
Weight Adjustments for the Grouped Jackknife Variance
Estimator

Richard Valliant1, J. Michael Brick2, and Jill A. Dever3

The jackknife variance estimator is often implemented by dropping groups of units rather than
a single unit at a time. This has the practical advantages of economizing on computation time
and file size because a separate weight is appended to the analysis file for each jackknife
replicate. If the replicate weight adjustments and the grouped jackknife itself are not
appropriately constructed, the variance estimates can have some extremely pathological
behavior when estimating totals. When the dropout groups do not all have exactly the same
number of first-stage units, the standard version of the grouped jackknife may be a severe
overestimate. This problem is most likely to arise in single-stage samples with a large number
of first-stage units in many of the strata. The standard grouped jackknife variance estimator
and two alternatives are examined for the situation of unequally sized groups through a
simulation study of school districts in the 50 United States and the District of Columbia.

Key words: Grouping PSUs; grouping strata; inconsistent variance estimator; replicate
weights.

1. Introduction

Replication variance estimation is a standard tool of survey statisticians and researchers.

Replication is popular and useful because it provides a simple means of estimating

variances without requiring the derivation of explicit variance formulas that are often

complicated. Shao (1996), Shao and Tu (1995), and Wolter (2007) review the methods as

they apply to finite population estimation and give supporting theory. Rust and Rao

(1996), surveyed the uses of replication discussed several practical applications. The

general idea is to divide the full sample into subsamples or replicates, compute the basic

estimate for the full sample and for each replicate, and then combine these estimates with a

simple variance formula.

q Statistics Sweden

1 University of Maryland, Joint Program in Survey Methodology, 1218 Lefrak Hall, College Park, MD 20742,
U.S.A. Email: rvalliant@survey.umd.edu
2 Westat and Joint Program in Survey Methodology, 1650 Research Boulevard, Rockville, MD 20850-3195,
U.S.A. Email: mikebrick@westat.com
3 University of Maryland, Joint Program in Survey Methodology, 1218 Lefrak Hall, College Park, MD 20742,
U.S.A. Email: jdever@survey.umd.edu
Acknowledgments: The work of the first author was supported by grant SES-0416662 from the National Science
Foundation (NSF). The authors would like to acknowledge the National Center for Education Statistics (NCES),
Institute for Education Sciences, for funding part of this research, and in particular the support of the Project
Officer, Marilyn Seastrom. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the NSF or NCES. We also are
grateful for some very helpful comments by the Associate Editor and the referees.

Journal of Official Statistics, Vol. 24, No. 3, 2008, pp. 469–488



There is a substantial amount of theory available for the replication methods when they

are implemented in standard ways. However, in practice these methods are operationalized

in ways that often do not fit the standard theoretical requirements. For the jackknife, in

particular, the basic approach is to delete one first-stage or primary sample unit (PSU),

compute an estimate based on the remaining sample units, cycle through the remaining

PSUs, and compute a variance among the resulting set of estimates. In practice, groups of

units are formed by combining units within or across strata. Entire groups are then dropped

out in order to compute a jackknife variance estimate. Dropping out groups rather than

individual units saves on computation and reduces the number of replicate weights on the

analysis file.

Theory for the grouped methods exists, but is largely focused on multi-stage samples

with a small number of PSUs selected from each stratum. For example, Lu, Brick, and

Sitter (2006) report on grouping methods that are most relevant when two PSUs are

sampled in each stratum. However, they do not discuss grouping for single-stage samples

with many units selected per stratum that are very common in establishment surveys. The

theory of grouping is limited in single-stage designs, and guidance for practitioners is

almost nonexistent. As a result, some methods used in practice may not have good

theoretical properties, as described below.

Sections 2 through 4 briefly review how the jackknife is implemented in practice, how

replicate weights are computed, and how PSUs are often grouped to reduce computational

burden. Section 5 gives some general theory for when the grouped jackknife is biased and

introduces two alternatives to the standard method. In Section 6, we illustrate the

performance of the standard grouped jackknife and the alternatives in a simulation study.

Technical details of the bias calculations and theory supporting the alternative estimators

are in the Appendices. Section 7 summarizes our findings.

2. Delete-one Jackknife and Its Implementation for Survey Data

The basic implementation of the jackknife is known as the delete-one version and is briefly

described in this section. Suppose a stratified probability sample of nh out of Nh PSUs is

selected from stratum h (h ¼ 1; : : : ;H). Define û as the estimate based on the full sample,

i.e., the estimate in which each sample unit in each sample PSU is weighted by the inverse

of the probability of selection or base weight, and ûðhi Þ as the “replicate” estimate based on

omitting PSU i in stratum h. In computing ûðhi Þ, the base weights for the remaining PSUs in

stratum h are multiplied by the factor nh=ðnh 2 1Þ to compensate for dropping PSU (hi ).

The standard delete-one jackknife variance estimator is calculated from the replicate

estimates based on omitting one sample PSU at a time and cycling through all sample

PSUs:

vJðûÞ ¼
h

X nh 2 1

nh

Xnh
i¼1

ûðhi Þ 2 û
� �2

ð1Þ

(e.g., Krewski and Rao 1981, Expression 2.4; Wolter 2007, Section 4.5). The estimator

û can be a linear function of the sample data or a smooth (i.e., differentiable) nonlinear

function such as a ratio. There are other versions of the jackknife, including one that
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uses deviations centered on the average replicate estimate, that are addressed in

Appendix B. A finite population correction factor ( fpc) is sometimes added to give

vJðûÞ ¼
P

hð1 2 f hÞðnh 2 1Þn21
h

Pnh
i¼1 ûðhi Þ 2 û

� �2
, where f h ¼ nh=Nh, the fraction of

PSUs in stratum h that are in the sample. If a single-stage sample is selected by stratified

simple random sampling and the estimate is linear, then this fpc is exact; otherwise its

addition is only an approximate way of reflecting a nonnegligible sampling fraction.

In many establishment surveys, large sampling fractions are common in strata containing a

limited number of sizeable units. In such cases, accounting for nonnegligible fpc’s is an

important part of variance estimation.

3. Replicate Weights

The usual approach in creating a data file is to include the full sample weight and the

replicate weights for each completed case. Software packages like WesVarw (Westat

2000), Stataw (StataCorp 2005) and SUDAANw (Research Triangle Institute 2001) use the

replicate weights to compute ûðhi Þ and vJðûÞ. As discussed in Rust and Rao (1996),

appending replicate weights to an analysis file has some distinct advantages:

(i) The data analyst’s task is simplified because the analyst does not need to know the

details of the sample design used to collect the data.

(ii) The data file creators can incorporate into the weights features of estimation such as

nonresponse adjustment and poststratification.

(iii) Omitting strata and PSU identifiers can help limit the risk of disclosing the identities

of respondents.

If there are n ¼
PH

h¼1nh PSUs and the delete-one jackknife is used, each record on the data

file will have n þ 1 weights. Descriptive and model-based analyses are then replicated

n þ 1 times–once for the full sample and once for each replicate. Jackknife variance

estimates are computed by substituting the results in (1).

In many single-stage samples, there may be thousands of PSUs. Consequently, the

standard delete-one jackknife would require that thousands of weights be appended to

each record. The number of data fields can easily be exceeded by the number of weights

and the size of the data file as measured in megabytes can quickly become unmanageable.

Some complex analyses, such as logistic regression, require iterative calculations to obtain

estimates of model parameters. For such cases, the iteration must be performed separately

for the full sample and for each replicate. Computing time can be unacceptably long when

these iterative computations are done hundreds or thousands of times.

One approach to reducing calculation time and data file size is to delete groups of PSUs

rather than individual units, as discussed in Amrhein, Hicks, and Kott (1997), Duchesne

(2000), Kott (1998, 1999, 2001), Rust (1985, 1986), Rust and Kalton (1987), and Wolter

(2007, Chapter 4). Although this is an old technique, there is limited theoretical guidance

on how the grouping should be done, and there are wide variations in what is done

in real applications. Rust (1984, 1986) discusses the effect of grouping on the variance of

a variance estimate, which is related to its approximate degrees of freedom; he does

not discuss the potential for bias caused by poor methods of grouping or weight

adjustment.
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Methods of forming replication groups in this case include the following:

(i) Form groups of PSUs within design strata, or

(ii) Combine design strata into superstrata and form groups of PSUs within a

superstratum that cut across design strata.

A common assumption in the literature is that equal-sized groups of PSUs are formed, i.e.,

the groups each contain an equal number of PSUs (see e.g., Duchesne 2000 or Wolter

2007). DiGaetano, Brick, and Flores-Cervantes (1998) describe an application of method

(ii) above where the goal is to retain at least 30 degrees of freedom for full population

estimates; however, their approach is not directly applicable to single-stage samples with

many PSUs per stratum.

4. Standard Grouped Jackknife

The standard implementation of the grouped jackknife variance estimator, analogous to

(1), is

vGJ1ðû Þ ¼
X~H

~h¼1

G~h 2 1

G~h

XG~h

g¼1

ûð~hgÞ 2 û
h i2

ð2Þ

where ~h denotes a superstratum, ~H is the number of superstrata, g is a group of PSUs, and

G~h is the total number of groups in superstratum ~h. Note that summing over all groups in
~h implicitly sums over all design strata in that superstratum. The replicate estimate ûð~hgÞ is

computed from the sample of PSUs and subunits after omitting all units assigned to Group

g within superstratum ~h. In cases where the sampling fraction of first-stage units is similar

among the strata in a superstratum, an ad hoc fpc of the form 1 2 f ~h is sometimes inserted

in (2), similar to inserting an fpc in (1).

Handy shorthand terms for superstratum and group are VarStrat and VarUnit, which is

also the jargon used by WesVarw. A VarStrat is either an original design stratum or a

combination of design strata. A VarUnit within a particular VarStrat is either a group

formed from sample units within a design stratum, or a combination of units from different

design strata.

In computing ûðhi Þ for the delete-one jackknife (1), the base weights associated with all

units retained for the replicate within design stratum h are multiplied by the factor

nh=ðnh 2 1Þ to compensate for the dropping of PSU (hi ). By analogy, in the grouped

jackknife the usual procedure for computing ûð~hgÞ is to multiply each full sample weight

within VarStrat ~h by G~h=ðG~h 2 1Þ since one group is dropped to calculate the replicate

estimate. That is, the same weight adjustment is made regardless of which group is

dropped. The appropriateness of this adjustment is critically dependent on the groups

having the same number of PSUs, as described in the next section.

5. A More General Grouped Jackknife

In this discussion and for the theory derived in the Appendices, the PSUs are assumed to be

selected with replacement (WR). If multistage sampling is used, the sampling within PSUs

can be done using any method as long as a design-unbiased estimate of each PSU total can
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be constructed. Although restrictive, the WR assumption is commonly used to simplify

theoretical calculations (e.g., see Krewski and Rao 1981) and reasonably describes

empirical results in many cases where sampling is actually done without replacement but

nh=Nh is small. As a practical fix-up, we will insert an fpc in variance formulae to

approximately account for nonnegligible sampling fractions. We consider linear

estimators of the population total with the form û ¼
P

h ŷh where ŷh ¼ n21
h

Pnh
i¼1yhi=phi;

yhi is the estimated total for units in PSU (hi ), phi is the single-draw selection probability of

PSU (hi ), and nh is the number of sampled PSUs from Stratum h. Note that we can also

write ŷh ¼
Pnh

i¼1whiyhi with whi ¼ ðnhphiÞ
21 so that û can be written in the usual form as a

weighted sum of data. In single-stage samples, yhi is the value for unit (hi ). Thus, ŷh is a

“pwr” estimator as discussed in Särndal, Swensson, and Wretman (1992, Section 2.9).

Suppose that S~h is the set of design strata grouped together into VarStrat ~h, S~hh is the set of

VarUnits assigned to VarStrat ~h and design stratum h, and S~hhg is the set of PSUs in

VarStrat ~h and design stratum h assigned to VarUnit g. We do not require that the PSUs in

h be split among all VarUnits in ~h. Thus, S~hhg could be empty, i.e., Group g may contain no

PSUs from design Stratum h. The set S~hhg cannot contain all of the PSUs from any design

stratum h within VarStrat ~h. If it did, then dropping the associated VarUnit would drop the

sample from an entire design stratum. A group of PSUs can cross design strata or be

contained within a single design stratum.

To fix the idea, Figure 1 illustrates some possibilities for grouping. In this example there

are three design strata, which have six, four, and four sample PSUs, respectively. Two

VarStrat are formed with VarStrat 1 containing design stratum 1 and VarStrat 2 containing

design strata 2 and 3. VarStrat 1 illustrates that different PSUs can be combined within a

design stratum in order to create a VarUnit. In VarStrat 1, three VarUnits are created by

pairing consecutive PSUs. (The sample PSUs should be randomly ordered within a design

stratum to avoid biases that would be created by, for example, consistently pairing the

smallest PSUs in a design stratum.) VarStrat 2 illustrates that different design strata can be

combined. Two VarUnits are formed in VarStrat 2. The first VarUnit consists of PSUs 1

and 2 from design stratum 2 and PSUs 1 and 2 from design stratum 3. The second VarUnit

contains the PSUs numbered 3 and 4 in each of design strata 2 and 3. Thus, when VarUnit

1 in VarStrat 2 is deleted for the grouped jackknife, PSUs from both design strata 2 and 3

Fig. 1. An illustration of grouping PSUs and design strata
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would be dropped. A pitfall to avoid would be creating a VarUnit that would result in

deleting an entire design stratum. For instance, if we assigned PSUs 1–4 from design

stratum 2 to VarUnit 1 in VarStrat 2, this would result in the full sample from design

stratum 2 being dropped for the grouped jackknife. The remaining PSUs could not be used

to make a design-unbiased, full population estimate in such a case.

When VarStrat and VarUnits are used, the estimated total can be written as

û ¼
X
~h

X
h[S~h

X
g[S~hh

n21
h

X
i[S~hhg

ŷhi ð3Þ

with ŷhi ¼ yhi=phi and yhi being an unbiased estimator of the total for PSU (hi ). Suppose

that Eðŷhi 2 YhÞ
2 ¼ s2

h, i.e., the contribution to variance of each 1-PSU estimate, ŷhi, of the

stratum total, Yh, is the same. For example, in a stratified, single-stage simple random

sample, ŷhi ¼ Nhyhi and s2
h ¼ N2

hV
2
h where V2

h is the stratum h population variance of the

yhi’s. With this notation, the variance of the estimated total is

varðûÞ ¼
X
~h

X
h[S~h

s2
h

nh
ð4Þ

The general form of the grouped jackknife that we consider is

vGJðûÞ ¼
~h

X
ð1 2 f ~hÞ

XG~h

g¼1

Kð~hgÞ ûð~hgÞ 2 û
h i2

ð5Þ

where Kð~hgÞ is a constant that depends on VarStrat and the deleted VarUnit. To construct

the estimator ûð~hgÞ, full-sample weights are used for units in VarStrat other than ~h. The

weights for units retained in stratum h within VarStrat ~h, when VarUnit ð~hgÞ is omitted, are

adjusted by a factor, ahð~hgÞ. Weights for units in VarUnit ð~hgÞ are set to zero. More

specifically, the weights used to construct ûð~hgÞ are

whið~hgÞ ¼

whi ðhi Þ � S~h

ahð~hgÞwhi ðhi Þ [ S~h; ðhi Þ � S~hhg

0 ðhi Þ [ S~hhg

8>><
>>: ð6Þ

Theory for vGJ in (5) and for some special cases is developed in Appendix A; the details

are summarized here. When f ~h is negligible, the expectation of (5) is

E vGJðûÞ
� �

¼
~h

XXG~h

g¼1

Kð~hgÞ V ð~hgÞ þ B2
ð~hgÞ

n o
ð7Þ

where V ð~hgÞ ¼
P

h[S~h
s2
hDhð~hgÞ=nh and

Bð~hgÞ ¼
X
h[S~h

Yh ahð~hgÞð1 2 phgÞ2 1
h i

ð8Þ

with Dhð~hgÞ ¼ a2
hð~hgÞ

ð1 2 phgÞ2 2ahð~hgÞð1 2 phgÞ þ 1, phg ¼ nhg=nh, the proportion of

PSUs in stratum h assigned to group g, and nhg is the number of PSUs in stratum
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h assigned to group g. The term
P

~h

PG~h

g¼1 Kð~hgÞV ð~hgÞ will equal varðûÞ in (4) if

X
g

Kð~hgÞDhð~hgÞ ¼ 1 ð9Þ

for each design stratum h in VarStrat ~h. The term involving B2
ð~hgÞ

is a type of squared bias

since Bð~hgÞ ¼ E ûð~hgÞ 2 û
h i

and, when (9) holds, must be zero for vGJ to be unbiased.

The combination, ahð~hgÞ ¼ G~h=ðG~h 2 1Þ with Kð~hgÞ ¼ ðG~h 2 1Þ=G~h, gives the standard

grouped jackknife vGJ1 in (2). As shown in Appendix A, this estimator is unbiased if the

PSUs in design stratum h are equally divided among the groups, in which case every group

(VarUnit) in VarStrat ~h has the same number of PSUs. But, vGJ1 can be extremely biased if

the groups vary in size. In fact, N22
P

~h;g Kð~hgÞB
2
ð~hgÞ

will be O(1) as long as phg – 1=G~h so

that, on average, the squared bias will dominate vGJ in large samples. As noted in

Appendix A, this problem will be most apparent for variables with small values of the

population coefficient of variation.

The size of the bias of vGJ1 also depends, in an interesting way, on the sizes of groups

that are formed. For illustration, consider a single design stratum with n PSUs in which G

VarUnits are formed. Suppose that n/G has remainder r and that two sizes of groups are

formed:

r groups of size
�
n/G

�
where

�
x
�

denotes the integer ceiling of x, and

G 2 r groups of size
�
n/G

�
where

�
x
�

denotes the integer floor of x.

These numbers of groups would result if units were put into some order and then numbered

serially from 1 to G, cycling back to 1 as needed. Then the squared-bias term in the

expectation of vGJ is

XG

g¼1
KðgÞB

2
ðgÞ /

G2 1

G
r

G

G2 1

� �
1 2

�
n=G

�
n

� �
2 1

	 
2
(

þ ðG2 rÞ
G

G2 1

� �
1 2

�
n=G

�
n

� �
2 1

	 
2
) ð10Þ

The proportionality in (10) is due to Yh’s being factored out in (8).

Expression (10) is graphed versus G in Figure 2 for n ¼ 539, which is the number of

PSUs in VarStrat 1 in the simulation study reported in Section 6. The pattern for other

values of n is similar. The size of the squared-bias term varies dramatically, depending on

G. Choices of G that are near each other, like 90 and 100, can have very different bias

characteristics. For example, with G ¼ 100, the squared bias term (10) has a local

maximum of about 82.7 £ 1025 but with G ¼ 90, the squared bias is only 3.4 £ 1025.

When G ¼ 100, 61 groups of Size 5 and 39 groups of Size 6 are formed; when G ¼ 90, 1

group of Size 5 and 89 groups of Size 6 are formed. When either r or G 2 r is small (i.e.,

min (r, G 2 r) is small), most groups have the same size and the squared-bias term is

small. With larger values of min (r, G 2 r), (10) is larger and the bias of vGJ1 will be

larger. As the figure makes clear, there are some “lucky Gs” where the bias of vGJ1 will be

much less noticeable.
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In Appendix B, we show that if vGJ1 is defined by centering on the VarStrat mean,

ûð~hÞ ¼
PG~h

g¼1ûð~hgÞ=G~h, it will also be an overestimate unless all VarUnits have the same

number of PSUs. Appendix B also sketches properties for nonlinear estimators. In the

important special case of estimating the variance of a ratio, vGJ1 will be approximately

unbiased, even if the VarUnits are not of equal size. Thus, the problems with the standard

grouped jackknife estimator will surface mainly when estimating totals.

A better choice for constructing (5) is ahð~hgÞ ¼ n~h=ðn~h 2 n~hgÞ with Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h
where n~hg is the number of PSUs in VarStrat ~h assigned to VarUnit g and n~h ¼

PG~h

g¼1n~hg is

the total number of PSUs in the VarStrat. The weight adjustment ahð~hgÞ depends on the

number of PSUs retained, i.e., n~h 2 n~hg, after VarUnit ð~hgÞ is dropped. This combination

of ahð~hgÞ and Kð~hgÞ gives an estimator,

vGJ2ðûÞ ¼
~h

X
ð1 2 f ~hÞ

XG~h

g¼1

ðn~h 2 n~hgÞ

n~h
ûð~hgÞ 2 û
h i2

that is approximately unbiased even when the VarUnits do not all have the same number of

PSUs (see Appendix A, Case 2).

A third approach is to use the combination ahð~hgÞ ¼ nh=ðnh 2 nhgÞ with Kð~hgÞ ¼

ðn~h 2 n~hgÞ=n~h as for vGJ2. This estimator has the same form as vGJ2 above but with a

different weight adjustment, ahð~hgÞ, and will be denoted by vGJ3. Notice that the weight

adjustment is specific to a design stratum even when these are grouped into a single

VarStrat. The choice, vGJ3, is also approximately unbiased when the VarUnits have

differing numbers of PSUs (see Appendix A, Case 2). However, the weight adjustments

ahð~hgÞ ¼ nh=ðnh 2 nhgÞ can be more variable than the ahð~hgÞ ¼ n~h=ðn~h 2 n~hgÞ adjustments in

vGJ2, especially when stratum sample sizes, nh, are not substantially larger than the nhg’s.

The delete-a-group jackknife (DAGJK) studied by Kott (2001) uses the same weight

adjustment as vGJ3. For the DAGJK only one VarStrat is used. PSUs are randomly ordered

within a design stratum and the full sample is systematically divided into G groups. When

random group g is dropped, the weights for the retained units in stratum h are adjusted by

Fig. 2. Dependence of squared-bias term in EðvGJ1Þ on the number of groups Gðn ¼ 539Þ
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ahð~hgÞ ¼ nh=ðnh 2 nhgÞ. The DAGJK, when nh $ G for all strata, is defined as

vDAGJKðûÞ ¼
G2 1

G

XG
g¼1

ûð~hgÞ 2 û
h i2

ð11Þ

Kott (2001) also gives a modification for the case where nh , G in some strata. If only

one VarStrat is used and nhg ¼ nh=G in all design strata, then ng ¼
P

h nhg ¼ n=G and

Kð~hgÞ in vGJ3 reduces to ðG2 1Þ=G. Thus, the DAGJK can be viewed as a special case of

vGJ3 when all sampling fractions are small. When the stratum fpc’s are not negligible,

vDAGJK may be too conservative. A single average fpc could be used in the DAGJK, but if

fpc’s vary among strata, a more fine-tuned adjustment is desirable, especially for domain

estimates that cover subsets of design strata.

Another alternative for without replacement sampling is to use the same adjustment,

ahð~hgÞ ¼ nh=ðnh 2 nhgÞ, as for vGJ3 and vDAGJK, but to multiply the base weight for a unit

from stratum h by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 f h

p
. For example, in stratified simple random sampling without

replacement the modified full sample weight would be
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 f h

p
Nh=nh. Define the full

sample estimate using the modified base weights as û* and the replicate estimate using the

modified base weights and the replicate adjustments to be û
*

ð~hgÞ. The variance of û is then

estimated by

vGJ4ðûÞ ¼
XG
g¼1

Kð~hgÞ û
*

ð~hgÞ 2 û*
h i2

with Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h. More details are given in Appendix A, Case 4. Note that a

variation of DAGJK could be created that incorporates fpc’s by using û
*

ð~hgÞ 2 û* in its

construction instead of ûð~hgÞ 2 û. The estimator, vGJ4, is essentially the same as vGJ3 and

will not be pursued further in this manuscript.

6. A Simulation Study

To illustrate the differences in performance of the various choices of grouped jackknife,

we conducted a simulation using a population of 11,941 school districts in the 50 United

States and the District of Columbia – a population also used in Brick et al. (2005). The

districts were categorized into 12 design strata based on size (four categories based on the

number of students) crossed with percentage of students at or below the poverty line (three

categories). A sample of 1,020 school districts was allocated to the strata as shown in

Table 1.

One rationale for forming VarStrat is to group strata with similar fpc’s and use the

grouped jackknife formula (2) with an fpc of 1 2 f ~h. Since the sampling fractions in

Table 1 vary substantially among the strata from a low of 0.051 to a high of 0.245, three

VarStrat were formed consisting of strata 1–6, 7–9, and 10–12. The similarity of the fpc’s

is the dominant factor in forming the superstrata, which contrasts with the approach of Lu,

Brick, and Sitter (2006) in the case of a multi-stage sample with relatively few sampled

PSUs. The total numbers of sample units in the superstrata were 539, 195, and 286,

respectively (Table 1).
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Within each VarStrat, G~h ¼ G VarUnits were formed using the following procedure:

(i ) order the design strata; (ii ) randomly sort the sample units within design strata; and

(iii ) serially number the sample units from 1 to G, cycling back to 1 as needed. Six choices

of G were used (G ¼ 20, 25, 45, 50, 135, and 150) giving total numbers of groups

(VarStrat £ G VarUnits) of 60, 75, 135, 150, 405, and 450, respectively. Note that for

G $ 50, there are several strata in Table 1 where nh , G. Based on the analysis that led to

Figure 2, the values of G were selected to illustrate the different sizes of bias that can occur

for nearby values of G. For example, it was anticipated that G ¼ 25 would be more biased

than G ¼ 20; G ¼ 50 would be more biased than G ¼ 45; and G ¼ 150 would be more

biased than G ¼ 135. The full delete-one jackknife requires 1,020 replicates. In this

example, grouping seems to be a reasonable procedure for reducing the amount of

computation needed for the jackknife while retaining the ability to include the fpcs.

For each of the six values of G, we selected 5,000 stratified simple random samples

without replacement of size 1,020 with the allocation in Table 1 and estimated the totals for

nine variables using the stratified expansion estimator û ¼
PH

h¼1Nh
�Yhs where �Yhs is the

sample mean of the variable in Stratum h. The nine variables consisted of three items from

the school district file–the number of full-time equivalent administrators (NumAdm),

whether a district had a student-teacher ratio larger than 15 (StuTch), and whether a district

had 15 or fewer administrators (SmallAdm)–and six artificial variables. These included

three chi-square random variables with degrees of freedom 2, 30, and 60, denoted byX 2(2),

X 2(30), and X 2(60), and three Bernoulli random variables with parameters p ¼ 0.5, 0.95,

and 0.995, denoted by Bin(0.5), Bin(0.95), and Bin(0.995). Each coefficient of variation

(CV ) shown in the header of Table 2 is defined as the population standard deviation divided

by the population mean. The artificial variables allow us to illustrate the theoretical finding

that the size of the CV plays a role in the performance of vGJ1. Number of administrators

Table 1. Population distribution and sample allocation for a population of school districts stratified by size of

student body (4) and poverty status (3)

Stratum Population
size (Nh)

Sample
size (nh)

Sampling
rate ( fh)

Superstratum
(VarStrat)

Population
size ðN ~hÞ

Sample
size ðn~hÞ

1 615 32 0.052
2 1,147 59 0.051
3 1,292 66 0.051
4 1,720 111 0.065 1 8,972 539
5 2,305 149 0.065
6 1,893 122 0.064

7 692 75 0.108
8 579 63 0.109 2 1,798 195
9 527 57 0.108

10 342 83 0.243
11 449 110 0.245 3 1,171 286
12 380 93 0.245

Total 11,941 1,020 11,941 1,020
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Table 2. Ratios of average grouped jackknife variance estimates to empirical mean squared errors over 5,000 stratified simple random samples for estimated totals

Total

groups

Groups per

VarStrat (G)

No. of

admins

CV ¼ 1:85

Student-teacher

ratio . 15

15 or fewer

admins

X 2

(2)

X 2

(30)

X 2

(60)

Bin

(0.5)

Bin

(0.95)

Bin

(0.995)

CV ¼ 1:168 CV ¼ 0:028 CV ¼ 1:0 CV ¼ 0:258 CV ¼ 0:183 CV ¼ 1:0 CV ¼ 0:229 CV ¼ 0:071

vGJ1
a

60 20 1.04 0.99 1.64 1.01 1.07 1.11 1.01 1.11 2.37
75 25 1.01 1.02 3.10 1.03 1.23 1.40 1.03 1.26 5.32

135 45 1.06 1.04 2.23 0.98 1.16 1.28 0.99 1.15 3.76
150 50 1.00 1.02 3.46 0.98 1.23 1.52 0.97 1.32 6.03
405 135 1.06 1.03 3.88 1.01 1.31 1.61 1.04 1.41 7.25
450 150 1.10 1.06 11.29 1.06 2.06 3.03 1.05 2.35 22.59

vGJ2

60 20 1.03 0.99 1.03 1.01 1.01 0.99 1.00 1.03 1.05
75 25 0.99 1.01 1.05 1.02 1.02 1.00 1.01 1.00 1.10

135 45 1.03 1.03 1.17 0.97 1.04 1.06 0.98 1.01 1.35
150 50 0.98 1.00 1.09 0.96 0.99 1.04 0.95 1.02 1.15
405 135 0.99 1.01 1.24 1.00 1.04 1.06 1.02 1.05 1.47
450 150 1.01 1.00 1.12 0.99 1.01 1.03 0.98 1.05 1.25

vGJ3

60 20 0.99 1.00 1.00 0.99 1.01 1.02 0.99 0.94 0.99

75 25 1.04 0.98 1.00 0.98 0.99 1.03 0.98 1.03 1.01
135 45 1.02 1.03 1.01 1.00 1.04 1.03 1.00 1.00 1.01

150 50 0.97 1.01 1.00 1.00 1.03 1.01 1.02 1.00 1.01

405 135 1.02 0.98 1.00 1.01 0.98 1.00 1.01 1.01 1.01
450 150 0.97 1.03 1.00 1.00 0.99 1.02 1.02 0.99 1.01

vDAGJK
60 20 1.27 1.11 1.29 1.10 1.13 1.14 1.10 1.05 1.11
75 25 1.34 1.08 1.28 1.08 1.10 1.14 1.09 1.14 1.12

135 45 1.30 1.12 1.27 1.09 1.13 1.12 1.09 1.10 1.11
150 50 1.23 1.10 1.26 1.09 1.12 1.10 1.11 1.09 1.10
405 135 1.28 1.06 1.26 1.09 1.06 1.08 1.09 1.09 1.09
450 150 1.22 1.12 1.25 1.08 1.08 1.10 1.10 1.08 1.10

a The t-tests on the differences in the mean values of vGJ1 between all pairs of G values are significantly different from zero with p-values all less than 0.0001 for the variables

SmallAdm, X 2(30), X 2(60), Bin(0.95), and Bin(0.995).
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and student-teacher ratio haveCVs larger than 1 while “15 or fewer administrators” has aCV

of 0.028. We expect the bias of vGJ1 to be obvious for the variables with small CVs.

The average of the grouped jackknife variance estimates and the empirical mean

squared error (MSE) of the estimated totals were computed across the 5,000 samples.

(The estimated totals are unbiased in these simulations so that the MSE and the

empirical variance are virtually equal.) Table 2 presents the ratios of the average

variance estimate to the MSE for the different combinations of variables and numbers

of groups. A ratio of 1.0 indicates that the jackknife variance estimate is an unbiased

estimate of the MSE. The standard grouped jackknife vGJ1 performs reasonably well for

the “number of administrators” variable which has a population CV of 1.85 and for

StuTch with a CV of 1.168, as well as for X 2(2), and Bin(0.5) which have population

CVs of 1. The ratios for these four variables range from 0.97 to 1.10, with no consistent

evidence of bias.

In contrast, the grouped jackknife has obvious positive biases for SmallAdm, X 2(30),

X 2(60), Bin(0.95), and Bin(0.995). These are the variables with small population CVs of

0.028, 0.258, 0.183, 0.229, and 0.071, respectively. The reason for the poor performance

of vGJ1 in these cases is that the single overall weight adjustment for each replicate is too

crude, leading to a nonzero Bð~hgÞ term. For example, take the case of 25 VarUnits per

VarStrat or 75 VarUnits in all (i.e., the second row in Table 2). In VarStrat 1 with 539

sample districts (Table 1), 14 VarUnits contain 22 PSUs while the remaining 11 VarUnits

contain 21 units. The replicate weight adjustment for all 25 groups is

G~1=ðG~1 2 1Þ ¼ 25=24 ¼ 1:04167. However, more appropriate adjustments based on the

number of units actually retained for each replicate are 539=ð539 2 22Þ ø 1:04255 for the

14 groups of size 22 and 539=ð539 2 21Þ ø 1:04054 for the 1 group of 21. This apparently

trivial difference is enough to lead to overestimates of 210% for SmallAdm, 40% for

X 2(60), and 432% for Bin(0.995) when G ¼ 25.

The consequences for vGJ1 of using different values of G, as discussed in Section 5, are

apparent in Table 2 even though having three VarStrat with different numbers of PSUs

does dilute the effect somewhat. For example, for Bin(0.995) the ratios for G ¼ 20 and 25

are 2.37 and 5.32; ratios for G ¼ 135 and 150 are 7.25 and 22.59. For the variables with the

smaller CVs–SmallAdm, X 2(30), X 2(60), Bin(0.95), and Bin(0.995)–the t-tests on the

differences in the mean values of vGJ1 between all pairs of G values are significantly

different from zero with p-values all less than 0.0001.

The jackknife alternatives that adjust the weights depending on numbers of retained

PSUs, vGJ2 and vGJ3, essentially eliminate the bias as seen in the second and third

banks of ratios in Table 2. The exception is vGJ2 for Bin(0.995) where the largest bias

is still 47%. The delete-a-group jackknife, vDAGJK, is an overestimate because it omits

finite population corrections. Overall, the best choice is vGJ3, which adjusts weights

using nh=ðnh 2 nhgÞ at the design stratum level and uses Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h at the

superstratum level.

Table 3 presents results for estimated ratio means using vGJ1, vGJ3, and vDAGJK. For three

of the variables in Table 2, the mean per school district was estimated for the domain of

districts whose schools included grades kindergarten through 12. A domain mean was used

so that both the numerator and denominator of the ratio were random. All three versions of

the jackknife are essentially unbiased for each variable and choice of G, confirming the
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Appendix B theoretical observation that there should be no bias problem for estimating the

variance of a ratio.

Coverages of 95% normal theory confidence intervals of the form û^ 1:96
ffiffiffi
v

p
were also

tabulated in each set of 5,000 samples using vGJ1, vGJ2, vGJ3 and vDAGJK to construct the

intervals. To conserve space, we only summarize the results. Over-estimation by vGJ1 is

generally accompanied by over-coverage. For example, the coverage rates for totals of

Bin(0.95) using vGJ1 were 97, 98, and 100% for G ¼ 50; 135; and 150. For Bin(0.995)

100% of all confidence intervals using vGJ1 cover the population total for all values of G.

Coverage rates for totals using vGJ2 range from 93 to 96% for eight of the nine variables

regardless of the value of G. The exception is Bin(0.995), where the range is 87 to 94%.

For the ratio means, corresponding to the results in Table 3, confidence interval coverages

ranged from 94 to 96% for all three of the variance estimators and for all variables except

Bin(0.995). For Bin(0.995) coverage rates were 85 to 86%. Normal theory intervals are

known to perform poorly for extreme proportions so that the under-coverage for this

variable is not surprising.

7. Conclusion

The standard procedure in the grouped jackknife of adjusting weights by the factor

G=ðG2 1Þ, where G is the number of groups, leads to biased estimates for variances of

totals if the groups are not all the same size. Even a size difference of one first-stage unit in

the groups can cause severe overestimates of the variance. This can be a subtle problem

because it affects only variables in which the population standard deviation is small

compared to the mean (i.e., small coefficient of variation). For variables with population

coefficients of variation of, say, 1.0 or larger the problem may not manifest itself. Also, if

min(r, G 2 r) is small, where r is the remainder in n/G, most groups will have the same

size, and the bias will be much less than when min(r, G 2 r) is larger. Among statistics

commonly computed in surveys, the problem of over-estimation does appear to be isolated

Table 3. Ratios of average grouped jackknife variance estimates to empirical mean squared errors over 5,000

stratified simple random samples for estimated means or proportions per district for districts whose schools

include grades kindergarten through 12

Total groups Groups per
VarStrat (G)

15 or fewer admins X 2(60) Bin(0.995)
CV ¼ 0:028 CV ¼ 1:83 CV ¼ 0:071

vGJ1

75 25 1.01 0.99 1.00
150 50 1.00 1.01 1.01
450 150 1.02 1.00 1.05

vGJ3

75 25 1.01 1.01 0.98
150 50 1.00 1.04 1.02
450 150 1.01 1.03 1.02

vDAGJK
75 25 1.29 1.12 1.09
150 50 1.26 1.13 1.11
450 150 1.27 1.12 1.10
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to totals. The standard grouped jackknife does not over-estimate the variance of ratio

means, for example.

Two simple alternatives were considered to adjust the jackknife based on the

numbers of units retained in each replicate. Both of these, denoted vGJ2 and vGJ3, were

shown theoretically and empirically to essentially eliminate the biases shown to exist in

the traditional method. The key feature of vGJ2 is a separate set of weight adjustments

for each jackknife replicate. The adjustments in a replicate depend on the number of

first-stage units retained in each stratum. This approach is similar to making replicate-

specific adjustments to reflect the effect on variances of weight adjustments for

ineligible units, nonresponding units, and poststratification (e.g., see Yung and Rao

2000). Both alternatives do reduce to the standard version of the grouped jackknife,

vGJ1, if all groups in a stratum or combined stratum have the same number of primary

sampling units. A delete-a-group jackknife from Kott (2001) is also a substantial

improvement over the standard grouped jackknife, but does not incorporate finite

population correction factors that vary among strata, unlike vGJ2 and vGJ3. However, the

DAGJK can be modified to include stratum-level fpc’s using the method described for

the estimator vGJ4.

Although the theory for the modified estimators, vGJ2 and vGJ3, was developed for

multistage designs, these variance estimators will be most useful in single-stage designs

where a fairly large number of units are selected per stratum. Establishment surveys, in

particular, where groups of units are formed for jackknife variance estimation, should

consider vGJ2 or vGJ3.

Appendix A. Properties of the Grouped Jackknife Estimator

Notation used in this appendix is defined in the main body of the article. As in Section 5,

assume that PSUs are selected with replacement and the population total is estimated by

û ¼
P

h ŷh with ŷh ¼ n21
h

Pnh
i¼1yhi=phi. Assume that, as n ¼

P
h nh !1 and

N ¼
P

h Nh !1, the following conditions hold:

ðiÞ
h

max
Nh

N

n

nh
¼ Oð1Þ

ðiiÞ
X
h[S~h

Yh ¼ OðNÞ

ðiiiÞ
X
h[S~h

s2
h

nh
¼ OðN 2=nÞ

ðivÞ Kð~hgÞ; ~H; andG~h are all bounded

Condition (i) covers the case of H being bounded and nh/n and Nh/N converging to

constants; or, H ! 1 with Nh/nh bounded and N/H and n/H converging to constants. Thus,

both the case of a fixed number of strata and a large number of PSUs per stratum and the

case of a large number of strata and a limited number of PSUs per stratum are covered.

Since the number of VarStrat, ~H, is assumed to be bounded in (iv), the number of PSUs in a

VarStrat will be large regardless of whether H is bounded or H ! 1.
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The expectation of the grouped jackknife in (5) is

E vGJðûÞ
� �

¼
~h

X
ð1 2 f ~hÞ

XG~h

g¼1

Kð~hgÞ V ð~hgÞ þ B2
ð~hgÞ

n o
ðA:1Þ

where V ð~hgÞ ¼ var ûð~hgÞ 2 û
h i

and B2
ð~hgÞ

¼ Eðûð~hgÞ 2 ûÞ
h i2

. To evaluate this expectation,

first note that the estimated total when group (~hg) is deleted is

ûð~hgÞ ¼
X
~h 0–~h

X
h[S~h 0

ŷh þ
X
h[S~h

X
g 0–g
g 0[S~hh

n21
h

X
i[S~hhg 0

ahið~hgÞyhi ðA:2Þ

The term ahið~hgÞ is the weight adjustment applied to all units in VarStrat ~h, stratum h, and

PSU i when VarUnit ð~hgÞ is omitted. If there are no PSUs assigned to VarUnit g within

design stratum h, i.e., S~hhg is empty, then ahið~hgÞ ¼ 1. The full sample PSU weight is

whi ¼ ðnhphiÞ
21, and the adjusted PSU weight, after deleting PSUs in group ð~hgÞ, is

whið~hgÞ ¼ ahið~hgÞwhi for i [ S~hhg 0 . How ahið~hgÞ and Kð~hgÞ are computed determines whether

the grouped jackknife is biased or not.

Using (3) and (A.2), the difference between the replicate and the full sample estimates is

ûð~hgÞ 2 û ¼
X
h[S~h

n21
h

X
g 0–g
g 0[S~hh

X
i[S~hhg 0

ahið~hgÞŷhi 2 ŷh

2
664

3
775 ðA:3Þ

We consider three cases for the constant ahið~hgÞ:

(1) G~h=ðG~h 2 1Þ, the standard choice for weight adjustment when one group is deleted;

(2) n~h=ðn~h 2 n~hgÞ where n~hg ¼ number of PSUs in VarStrat ~h assigned to VarUnit g and

n~h ¼
PG~h

g¼1n~hg, the total number of PSUs in the VarStrat; and

(3) nh=ðnh 2 nhgÞ where nhg ¼ number of PSUs in design stratum h assigned to group g.

Since none of these depend on the particular PSU i, we can simplify the

notation for the weight adjustment to be ahið~hgÞ ; ahð~hgÞ. Using (A.3) andP
g 0–g
g 0[S~hh

P
i[S~hhg 0

ŷhi ¼ nhŷh 2 nhgŷhg with ŷhg ¼ n21
hg

P
i[S~hhg

ŷhi, we have

ûð~hgÞ 2 û ¼
X
h[S~h

ahð~hgÞ 2 1
n o

ŷh 2 ahð~hgÞphgŷhg

h i
ðA:4Þ

where phg ¼ nhg=nh. The expectation of this difference is

Bð~hgÞ ¼
X
h[S~h

Yh ahð~hgÞ 1 2 phg
� 


2 1
h i

ðA:5Þ

with Yh being the population total in stratum h. In order for the grouped jackknife to be

unbiased, (A.5) must be 0. A sufficient condition for this is ahð~hgÞð1 2 phgÞ ¼ 1, which

implies that ahð~hgÞ ¼ nh=ðnh 2 nhgÞ, i.e., Case (3) above.
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Next, we can use varð ŷhÞ ¼ covð ŷh; ŷhgÞ ¼ s2
h=nh and varð ŷhgÞ ¼ s2

h=nhg to show that

V ð~hgÞ ¼ var ûð~hgÞ 2 û
h i

¼
X
h[S~h

s2
h

nh
Dhð~hgÞ ðA:6Þ

where Dhð~hgÞ ¼ a2
hð~hgÞ

ð1 2 phgÞ2 2ahð~hgÞð1 2 phgÞ þ 1. Comparing (4) with (A.1) and

neglecting the fpc, 1 2 f ~h, the grouped jackknife will be unbiased if, in addition to (A.5)

equaling 0, we have

X
g

Kð~hgÞ

X
h[S~h

s2
h

nh
Dhð~hgÞ ¼

X
h[S~h

s2
h

nh
ðA:7Þ

Equality is obtained when
P

g Kð~hgÞDhð~hgÞ ¼ 1 for every design stratum h in VarStrat ~h,

but this is not possible in general when the group sizes are unequal. Expressions (A.5) and

(A.6) are specialized below for the three cases of ahð~hgÞ listed above and some potential

values for Kð~hgÞ are examined.

Case 1. Standard Replicate Weight Adjustment Based on Deleting One Group: vGJ1

The standard procedure is to adjust all weights in VarStrat ~h to account for deletion of one

group. In particular, ahð~hgÞ ¼ G~h=ðG~h 2 1Þ for each unit in the PSUs that remain after

deleting VarUnit ð~hgÞ. In that case, ahð~hgÞð1 2 phgÞ in (A.5) reduces to

G~hðG~h 2 1Þ21ð1 2 phgÞ. If PSUs in design stratum h are equally divided among

the groups so that phg ¼ 1=G~h, a situation that is not true in general, then (A.5)

reduces to zero. Note that phg ¼ 1=G~h implies that nhg ¼ nh=G~h so that

n~hg ¼
P

h[S~h
nhg ¼

P
h[S~h

nh=G~h ¼ n~h=G~h. In other words, every group (VarUnit)

in VarStrat ~h has the same number of PSUs. We also have

Dhð~hgÞ ¼ 1 þ G~hphgðG~h 2 2Þ
� �

=ðG~h 2 1Þ2, which reduces to 1=ðG~h 2 1Þ when

phg ¼ 1=G~h. In the case of equal size groups, we can set Kð~hgÞ ¼ ðG~h 2 1Þ=G~h and

vGJ1ðûÞ will be unbiased since
P

g Kð~hgÞDhð~hgÞ ¼ 1.

However, when the nhg vary, vGJ1 can have a substantial bias. Under assumptions

(i) – (iv), given earlier, Dhð~hgÞ ¼ Oð1Þ and N22V ð~hgÞ ¼ Oðn21Þ, implying that the first term

in EðvGJ1Þ=N
2 will be Oðn21Þ. Conditions (ii) and (iv) imply that the second term in

EðvGJ1Þ=N
2, N22

P
~h;g Kð~hgÞB

2
ð~hgÞ

, will be O(1) as long as phg – 1=G~h so that (A.5) is not 0.

As a result, the terms B2
ð~hgÞ

will dominate the expected value of vGJ1, causing it to be an

overestimate. Judging from (A.5) and (A.6), the overestimation will be particularly acute

if s2
h is small compared to Y2

h in all or most design strata. For example, in stratified simple

random sampling (stsrs), s2
h=Y

2
h ¼ N2

hV
2
h=Y

2
h ¼ V2

h= �Y
2
h with V2

h being the population

variance in stratum h. Thus, the positive bias of vGJ1 in stsrs should be most apparent when

the stratum population coefficients of variation of Y are small. One situation where this can

occur is when Y is an indicator for a prevalent characteristic.

Case 2. Weight Adjustment Based on Number of PSUs in Deleted Group: vGJ2

When ahð~hgÞ ¼ n~h=ðn~h 2 n~hgÞ, we have ahð~hgÞð1 2 phgÞ ¼ ð1 2 phgÞ=ð1 2 p~hgÞ with

p~hg ¼ n~hg=n~h. If nhg is the same for all groups within each design stratum so that
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p~hg ¼ phg ¼ 1=G~h, the expectation in (A.5) is zero. If p~hg and phg are close to equal, (A.5)

will still be numerically small. We also have

Dhð~hgÞ ¼
1 2 phg

ð1 2 p~hgÞ
2
2 2

1 2 phg

1 2 p~hg
þ 1

which reduces to 1=ðG~h 2 1Þ when p~hg ¼ phg ¼ 1=G~h. In that case, we can set Kð~hgÞ ¼

ðG~h 2 1Þ=G~h and vGJðûÞ reduces to the standard estimator in Case 1. Somewhat more

generally, if p~hg ø phg, then setting Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h gives an approximately

unbiased estimator:

vGJ2ðûÞ ¼
~h

X
ð1 2 f ~hÞ

XG~h

g¼1

ðn~h 2 n~hgÞ

n~h

ûð~hgÞ 2 û
h i2

The unbiasedness follows when ð1 2 phgÞ=ð1 2 p~hgÞ ø 1 so that (A.5) is approximately

zero and because Dhð~hgÞ ¼ n~hg=ðn~h 2 n~hgÞ from which it follows that

X
g

Kð~hgÞDhð~hgÞ ¼
X
g

ðn~h 2 n~hgÞ

n~h

n~hg

n~h 2 n~hg
¼

X
g

p~hg ¼ 1

Case 3. Weight Adjustment Specific to Design Stratum and Group: vGJ3

In the case of vGJ3, ahð~hgÞ ¼ nh=ðnh 2 nhgÞ and Bð~hgÞ in (A.5) is always zero. If p~hg ø phg,

then setting Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h gives an approximately unbiased estimator for the

reasons cited above for vGJ2.

Case 4. Weight Adjustment Specific to Design Stratum and Group and Incorporating fpc:

vGJ4

The weight adjustment for vGJ4 is ahð~hgÞ ¼ nh=ðnh 2 nhgÞ but base weights are modified by

multiplying the weight for a unit in design stratum h by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 f h

p
. Define û

*
¼P

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 f h

p
n21
h

Pnh
i¼1yhi=phi and û

*

ð~hgÞ to be the replicate estimate in (A.2) using y*
hi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 f h
p

yhi in place of yhi. Then

û
*

ð~hgÞ 2 û
*

¼
X
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 f h

p phg

1 2 phg
ðŷh 2 ŷhgÞ ðA:8Þ

Consequently, E
h
ûð~hgÞ

*

2 û
*
i2

¼
P

h[S~h
ð1 2 f hÞs

2
hnhg=½nhðnh 2 nhgÞ�. The condition for

unbiasedness is
P

g Kð~hgÞnhg=ðnh 2 nhgÞ ¼ 1 for each stratum h in VarStrat ~h. As for vGJ2

and vGJ3, setting Kð~hgÞ ¼ ðn~h 2 n~hgÞ=n~h gives an approximately unbiased estimator as long

as p~hg ø phg. Substituting ahð~hgÞ ¼ nh=ðnh 2 nhgÞ into (A.4), shows that ûð~hgÞ 2 û ¼P
h phgð ŷh 2 ŷhgÞ=ð1 2 phgÞ for vGJ3. Comparing this to (A.8) shows that vGJ4 will be

approximately the same as vGJ3 when the fpc’s are similar for all design strata within

VarStrat ~h.
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Appendix B. Mean Centering and Nonlinear Estimators

An alternative jackknife is found by centering around the stratum mean of ûð~hgÞ:

vGJ2MðûÞ ¼
~h

X
ð1 2 f ~hÞ

XG~h

g¼1

Kð~hgÞ ûð~hgÞ 2 ûð~hÞ

h i2

where ûð~hÞ ¼
PG~h

g¼1ûð~hgÞ=G~h with ûð~hgÞ defined in (A.2). In the particular case of ahð~hgÞ ¼

G~h=ðG~h 2 1Þ and Kð~hgÞ ¼ 1=ahð~hgÞ, vGJ2Mðû Þ ¼ vGJ1, which is easily verified. After some

computation, it can be shown that

Bð~hgÞ ; E ûð~hgÞ 2 ûð~hÞ

h i
¼

X
h[S~h

Yh ahð~hgÞð1 2 phgÞ2 G21
~h

XG~h

g
ahð~hgÞð1 2 phgÞ

h i
ðB:1Þ

If the groups are all the same size in VarStrat ~h, i.e., phg ¼ 1=G~h, then (B.1) reduces to 0.

Otherwise, if the term in brackets on the right-hand side of (B.1) is O(1), then B2
ð~hgÞ

is also

O(1), and the bias squared term of E vGJ2MðûÞ
� �

will be dominant, leading to the same

overestimation as for vGJ1. We anticipate that the same result will hold for the other

versions of the jackknife studied by Krewski and Rao (1981).

Results can also be derived for nonlinear estimators of the form û ¼ gð ŷ1; : : : ; ŷpÞ

where g is a differentiable function and ŷk ¼
P

h ŷkh ðk ¼ 1; : : : ; pÞ is a linear estimator

of the form examined in Appendix A. The grouped jackknife, vGJ1, is sometimes, but not

always, subject to the same biases as in the linear case. We will only sketch results for a

ratio, û ¼ ŷ2=ŷ1, where the bias should be negligible. This estimator is commonly used and

includes the case of a mean in which the denominator is a sample sum of weights. The

usual linear approximation gives û2 u ø
P

h ẑh where ẑh ¼ n21
h

Pnh
i¼1zhi=phi,

zhi ¼ ð y2hi 2 uy1hiÞ=Y1, y1hi and y2hi are estimated totals of the two variables in PSU hi,

u ¼ Y2=Y1, and Y1 and Y2 are the population totals for the denominator and numerator

variables in the ratio. Using the same reasoning as in Appendix A,

Bð~hgÞ ¼ E ûð~hgÞ 2 û
h i

¼
X
h[S~h

Zh ahð~hgÞð1 2 phgÞ2 1
h i

ðB:2Þ

where Zh ¼ ðY2h 2 uY1hÞ=Y1 with Y1h and Y2h being the stratum population totals.

Expression (B.2) will be zero if ahð~hgÞð1 2 phgÞ ¼ 1 or Zh ¼ 0 for all strata. The former

condition is the same as for linear estimators while the latter holds only if the ratio, Y2h/Y1h,

equals u in every stratum. However, note that Zh ¼ Y1hðuh 2 uÞ=Y1 with uh ¼ Y2h=Y1h.

If uh and Y1h /Y1 are bounded, then Bð~hgÞ ¼ Oð1Þ and the second term in EðvGJ1Þ=N
2,

N22
P

~h;g Kð~hgÞB
2
ð~hgÞ

, is O(N 21). Similar analysis to that in Appendix A shows that

N22V ð~hgÞ ¼ Oðn21Þ. As long as
P

g Kð~hgÞDhð~hgÞ 8 1, as in Case 2 of Appendix A with

Kð~hgÞ ¼ ðG~h 2 1Þ=G~h and phg ¼ 1=G~h, then (A.7) will be approximately satisfied. Thus,

EðvGJ1Þ=N
2 ¼ Oðn21Þ þ OðN21Þ with the O(n 21) term being approximately equal to the

variance of the ratio. Consequently, the standard grouped jackknife is expected to be

nearly unbiased for the variance of a ratio when the sampling fraction, n/N, is small.

Journal of Official Statistics486



8. References

Amrhein, J., Hicks, S., and Kott, P.S. (1997). An Application of a Two-phase Ratio

Estimator and the Delete-a-group Jackknife. Proceedings of the American Statistical

Association, Section on Survey Research Methods, 175–179.

Brick, J.M., Jones, M.E., Kalton, G., and Valliant, R. (2005). Variance Estimation with

Hot Deck Imputation: A Simulation Study of Three Methods. Survey Methodology, 31,

151–159.

DiGaetano, R., Brick, J.M., and Flores-Cervantes, I. (1998). Preserving Degrees of

Freedom in a Multi-mode, Multi-site Survey. Proceedings of the American Statistical

Association, Section on Survey Research Methods, 475–480.

Duchesne, P. (2000). A Note on Jackknife Variance Estimation for the General Regression

Estimator. Journal of Official Statistics, 16, 133–138.

Kott, P.S. (1998). Using the Delete-a-group Jackknife Variance Estimator in Practice.

Proceedings of the American Statistical Association, Section on Survey Research

Methods, 763–768.

Kott, P.S. (1999). Some Problems and Solutions with a Delete-a-group Jackknife. Federal

Committee on Statistical Methodology Research Conference, 4, 129–135.

Kott, P.S. (2001). The Delete-a-group Jackknife. Journal of Official Statistics, 17,

521–526.

Krewski, D. and Rao, J.N.K. (1981). Inference from Stratified Samples: Properties of the

Linearization, Jackknife, and Balanced Repeated Replication Methods. Annals of

Statistics, 9, 1010–1019.

Lu, W., Brick, J.M., and Sitter, R. (2006). Algorithms for Constructing Combined Strata

Grouped Jackknife and Balanced Repeated Replications with Domains. Journal of the

American Statistical Association, 101, 1680–1692.

Research Triangle Institute (2001). SUDAAN User’s Manual, Release 8.0. Research

Triangle Park, NC: Research Triangle Institute.

Rust, K. (1984). Techniques for Estimating Variances for Sampling Surveys. Unpublished

Ph.D. dissertation, Ann Arbor, MI: University of Michigan.

Rust, K. (1985). Variance Estimation for Complex Estimators in Sample Surveys. Journal

of Official Statistics, 1, 381–397.

Rust, K. (1986). Efficient Replicated Variance Estimation. Proceedings of the American

Statistical Association, Section on Survey Research Methods, 81–87.

Rust, K. and Kalton, G. (1987). Strategies for Collapsing Strata for Variance Estimation.

Journal of Official Statistics, 3, 69–81.

Rust, K. and Rao, J.N.K. (1996). Variance Estimation for Complex Estimators in Sample

Surveys. Statistics in Medical Research, 5, 381–397.

Särndal, C.-E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling.

New York: Springer-Verlag.

Shao, J. (1996). Resampling Methods in Sample Surveys (with Discussion). Statistics, 27,

203–254.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer-Verlag.

StataCorp (2005). Stata Statistical Software: Release 9. College Station, TX: StataCorp LP.

Valliant et al.: Grouped Jackknife Variance Estimator 487



Westat (2000). WesVar 4.0 User’s Guide. Available at www.westat.com/wesvar.

Rockville MD: Westat.

Wolter, K.M. (2007). Introduction to Variance Estimation. New York: Springer-Verlag.

Yung, W. and Rao, J.N.K. (2000). Jackknife Variance Estimation under Imputation for

Estimators Using Poststratification Information. Journal of the American Statistical

Association, 95, 903–915.

Received May 2006

Revised March 2008

Journal of Official Statistics488


