requires adjusting all y-variable estimates in the survey. To that end, we need to build an

effective x-vector on which to compute the weights mk in the estimator (8.2). Formula

(9.3) shows the standardized adjustment StAdj as a product of three factors, the first of

which, cvm r;dj ¼ ðD 0S
21
r DÞ1=2, has the advantage of being a function of the chosen

x-vector but not of the study variable y. We seek a vector xk that brings an important

adjustment StAdj. In practice, a value StAdjj j greater than 0.30 is rare, so 0.30 must be

considered large. Factors that contribute to a sizeable StAdjj j are:

i) a high lack of balance to be compensated for (the factor cvm r;dj ¼ D 0S
21
r D

� �1=2

);

ii) a high degree of relationship y-to-x (the factor Ryx);

iii) a high correlation between Dj and Cj (the factor RDCj j).

Suppose that the x-vector is built from scratch, starting with the trivial xk ¼ 1, and adding

successively more x-variables from a perhaps extensive list of available ones. The effect of

adding one or more variables to any given x-vector is to increase both cvm r;dj and Ry;x, but

the product StAdj does not necessarily increase in absolute value. It increases up to a point.

More specifically, the pattern when new x-variables are added to x k is that RDCj j shows a

decreasing tendency; in the beginning, StAdjj j increases, but at a certain point the

admission of new x-variables will cause StAdjj j to decrease, namely when the increases in

cvm r;dj and Ryx are more than offset by the decrease in RDCj j.

The stepwise forward selection of auxiliary variables to build the vector x k requires

a selection criterion whose computed value serves to trigger the selection of a new

x-variable in each step. Three such criteria have been used in experiments at Statistics

Sweden:

H1 ¼ cvm r;dj £ Ryx £ RDCj j; H2 ¼ cvm r;dj £ Ryx;

H3 ¼ cvm r;dj ¼ D 0S
21
r D

� �1=2
ð10:1Þ

An advantage with the criterion H3 is its independence of the y-variable(s). It produces a

selection of x-variables that can be viewed as a compromise for the perhaps numerous

y-variables addressed in the survey. In Step 1, H3 selects the x-variable that is responsible

for the greatest lack of balance D0S
21
r D; added in Step 2 is the variable accounting for the

greatest lack of balance, given the first entered variable, and so forth. The criteria H2 and

H3 increase in each step. Typically, the increments are at first large; when they become

trivially small, it is a signal to stop. The criterion H1 ¼ StAdjj j is tailor-made for a specific

y-variable and can be expected to be more efficient than H3 for that particular y-variable,

but not for all the rest. In the stepwise entering of one variable at a time, the typical pattern

is that H1 increases for a number of steps but eventually turns around and starts to decline,

for the reason given above, namely that the decrease in RDCj j more than outweighs

the increases in cvm r;dj and Ry;x. For the criterion H1, one might use the turning point as

a stopping rule.
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To illustrate these issues we consider features of an experiment with Swedish data

described in further detail in Särndal and Lundström (2010). The data consist of one single

simple random sample s of n ¼ 2; 000 persons drawn from the Swedish Register of the

Total Population. The overall response rate was 50.8%. Auxiliary variable selection was

carried out in the experiment from a list of 12 categorical x-variables with values known

for k [ s. Another variable, also with a value known for k [ s, served as the study variable

in this experiment, namely the dichotomous variable Employed with value 1 or 0. Hence

we can compute the full sample (unbiased) estimate, which is ŶFUL ¼ 427 £ 104, and use it

as a benchmark. At Step 0, the auxiliary vector is the trivial xk ¼ 1, and the benchmark

estimate is ŶEXP ¼ N̂�yr;d ¼ 472 £ 104, a severe overestimation of 10.7% compared with

ŶFUL. At each subsequent step, the criterion is computed for every one of the categorical

x-variables remaining in the list; the variable corresponding to the highest value of the

criterion is selected and entered into the x-vector; the weights dkmk and the estimate

ŶCAL ¼
P

r dkmkyk for that new x-vector are computed. The important changes in ŶCAL

typically occur in the first few steps; the changes quickly taper off.

Table 2 shows the stepwise selection of the first eight variables with the criterion H3,

which reaches a level of around 0.38, a fairly typical value. Table 3 shows the first

eight to be selected with H1, which reaches a level of around 0.12, also fairly typical.

Table 2. Stepwise forward selection, criterion H3, study variable Employed. Successive values of H3 £ 103, of

ŶCAL £ 1024, and of RDEV ¼ ðŶCAL 2 ŶFULÞ=ŶFUL £ 102. For reference, ŶFUL £ 1024 ¼ 427. In parenthesis

the number of categories of the auxiliary variable

Step Auxiliary variable entered H3 £ 103 ŶCAL £ 1024 RDEV

0 (Trivial) 0 472 10.7
1 Education level (3) 186 452 6.0
2 Cluster of postcode areas (6) 250 451 5.6
3 Country of birth (2) 281 450 5.5
4 Income class (3) 298 437 2.4
5 Age class (4) 354 440 3.1
6 Sex (2) 364 438 2.8
7 Urban centre dwelling (2) 374 438 2.6
8 Indebtedness (3) 381 436 2.3

Table 3. Stepwise forward selection, criterion H1, study variable Employed. Successive values of H1 £ 103, of

ŶCAL £ 1024, and of RDEV ¼ ðŶCAL 2 ŶFULÞ=ŶFUL £ 102. For reference, ŶFUL £ 1024 ¼ 427. In parenthesis

the number of categories of the auxiliary variable

Step Auxiliary variable entered H1 £ 103 ŶCAL £ 1024 RDEV

0 (Trivial) 0 472 10.7
1 Income class (3) 76 446 4.5
2 Education level (3) 107 435 2.0
3 Presence of children (2) 114 433 1.4
4 Urban centre dwelling (2) 118 431 1.1
5 Sex (2) 123 430 0.7
6 Marital status (2) 125 429 0.5
7 Days unemployed (3) 121 430 0.9
8 Months with sickness benefits (3) 120 431 1.0
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Table 3 illustrates the turn-around of H1, occurring at Step 6. In Table 3 the estimates ŶCAL

stabilize after four steps at around 430 £ 104, which is closer to the unbiased estimate

ŶFUL ¼ 427 £ 104 than what is obtained with H3 in Table 2, where the estimate stabilizes

at around 438 £ 104. This can be expected since H1 is tailor-made for the y-variable.

11. Concluding Remarks

This article has extended the idea of balancing to the context of survey nonresponse: The

set of respondents should be balanced vis-à-vis the whole probability sample. The notion

of lack of balance is central; it is defined as a quadratic form in the differences in auxiliary

variable means between the response set and the whole sample. Our measure of balance is

“lack of balance with the opposite sign,” and confined to the unit interval. At the data

collection stage one may use aspects of responsive design to achieve good balance in an

ultimate set of respondents. A pressing objective remains nevertheless for the estimation

stage: To adjust for the bias that still affects the estimates. The size of the adjustment has

remaining lack of balance as one of its factors; two others are also important. One is the

strength of the relationship between the study variable y and the auxiliary vector x, the

other is the degree to which large auxiliary variable mean difference between respondents

and full sample is matched with large correlation between that auxiliary variable and the

study variable. Further work would include more in-depth study of the three factors and of

how they interact.
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