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A Bayesian network is a graphical model of the joint probability distribution for a set of
variables. A Bayesian network could be used to create multiple synthetic data sets that are
then released by an official statistics agency while the original data remain confidential, so
that an analyst outside the agency can explore associations between an attribute of interest and
other variables. The process is illustrated with an example. Inferences from the original data
are compared to inferences from synthetic data created by a single Bayesian network and by
Bayesian model averaging over a set of networks. Informative prior information is needed in
order to assign appropriate weights to each network in this set if synthetic data are to have both
good inferential properties and an acceptable risk of disclosure. This sensitivity to prior
information will make it difficult for an official statistics agency to use Bayesian networks to
automate the process of creating synthetic data.
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1. Introduction

A Bayesian network is a graphical model of the joint probability distribution for a set of

variables. The model has two components: a graphical structure and a set of conditional

probability distributions. Such a model is sometimes called a belief network. A Bayesian

network is typically used for probabilistic inference about one variable in the network

given the values of other variables. Ramoni and Sebastiani (2001) construct a Bayesian

network to summarise relationships between the variables collected in a household survey.

They suggest that users outside an official statistics agency could access this Bayesian

network via the internet and carry out their own inference without having direct access to

the original data, thus preserving data confidentiality.

Bayesian networks have also been used to impute missing survey data (Di Zio et al.

2004). These authors then suggest that a Bayesian network could be used to create a

synthetic data set; Thibaudeau and Winkler (2002) make a similar suggestion. However,

inference from synthetic data requires multiple synthetic data sets. These synthetic data
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sets could be released for wider use while the original data remain confidential. The

method is an extension of multiple imputation, and was developed by Rubin (1993); Reiter

(2002) and Raghunathan et al. (2003). Reiter (2005) uses a sequence of generalised linear

models to create an appropriate multiple imputation model. Graham and Penny (2007)

take a hierarchical Bayesian approach that allows for uncertainty in a generalised linear

model specified a priori for the original data (Albert 1988; Christiansen and Morris 1997)

so that their synthetic data are robust to misspecification of this generalised linear model.

They note that while a Bayesian network could be used as a multiple imputation model,

synthetic data from a network would be conditional on the network selected. They suggest

using Bayesian model averaging to account for uncertainty in the selection process so that

the resulting synthetic data are robust to network mis-specification (Graham and Penny

2007, p. 41). Madigan and Raftery (1994) consider Bayesian model averaging in the

context of graphical models.

A Bayesian network can be seen as an automated method of “learning” about

probabilistic relationships in data (Heckerman et al. 1995; Ramoni and Sebastiani 2001).

An automated method of creating synthetic data – that is, one that requires little

information from the user – would clearly appeal to an official statistics agency (see

comments in both Ramoni and Sebastiani 2001; Thibaudeau and Winkler 2002). But

although a number of authors have suggested using a Bayesian network to create synthetic

data (Thibaudeau and Winkler 2002; Di Zio et al. 2004; Graham and Penny 2007), the

approach does not seem to have been tried.

2. An Example

We illustrate a Bayesian network approach to creating synthetic data using the institutional

care data set of Graham and Penny (2007) and Graham et al. (2009). The data consist of

five variables: age (in 10 five-year categories), sex, ethnicity (two minorities, Maori and

Pacific Islanders, and the non-Maori non-Pacific Islanders majority), highest educational

qualification (none, secondary and post-secondary) and an indicator for permanent

residence in a health care institution. Note that for highest educational qualification, we

combine trade and tertiary qualifications into a single post-secondary school category,

whereas Graham et al. (2009) use all four categories. Hence by cross-classifying all

variables, these data can be represented by a table of frequency counts with 360 cells.

The institutional care data set is challenging from both analytic and confidentiality

perspectives. The prevalence of institutional care in these data is only 0.3%. This and the

uneven distribution of both ethnicity and highest educational qualification lead to many

cells with small counts. Ethnic groups differ in size from 1,664,481 for the non-Maori non-

Pacific Islanders majority to 219,126 for Maori and 74,841 for Pacific Islanders. The

distribution of highest educational qualification varies with ethnicity: 41% of the non-

Maori non-Pacific Islanders majority have a post-secondary school qualification but only

25% and 21% of Maori and Pacific Islanders respectively are in this category. The number

in institutional care is low in many subgroups: when summed over the 20 categories of age

and sex, only 76 Maori and 31 Pacific Islanders with post-secondary school qualification

are in institutional care. Within the 360 cell cross-classification, 22 cells have a frequency
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of one and 19 cells have a frequency of zero. Graham and Penny (2007, pp. 18–20)

describe how these data were collected.

We envisage a scenario in which a researcher (Reiter’s “analyst”) requests a data set

with a clear analytic focus (here institutional care) and an official statistics agency

(Reiter’s “imputer”) wishes to release synthetic data suitable for the analyst’s purpose

(Reiter 2005, p. 187). We assume the imputer would want to create synthetic data that give

almost the same estimates as the real data for any logistic model for institutional care

whose complexity is less than a model with all associations between institutional care and

any pair of predictor variables. If the imputer achieves this, the synthetic data will be

released together with a statement advising the analyst of this limitation. Reiter notes that

the imputer needs to release information to help the analyst decide whether the synthetic

data are suitable for their analysis (Reiter 2005, p. 189).

We use two logistic regression models to assess the impact of synthetic data on

inference. The first model – the “main effects” model – has institutional care as the

response and all other variables as predictors without any interaction terms. The second

model – the “one way interaction” model – has additional terms representing all one way

interactions between every pair of predictor variables. In both models, age is treated as a

continuous variable. Having fit a Bayesian network model to the institutional care data set,

we use the fitted network as a multiple imputation model and generate 100 synthetic data

sets each of the same size as the original data set (approximately 2 million individuals).

Both main effect and one way interaction logistic models are fit to each of the synthetic

data sets in turn. Overall estimates for logistic model parameters and their standard errors

are then calculated from the 100 estimates, one for each synthetic data set, using the

combining rules given by Reiter (2002). Finally these overall estimates from synthetic data

are compared to estimates the analyst would have obtained had the analyst been able to fit

these two logistic regression models to the real data.

Synthetic data reduce but do not eliminate the risk of disclosure, and whether this risk is

acceptable or not to an official statistics agency depends on context. To assess the relative

risk of disclosure, we provide plots of the median synthetic cell count versus the real cell

count. An analyst might be tempted to use the summary statistics of synthetic data to

predict the number of individuals in the real data that belong to a particular subgroup, and

this sort of predictive disclosure is less likely if real counts are more variable for any given

median synthetic count. In addition, we give the percentage of cells with a real count of

one among cells with a median synthetic count of one. This is a synthetic data equivalent

to the risk of inferring uniqueness in a population given uniqueness in a sample (see, for

example Fienberg and Makov 1998). Hence plots showing the variability of real cell

counts for a given median synthetic cell count and the percentage of real cell counts of one

in cells with a median synthetic count of one are both relative measures with which we can

compare the disclosure risk inherent in synthetic data from different imputation models.

3. Bayesian Networks

A Bayesian network consists of a graphical structure and a set of conditional probability

distributions. The graphical structure is a set of nodes, each node representing a discrete or

continuous variable, and a set of arrows between nodes. Probabilistic inference from
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a Bayesian network requires that arrows from one node do not lead back to that same node

(Jensen 2001, p. 19) and so if feedback is a feature of the variables being modelled, then a

sequence of nodes can be used to represent the same variable at different times (see

Neapolitan 2004, pp. 265–269). In the language of Bayesian networks, if there is an arrow

from one node to another, the former is the “parent” node and the latter the “child.”

Associated with each node is a conditional probability distribution. This gives the

probability of each value of a node given the values of its parents. The absence of an arrow

between two nodes implies conditional independence; that is, the two variables

represented by these nodes are independent given knowledge of the values of their parents.

When constructing a Bayesian network, it is usually easier to specify “root causes” first

and then the variables they influence and so on. Connecting each node in this way ensures

the network is acyclic and should lead to a simpler network, with fewer arrows and with

conditional probability distributions that are easier to think about and assign values to

(Russell and Norvig 1995, pp. 441–443). However, the arrows in a Bayesian network do

not imply causality. A Bayesian network is a model for an overall joint probability

distribution for the set of variables, and several networks with arrows in different

directions may imply the same set of conditional independence relationships (Cowell et al.

1999, pp. 252–253).

A Bayesian network is typically used for probabilistic inference about one variable in

the network given the values of other variables. The usual rules of probability are applied

to the set of conditional probability distributions, one for each node. In particular,

inference makes use of Bayes’ rule (see Cowell et al. 1999, p. 15) and this gives Bayesian

networks its name, rather than any commitment to Bayesian methods. In practice,

constructing a Bayesian network requires selecting an appropriate structure for the

network and then estimating its parameters. Current methods attempt to carry out both

tasks concurrently, rather than simply estimating the parameters of a network asserted by a

subject-matter expert. Network selection has two sub-tasks (Cowell et al. 1999,

pp. 243–263): searching for suitable networks and evaluating the various networks

found. A variety of methods of searching and evaluation have been proposed

(Tsamardinos et al. 2006).

4. Synthetic Data from a Single Network

4.1. Methods

Bottcher and Dethlefsen (2003) have written Bayesian network software that uses the R

system for statistical computing and graphics (R Development Core Team 2004). Their

software, “deal,” is a Bayesian implementation of a Bayesian network. That is, the user

must specify a prior network and prior conditional distributions for its nodes; observed

data are then used to update both the network and its conditional distributions. For a

discrete node, the observed data are represented by a set of multinomial conditional

probabilities and the prior distribution for these conditional probabilities is Dirichlet, as is

usual in a Bayesian implementation of a Bayesian network (see Heckerman et al. 1995;

Cowell et al. 1999, p. 193).
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Although this software allows continuous nodes, all the networks in our example consist

entirely of discrete nodes. There are two reasons for this. First, the example we use has a

binary attribute as its focus. It is natural to think of this variable as at the end of a chain of

influence. Exact probabilistic inference is only possible if normal distributions are used for

continuous nodes and if a continuous parent does not have a discrete child (Jensen 2001,

p. 69; Cowell et al. 1999, pp. 125–136). To avoid assigning continuous parents to our

binary attribute, each continuous parent must be categorised into discrete intervals.

Essentially this reduces the network from a mixture of continuous and discrete nodes to

one that consists entirely of discrete nodes. Second, the code required to create synthetic

data is much easier to adapt from code already available in “deal” if a network has only

discrete nodes.

In “deal,” the user specifies a prior network structure and prior conditional probability

distributions for each of the structure’s nodes. The user also specifies the size of an

imaginary database that would give rise to this prior information, as a way of expressing

confidence in this prior. Data are used to update the probability distribution for each node.

Under certain assumptions, using the data and prior one can then calculate a posterior joint

probability distribution for any other network structure for these nodes (Heckerman et al.

1995). A “greedy” search algorithm is used to generate alternative network structures and

to select the structure with the highest posterior probability given data and prior.

In the absence of user-supplied prior information, certain defaults operate. These are:

the prior network structure is one where all nodes are independent; prior conditional

distributions for each node have equal probabilities for each category; and the size of the

imaginary database is set to twice the inverse of the largest joint prior probability. (With

all nodes independent and equal probabilities for each category of each node, this default

for the size of the imaginary database is equivalent to two observations for each cell in a

cross-classification of all discrete variables. Other noninformative defaults have been

suggested – see Heckerman et al. (1995, p. 212).)

There is, however, no easy way to specify prior probabilities for different network

structures. Hence the network selected in a “greedy” search has the highest posterior

probability only if the user considers a priori that all network structures are equally likely.

The user can provide some prior information about admissible network structures by

specifying a “ban list.” This is a list of arrows that the user is willing to rule out. In essence,

this is attaching a prior probability of zero to any network with an inadmissible arrow. For

example, where a binary attribute is at the end of a chain of influence, it makes sense to

ban any arrow from this variable back to other nodes. The “greedy” search algorithm

disregards any network structure containing one of these banned arrows and this reduces

the search space. Using a “ban list,” the user can easily specify an order among variables

and have some control over the sequence of conditional distributions in the model selected

to represent the joint distribution of all variables.

To fit a Bayesian network in “deal” to the institutional care data, we use the method

described by Bottcher and Dethlefsen (2003). In brief: (1) we specify a prior consisting of

a prior network, prior conditional probability distributions for each of its nodes, and our

confidence in this prior information; (2) a joint posterior probability distribution is

calculated for this network given the institutional care data and this prior; and (3) a search

algorithm generates alternative networks and selects the one with the highest posterior
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probability given the data and this prior. This network is then used to generate synthetic

data (Young 2008a, Section 8.1). We consider a sequence of prior network models,

starting with a model that requires no information from the imputer.

4.2. Results

The first network model fitted (Model A) starts with a completely unspecified network as

its prior network, with no arrows between any of the five nodes (Figure 1 left). All defaults

operate: within each node, equal prior probabilities are assumed for each category, and the

imaginary database size is set at 720 (i.e., two observations for each cell in the cross-

classified data). The “greedy” search algorithm leads to a network with institutional care

(InCare) influenced by age, ethnicity (Ethn) and highest educational qualification (Educ)

but not by sex (Figure 1 right). Inference using synthetic data from this network is

discouraging. Even in a main effects model, estimates for synthetic data from this network

differ appreciably from estimates for the real data for all parameters except age (Table 1).

In an effort to improve inference, we provide some prior information about network

structure in Model B.We believe that sex and ethnicity might influence the age structure of

this population but would not influence each other; all three variables might influence the

highest educational qualification held; and all four variables might influence whether

someone is in institutional care. We are then willing to rule out influence in the reverse

direction and these considerations lead to the “ban list” shown in Figure 2 (left). With this

prior network, the “greedy” search algorithm leads to a network with institutional care

influenced by the same variables as before (Figure 2 right). The only real difference

between Models A and B is the absence of an arrow between sex and ethnicity in B – all

other differences are just in the direction of the arrows. Hence both Models A and B lead to

similar inference when fitting a main effects logistic regression model to their respective

synthetic data (Table 1).

The network score given in each figure is the sum of the log marginal probability of each

observation given the network structure and prior information (see Kass and Raftery 1995,

pp. 776–777; Cowell et al. 1999, pp. 248–249). The higher score in Figure 1 implies that

Fig. 1. Model A – its prior network (left) and the result of a “greedy” search (right) [Nodes: InCare,

institutional care; Educ, highest educational qualification; Ethn, ethnicity]
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Table 1. Parameter estimates and their standard errors for a main effects logistic regression model fit to the institutional care data and to synthetic data from Bayesian network

Models A to E

Real data Model A Model B Model C Model D Model E

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b0 28.15 0.07 28.02 0.10 28.01 0.09 27.94 0.09 28.16 0.11 27.82 0.08
bagea 0.61 0.01 0.60 0.02 0.60 0.01 0.60 0.01 0.61 0.02 0.56 0.01
bethn2 20.30 0.09 0.09 0.08 0.09 0.08 0.09 0.09 20.31 0.10 20.09 0.14
bethn3 20.01 0.04 20.18 0.04 20.18 0.04 20.19 0.05 20.01 0.05 0.01 0.06
beduc2 20.92 0.04 20.83 0.03 20.83 0.03 20.82 0.04 20.91 0.04 21.03 0.04
beduc3 21.19 0.04 21.07 0.03 21.07 0.04 21.09 0.04 21.18 0.04 21.12 0.04
bsex 20.18 0.03 20.01 0.01 20.01 0.00 20.17 0.03 20.18 0.03 20.15 0.03
a Age per 10 years.
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Model A is better at predicting the observed data than Model B. By ruling out an arrow

between sex and ethnicity, Model B is simpler than Model A but not as good at predicting

the observed data.

Inference from synthetic data generated by Models A and B suggests that institutional

care is associated with all other variables except sex (Table 1: b̂sex ¼ 20:01). Yet there is

good support in the real data for an association between institutional care and sex – the

point estimate is six times its standard error (Table 1: b̂sex ¼ 20:18, SEb̂ ¼ 0:03).

In Model C, we manually add an arrow between institutional care and sex to Model B

(Figure 3 left). Data generated by Model C reproduce the association seen in the real data

between institutional care and sex (Table 1: b̂sex ¼ 20:17, SE
b̂
¼ 0:03). This is consistent

with Reiter’s observation that relationships not specified in an imputation model cannot be

recovered from its synthetic data (Reiter 2005, p. 194).

Fig. 2. Model B – its prior network (left), with banned arrows shown as dotted lines, and the result of a

“greedy” search (right) [Nodes: InCare, institutional care; Educ, highest educational qualification; Ethn,

ethnicity]

Fig. 3. Model C (left) and Model E (right) – Model D has the same network structure as C, but both Models D

and E are fit with an imaginary database of size one, whereas Model C is fit with an imaginary database of size

720 (the default for these data) [Nodes: InCare, institutional care; Educ, highest educational qualification; Ethn,

ethnicity]
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Synthetic data from Models A to C give consistently poor estimates for ethnicity

parameters. The data for this variable are predominantly in one category, and this leads us

to suspect that prior information is having an unwarranted influence on inference. Our

prior essentially adds two imaginary observations to the count in each cell. The influence

of these prior observations will be greatest in cells with low counts and may affect

parameter estimates associated with rare subgroups. In Model D, we fit Model C again but

set the size of the imaginary database to one to largely remove the influence of the prior.

Data generated by Model D reproduce all associations seen in the real data between

institutional care and other variables (Table 1).

On the other hand, it is not enough to simply assert a network with arrows from all other

variables to institutional care (Model E – Figure 3 right). Synthetic data from Model E

give appreciably worse estimates for most parameters than data from Model D (Table 1).

This parallels the relationship between logit and loglinear models. The loglinear model

that corresponds to a given logit model has associations between the response (i.e.,

institutional care) and each logit predictor (i.e., each of the other variables) and is saturated

with respect to associations between all logit predictors (see Agresti 1990, pp. 152–153).

So to create synthetic data with good inferential properties under logistic regression, it is

necessary to assert a network with arrows from all predictor variables to institutional care

and with arrows between all (or nearly all) pairs of predictor variables.

Variability in real cell counts declines from Models B through to D for a given median

synthetic cell count (Figure 4). As expected, synthetic data with better inferential

properties have a higher risk of predictive disclosure (see Reiter 2005, pp. 188–189).

In synthetic data from Model B, none of the 360 cells have a median count of one; in

Fig. 4. Plots of median synthetic count versus real count in each cell for synthetic data from Models B, C,

and D. Note that cell counts of zero have been shifted to 0.1 and therefore show as 21 on each log scale
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synthetic data from Model C, there are seven cells with a median count of one but none of

these cells correspond to a unique individual in the real data. However, in synthetic data

from Model D there are 20 cells with a median count of one and among these, 14 are cells

with a unique individual in the real data. The influence of prior information is also obvious

in these plots, as the size of the imaginary prior database inflates small cell counts in

synthetic data from Models B and C.

5. Bayesian Model Averaging

5.1. Methods

The Bayesian equivalent to hypothesis testing is to choose the model with the highest

posterior probability among competing models, where each model represents an

alternative hypothesis. Assuming only two models are possible (H1 or H2), the posterior

probability of the first model given data D is (Kass and Raftery 1995):

pðH1jDÞ ¼
pðDjH1ÞpðH1Þ

pðDjH1ÞpðH1Þ þ pðDjH2ÞpðH2Þ
ð1Þ

The ratio of posterior probabilities can be used to compare the two models so that:

pðH1jDÞ

pðH2jDÞ
¼

pðDjH1Þ

pðDjH2Þ
·
pðH1Þ

pðH2Þ
;

ie posterior odds ¼ Bayes factor £ prior odds

ð2Þ

The probability of the data under one model relative to their probability under another is

known as a Bayes factor. In “deal,” the user cannot specify prior probabilities for different

network models. Instead, at each step in a “greedy” search algorithm, the network model

with the higher Bayes factor is chosen.

When a model has unknown parameters u, calculating the probability of the data under

that model requires integration over the parameter space of u (Kass and Raftery 1995):

pðDjHkÞ ¼

ð
pðDjukHkÞpðukjHkÞ›u ð3Þ

In Equation 3, the first term within the integral is the likelihood function of uk under Model

k and the second term is its prior distribution. Often numerical or approximate methods are

required to evaluate this integral, but exact evaluation is possible for data from a

distribution belonging to the exponential family of distributions if a conjugate prior

distribution is used for u (Kass and Raftery 1995). Hence the use in “deal” of the conjugate

Dirichlet prior for multinomial probabilities. Heckerman et al. (1995) show that under

certain assumptions, the probability of the data given a network (Equation 3) can be

calculated for any network given a prior network and an imaginary database size as a

measure of confidence in that prior network. These assumptions are parameter

independence – the parameters associated with each node in a network are independent;

parameter modularity – if a node has the same parents in another network, its parameters

are the same in both networks; and likelihood equivalence – all networks that imply the

same set of conditional probability distributions have the same likelihood. They suggest

Journal of Official Statistics558



that these assumptions should apply to complete observational data, but may not apply if

missing data or experimental data cause a user to be more certain about some parts of a

network than others (Heckerman et al. 1995, pp. 224–245). Cowell et al. (1999,

pp. 261–263) discuss more flexible variants of the Dirichlet prior for expressing different

degrees of certainty about different parts of a network.

For a network consisting entirely of discrete nodes, “deal” selects a “best” model

according to the approach of Heckerman et al. (Bottcher and Dethlefsen 2003, pp. 7–9,

11–13). In a “greedy” search: (1) Equation 3 is evaluated for the prior network;

(2) Equation 3 is evaluated for all other networks that differ by a single arrow from the

prior network; (3) the network with the highest Bayes factor then replaces the prior

network and Steps 2 and 3 are repeated until no network is found with a higher Bayes

factor. When, however, there is uncertainty about the true model, using a single “best”

model to create synthetic data may lead to inferences from that data that are unrealistically

precise. The standard Bayesian solution to this problem is to average over a variety of

models (Cowell et al. 1999, p. 250). Madigan and Raftery (1994) give examples where

model averaging improves the predictive performance of graphical models.

When there are many (K) models to consider, the posterior probability of the kth

model is:

pðHkjDÞ ¼
pðDjHkÞpðHkÞXK

k¼1
pðDjHkÞpðHkÞ

ð4Þ

The posterior distribution for some quantity of interest is “averaged” over many models by

weighting the posterior distribution for each model by the posterior probability of that

model where this is calculated using Equation 4 (Madigan and Raftery 1994). When

creating multiple sets of synthetic data, this averaging can be achieved by repeatedly

(1) selecting a model from among the set of all possible models using multinomial

sampling where the probability of selecting each model is calculated using Equation 4, and

(2) generating a single synthetic data set from the model selected. However, the problem is

that as the number of nodes in the network increases, the increase in the number of possible

network models is more than exponential (see Cowell et al. 1999, p. 256). Madigan and

Raftery (1994) recommend averaging over a much smaller set of models, excluding

models that are very unlikely compared to the most likely model and models that have

more likely and simpler models nested within them. They use a variant of the “greedy”

search algorithm to select a set of potentially acceptable models before applying these two

exclusion criteria. We implement a version of their solution (Young 2008a, Section 8.3),

applying only the first of these two exclusion criteria to the models found in a “greedy”

search. There is some evidence that this simpler version has a slightly better predictive

performance (Kass and Raftery 1995, pp. 146–147), as one would expect given that this

version excludes fewer models from the set of all possible models.

5.2. Results

Starting with a prior network with no arrows, model averaging returns a set of acceptable

models with just two members. Without a list of banned arrows, Model A is returned with

posterior probability 0.993 and a variant of this model, with an arrow from sex to
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institutional care, is returned with posterior probability 0.007. Adding a list of banned

arrows leads to a similar result: Model B is returned with posterior probability 0.993 and

Model C is returned with posterior probability 0.007. Obviously in both situations there is

no point in creating synthetic data sets using Bayesian model averaging. Almost all data

sets would be created under Models A or B respectively, and then inference from the

resulting synthetic data would be no different from that already reported.

The problem is an example of “Bartlett’s paradox” (Kass and Raftery 1995, p. 782; also

known as the “Jeffreys – Lindley paradox” – Kass 1992, p. 555): conclusions based on

Bayes factors appear to contradict conclusions based on estimation. Here model selection

based on Bayes factors leads to models without arrows between sex and institutional care,

yet there is good support in the real data for an association between the two. This is a

consequence of using noninformative priors – a noninformative prior on a certain model

parameter lends support to a model without that parameter (Kass and Raftery 1995,

p. 782). When estimating a parameter, the influence of the prior rapidly diminishes with

increasing sample size. When calculating a Bayes factor, the prior density is evaluated in

each marginal likelihood (Equation 3). In large samples, the prior density can be thought

of as an additive contribution to the log marginal likelihood (see Kass 1992, p. 555). While

this contribution will eventually be overwhelmed by the contribution of the data, “even for

large data-sets, the contribution of the prior can be significant” (Cowell et al. 1999, p. 249).

Because the prior still contributes to the marginal likelihood even with a large sample and

because a non-informative prior provides support for a simpler model, if a noninformative

prior is used then a simple model carries more weight in model averaging than a more

complex alternative.

To illustrate the influence of uninformative priors, we carry out model averaging for

different sizes of imaginary databases. A larger imaginary database implies greater

confidence in the equal conditional probabilities assigned to each node a priori. With a list

of banned arrows, the default size is set to 720 and this leads to Model B. If the imaginary

database size is set to 1, this leads to a single simpler model with no arrow from either sex

or ethnicity to institutional care (Figure 5 left). If the imaginary database size is set to

Fig. 5. Model averaging given the prior network of Model B leads to a single simple network (left) when the size

of the imaginary database set to 1, and to a single more complex network (right) when the size of the imaginary

database is set to 5,000 [Nodes: InCare, institutional care; Educ, highest educational qualification; Ethn,

ethnicity]
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5,000, this leads to a single more complex model with arrows from all other variables to

institutional care (Figure 5 right).

This creates a dilemma: expressing a high level of confidence in an equal conditional

probability prior leads to a more suitable model but as Table 1 shows, this prior will then

have an unwanted influence on inference from synthetic data generated by this model. The

solution is to assert informative priors for each node, rather than accepting the default prior

of equal conditional probability for each category. Therefore we refit a prior network with

no arrows, but with a list of banned arrows and assert prior probability distributions for

each node. This is relatively simple to do for this prior network because there are no arrows

between nodes. We consider that our assertions (Young 2008a, Section 8.4) represent

knowledge equivalent to a database of 5,000 observations. These assertions lead to a set of

two models (Figure 6). Neither model has an arrow from ethnicity to institutional care. The

model with an arrow from sex to institutional care (Figure 6 right) is returned with

posterior probability of 0.101. Results for synthetic data “averaged” over these two models

will be given in next section.

All these examples lead to a set of acceptable models with at best two members and

even then, with one model far more likely than the other. In these situations, inference

from synthetic data will be much the same with or without Bayesian model averaging.

Heckerman et al. (1995, p. 235) had the same experience: they investigated the effect of

using more than one network structure to represent a joint distribution and were surprised

by how little improvement this gave – “given a large data base, one network structure

typically has a posterior probability far greater than the next most likely structure.”

Therefore without additional prior information, there is nothing to be gained from model

averaging. Additional information could take the form of prior model probabilities.

A number of strategies have been proposed based on the reasonable proposition that

structures more closely resembling the prior network should have higher prior

probabilities (Heckerman et al. 1995, p. 225; Madigan and Raftery 1994, p. 1544).

Nevertheless, it seems unlikely that these strategies would, in the example above, lead to

Fig. 6. Model averaging given the prior network of Model B, prior information for each node and an imaginary

database of size 5,000. The most likely model (left) is returned with posterior probability 0.899; the other model

(right) is returned with posterior probability 0.101 [Nodes: InCare, institutional care; Educ, highest educational

qualification; Ethn, ethnicity]
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much greater weight being placed on a model with a link between sex and institutional

care given that this model differs from the most probable model by only one link and given

the weight of evidence in favour of this most probable model.

The alternative is to provide a more realistic prior network, and to assert informative

priors for its more complex conditional probabilities. For example, one might have to

assert probabilities for being in institutional care for each combination of sex and

ethnicity. Clearly this alternative would be unpalatable for an official statistics agency

looking to automate the process of creating synthetic data.

6. Comparison With a Hierarchical Bayesian Imputation Model

6.1. Methods

Graham and Penny (2007) and Graham et al. (2009) take a hierarchical Bayesian approach

to creating synthetic data for this institutional care data set. Their approach is to assert a

prior Poisson log-linear model for the cross-classified data. The posterior mean count in

each cell of the cross-classified data is then a weighted average of the count expected

under this prior model and the observed cell count; the weight given to the prior model

depends on how well it fits the data, with a poorly fitting prior model assigned less weight.

Synthetic data from a hierarchical Bayesian model will, on average, replicate this posterior

mean cell count, which depends on both the imputer’s prior model and the observed data,

whereas synthetic data from a conventional generalised linear model will, on average,

replicate the model specified by the imputer. Hence synthetic data from a hierarchical

Bayesian model are more robust to model misspecification than synthetic data from a

conventional generalised linear model (Graham et al. 2009).

Here we compare the properties of synthetic data from three different imputation

models. The three models are: (1) a hierarchical Bayesian model, (2) Bayesian network

Model D, and (3) Bayesian model averaging over the two networks in Figure 6. The

hierarchical Bayesian model is fit with prototype software (Young 2008b). As a prior

model we specify a log-linear model with main effects, all two variable interactions, and

all three variable interactions involving institutional care (i.e., the intermediate prior

imputation model of Graham et al. 2009). With this prior we are specifying all the

associations we would want the analyst to be able to recover from synthetic data through

logistic regression with institutional care as the response. However, our prior does not give

a saturated model for associations between the other explanatory variables, as in a logistic

regression model. Using a more complex prior model that is saturated with respect to

associations between explanatory variables might give synthetic data with a greater risk of

disclosure and this relatively simple alternative has been shown to create synthetic data

with satisfactory inferential properties (Graham et al. 2009).

6.2. Results

Inference from logistic regression is almost identical using either the real data, or synthetic

data from the hierarchical Bayesian model, or synthetic data from Bayesian network

Model D (Figure 3 left, fit with an imaginary database of size one). This applies to both the

main effects logistic regression model (Table 2) and to the one way interaction model
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(Table 3). Using synthetic data from Bayesian model averaging, inference is poor when it

involves either sex or ethnicity parameters, reflecting the absence of arrows in the most

likely network from these two nodes to institutional care (Figure 6 left).

Although the hierarchical Bayesian model and Model D provide synthetic data with

similar inferential properties, real cell counts are more variable for a given median

Table 2. Parameter estimates and their standard errors for a main effects logistic regression model fit to the

institutional care data and to synthetic data from: a hierarchical Bayesian model (HB), Bayesian network

Model D, and Bayesian model averaging (BMA)

Real data HB Model Model D BMA

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b0 28.15 0.07 28.16 0.09 28.16 0.11 28.19 0.09
bagea 0.61 0.01 0.61 0.01 0.61 0.02 0.61 0.02
bethn2 20.30 0.09 20.28 0.09 20.31 0.10 20.01 0.05
bethn3 20.01 0.04 20.01 0.05 20.01 0.05 20.09 0.01
beduc2 20.92 0.04 20.91 0.03 20.91 0.04 20.91 0.04
beduc3 21.19 0.04 21.19 0.04 21.18 0.04 21.16 0.04
bsex 20.18 0.03 20.18 0.03 20.18 0.03 20.03 0.06
a Age per 10 years.

Table 3. Parameter estimates and their standard errors for a one way interaction logistic regression model fit to

the institutional care data and to synthetic data from: a hierarchical Bayesian model (HB), Bayesian network

model D, and Bayesian model averaging (BMA)

Real data HB Model Model D BMA

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b̂ SE
b̂

b0 26.49 0.16 26.52 0.17 26.49 0.19 26.61 0.18
bagea 0.27 0.03 0.28 0.04 0.27 0.05 0.29 0.04
bethn2 20.52 0.34 20.57 0.49 20.62 0.54 20.05 0.13
bethn3 20.32 0.16 20.30 0.19 20.33 0.19 20.91 0.10
beduc2 22.55 0.19 22.52 0.22 22.53 0.24 22.80 0.16
beduc3 23.69 0.20 23.68 0.22 23.69 0.22 23.86 0.20
bsex 21.28 0.13 21.29 0.18 21.30 0.16 20.20 0.32
bagea £ ethn2 20.02 0.07 20.01 0.10 0.00 0.13 0.01 0.05
bagea£ ethn3 0.10 0.03 0.10 0.04 0.11 0.04 0.18 0.03
bagea£ educ2 0.40 0.03 0.39 0.04 0.40 0.04 0.34 0.04
bagea£ educ3 0.54 0.03 0.54 0.04 0.54 0.04 0.49 0.04
bagea£ sex 0.18 0.02 0.18 0.03 0.19 0.03 0.04 0.05
bethn2£ educ2 0.48 0.26 0.50 0.32 0.40 0.32 20.02 0.28
bethn3£ educ2 20.59 0.13 20.61 0.10 20.61 0.14 0.03 0.06
bethn2£ educ3 0.89 0.24 0.91 0.24 0.87 0.21 0.04 0.11
bethn3£ educ3 20.74 0.13 20.74 0.16 20.71 0.16 0.00 0.16
bethn2£ sex 0.31 0.18 0.31 0.16 0.30 0.18 0.02 0.16
bethn3£ sex 0.05 0.09 0.07 0.08 0.05 0.09 20.05 0.09
beduc2£ sex 20.10 0.07 20.10 0.07 20.10 0.07 0.01 0.06
beduc3£ sex 0.36 0.07 0.38 0.07 0.36 0.08 0.04 0.10
a Age per 10 years.

Young et al.: Synthetic Data from Bayesian Networks 563



synthetic cell count in synthetic data from the hierarchical Bayesian model (Figure 7). This

implies that the predictive disclosure risk is lower in synthetic data from the hierarchical

Bayesian model than in synthetic data from Model D. For example, there are 28 cells with

a median count of one in synthetic data from the hierarchical Bayesian model and 8 (29%)

of these cells correspond to a unique individual in the real data. In synthetic data from

Model D, there are 20 cells with a median count of one, and 14 (70%) of these cells

correspond to a unique individual in the real data.

7. Discussion

These are somewhat disappointing results from the perspective of an official statistics

agency looking to use a Bayesian network to automate the process of creating synthetic

data. It would seem relatively easy to assert a single Bayesian network that will create

synthetic data with the same inferential properties as the real data. First specify a natural

order among variables via a list of banned arrows. Second assert a network with arrows

between all nodes other than arrows that are banned. Third specify a very small imaginary

database and fit the network to the data. But such a network would create synthetic data

that are unnecessarily precise with a higher risk of disclosure than is probably acceptable.

A hierarchical Bayesian model could create synthetic data that are robust to model

misspecification and have a lower risk of disclosure.

In theory Bayesian model averaging should solve this problem. Synthetic data would

then be created from a mixture of likely networks so that the data are more variable

and robust to network misspecification. But with little prior information, the most likely

Fig. 7. Plots of median synthetic count versus real count in each cell for synthetic data from: a hierarchical

Bayesian (HB) model, Bayesian network Model D and Bayesian model averaging (BMA). Note that cell counts of

zero have been shifted to 0.1 and therefore show as 21 on each log scale
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networks tend to be too simplistic and these lead to synthetic data with poor inferential

properties. Prior information in the form of prior network probabilities may not be

enough to steer the selection process from a simple prior network towards more

complex alternatives. It would seem necessary to start the selection process by

specifying a more realistic prior network to begin with and to specify informative prior

probabilities for its nodes (otherwise simple models carry more weight in model

averaging than their more complex alternatives). Such a selection process would not be

easy to automate.

Others have their reservations about using Bayes factors for model selection and for

model averaging. Commenting on the use of Bayes factors for these purposes, Gelman

and Rubin (1995, p. 170) note that if the goal is to produce accurate parameter

estimates rather than select a parsimonious model, then “a hierarchical model might be

more compelling.” These results support their position. A key difference between

Bayesian model averaging and a hierarchical Bayesian model is in the influence of

prior information. This information is critical for assigning appropriate weights to

candidate networks in model averaging if synthetic data are to have good inferential

properties and an acceptable risk of disclosure. In contrast, simulation results in

Graham et al. (2009) show that the hierarchical Bayesian model is relatively robust to

the choice of a prior model – synthetic data can have acceptable inferential properties

even if this prior model is not as complex as the model subsequently used to analyse

the synthetic data.

Bayesian networks may be more successful as imputation models in scenarios other

than the one we consider here. Bayesian networks have been successfully applied to data

sets comprising many hundreds of variables (Tsamardinos et al. 2006). Official statistical

agencies sometimes release unit record data sets with many variables, such as the Public

Use Microdata Sample file from the U.S. Census Bureau, which contains 67 variables

collected in the American Community Survey (http://www.census.gov/acs/www/

Products/PUMS/index.htm). With high-dimensional data it would be difficult if not

impossible to create synthetic data using generalised linear or hierarchical Bayesian

imputation models. If an agency were willing to put effort into asserting an informative

structure and probabilities for a set of variables (rather than just run some automatic or

semiautomatic process), then synthetic data from Bayesian model averaging over a set of

Bayesian networks might have sufficient analytic value for release as a general purpose

approximation to that set of variables. This would allow analysts to develop hypotheses

before making a formal request for synthetic data with a specific analytic focus with which

to test those hypotheses.

Bayesian networks may also have a place in official statistics as a communication tool,

rather than as an imputation model for creating synthetic data. Networks could be made

available via the Internet so that users outside the official statistics agency can query a

network about how likely a certain value of one variable is given the values of other

variables (see Ramoni and Sebastiani 2001, pp. 434–436). This is the conventional use of

a Bayesian network and commercial software is available for querying a network. With

these tools, a user can make descriptive inferences from data but not analytic inferences;

synthetic data can be used for both (see Reiter 2005, pp. 194–197) but a network offers the

advantages of speed and simplicity.

Young et al.: Synthetic Data from Bayesian Networks 565



8. References

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley.

Albert, J.H. (1988). Computational Methods Using a Bayesian Hierarchical Generalized

Linear Model. Journal of the American Statistical Association, 83, 1037–1044.

Bottcher, S.G. and Dethlefsen, C. (2003). deal: A Package for Learning Bayesian

Networks. Journal of Statistical Software, 8, 1–40.

Christiansen, C.L. and Morris, C.N. (1997). Hierarchical Poisson Regression Modeling.

Journal of the American Statistical Association, 92, 618–632.

Cowell, R.G., Dawid, A.P., Lauritzen, S.L., and Spiegelhalter, D.J. (1999). Probabilistic

Networks and Expert Systems. New York: Springer-Verlag.

Di Zio, M., Scanu, M., Coppola, L., Luzi, O., and Ponti, A. (2004). Bayesian Networks for

Imputation. Journal of the Royal Statistical Society, Series A, 167, 309–322.

Fienberg, S.E. and Makov, U.E. (1998). Confidentiality, Uniqueness, and Disclosure

Limitation for Categorical Data. Journal of Official Statistics, 14, 385–397.

Gelman, A. and Rubin, D.B. (1995). Avoiding Model Selection in Bayesian Social

Research. Sociological Methodology, 25, 165–173.

Graham, P. and Penny, R. (2007). Multiply Imputed Synthetic Data Files. Official

Statistics Research Series Volume 1, Wellington, New Zealand: Statistics New Zealand.

http://www.statisphere.govt.nz/official-statistics-research/series/volume-1-2007

Graham, P., Young, J., and Penny, R. (2009). Multiply Imputed Synthetic Data:

Evaluation of Hierarchical Bayesian Imputation Models. Journal of Official Statistics,

25, 245–268.

Heckerman, D., Geiger, D., and Chickering, D.M. (1995). Learning Bayesian Networks:

the Combination of Knowledge and Statistical Data. Machine Learning, 20, 197–243.

Jensen, F.V. (2001). Bayesian Networks and Decision Graphs. New York: Springer-

Verlag.

Kass, R.E. (1992). Bayes Factors in Practice. The Statistician, 42, 551–560.

Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical

Association, 90, 773–795.

Madigan, D. and Raftery, A.E. (1994). Model Selection and Accounting for Model

Uncertainty in Graphical Models Using Occam’s Window. Journal of the American

Statistical Association, 89, 1535–1546.

Neapolitan, R.E. (2004). Learning Bayesian Networks. Upper Saddle River, New Jersey:

Pearson Prentice Hall.

R Development Core Team (2004). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org

Raghunathan, T.E., Reiter, J.P., and Rubin, D.B. (2003). Multiple Imputation for

Statistical Disclosure Limitation. Journal of Official Statistics, 19, 1–16.

Ramoni, M. and Sebastiani, P. (2001). Analysis of Survey Data With Bayesian Networks.

Bayesian Methods With Applications to Science, Policy, and Official Statistics:

Selected Papers From the Sixth World Meeting of the International Society for

Bayesian Analysis (ISBA 2000), E.I. George (ed.). Luxembourg: Eurostat. http://www.

stat.cmu.edu/ISBA

Journal of Official Statistics566



Reiter, J.P. (2002). Satisfying Disclosure Restrictions With Synthetic Data Sets. Journal of

Official Statistics, 18, 531–543.

Reiter, J.P. (2005). Releasing Multiply Imputed Synthetic Public Use Microdata: An

Illustration and Empirical Study. Journal of the Royal Statistical Society, Series A, 168,

185–205.

Rubin, D.B. (1993). Discussion: Statistical Disclosure Limitation. Journal of Official

Statistics, 9, 461–468.

Russell, S.J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Upper

Saddle River, New Jersey: Prentice Hall.

Thibaudeau, Y. and Winkler, W.E. (2002). Bayesian Networks Representations,

Generalized Imputation, and Synthetic Micro-Data Satisfying Analytic Constraints.

Statistical Research Report Series. Washington, DC: U.S. Bureau of the Census. http://

www.census.gov/srd/www/byyear.html

Tsamardinos, I., Brown, L.E., and Aliferis, C.F. (2006). The Max-Min Hill-Climbing

Bayesian Network Structure Learning Algorithm. Machine Learning, 65, 31–78.

Young, J. (2008a). Using Bayesian Networks to Create Synthetic Data. In Methods for

Creating Synthetic Data, eds. P. Graham, J. Young, and R. Penny, Official Statistics

Research Series Volume 3, Wellington, New Zealand: Statistics New Zealand. http://

www.statisphere.govt.nz/official-statistics-research/series/volume-3-2008.

Young, J. (2008b). Synthetic Tables: A Prototype for Creating Synthetic Census Tables. In

Methods for Creating Synthetic Data, eds. P. Graham, J. Young, and R. Penny, Official

Statistics Research Series Volume 3, Wellington, New Zealand: Statistics New Zealand.

http://www.statisphere.govt.nz/official-statistics-research/series/volume-3-2008

Received May 2007

Revised February 2009

Young et al.: Synthetic Data from Bayesian Networks 567


