R&D Report 1998:5

Research — Methods — Development

Estimation from Order

nps Samples
with Non-Response

[ o
()
7]
$
(%)
v
frs
o)
Iﬂ
)
©
ot
(Vo]

Bengt Rosén & Par Lundqvist

Statistiska centralbyran



INLEDNING

TILL

R & D report : research, methods, development / Statistics Sweden. — Stockholm :
Statistiska centralbyran, 1988-2004. — Nr. 1988:1-2004:2.

Hari ingar Abstracts : sammanfattningar av metodrapporter fran SCB med egen
numrering.

Foregangare:

Metodinformation : preliminar rapport fran Statistiska centralbyran. — Stockholm :
Statistiska centralbyran. — 1984-1986. — Nr 1984:1-1986:8.

U/ADB / Statistics Sweden. — Stockholm : Statistiska centralbyran, 1986-1987. — Nr E24-
E26

R & D report : research, methods, development, U/STM / Statistics Sweden. — Stockholm :
Statistiska centralbyran, 1987. — Nr 29-41.

Efterfoljare:

Research and development : methodology reports from Statistics Sweden. — Stockholm :
Statistiska centralbyran. — 2006-. — Nr 2006:1-.

R & D Report 1998:5. Estimation from order mps samples with non-response / Bengt Rosén; Péar
Lundqvist.
Digitaliserad av Statistiska centralbyran (SCB) 2016.

urn:nbn:se:scb-1998-X1010P9805



R&D Report 1998:5

Research — Methods — Development

Estimation from Order nps Samples
with Non-Response

Bengt Rosén & Par Lundqvist



R&D Report 1998:5
Research - Methods - Development

Estimation from Order nps Samples
with Non-Response

Fran trycket
Producent

Utgivare

Forfragningar

© 1998, Statistiska centralbyrin
ISSN 0283-8680

Printed in Sweden
SCB-Tryck, Orebro 1998

Oktober 1998
Statistiska centralbyran, Statistics Sweden, metodenheten
Box 24300, SE-104 51 STOCKHOLM

Lars Lyberg

Bengt Rosén
bengt.rosen@scb.se
telefon 08-783 44 90
telefax 08-667 77 88

Pér Lundqvist

par.lundqvist@scb.se
telefon 08-783 49 06
telefax 08-667 77 88


mailto:bengt.rosen@scb.se

October 1998

Estimation from Order nps Samples
with Non-Response

Bengt Rosén & Par Lundqvist

Abstract

An instrument for utilization of auxiliary information in sample surveys is mps sampling, i.e. to
sample without replacement with inclusion probabilities proportional to given size measures.
Rosén (1997b) introduced a novel class of ntps schemes, called order mps schemes, and advised
procedures for point and variance estimation. These procedures cover, however, only full
response situations. Since some portion of non-response is rule rather than exception in practi-
cal surveys, it is desirable to have disposal of estimation procedures which work also under
non-response. Such procedures is the topic of this paper.

Section 4, which is the core of the paper, presents the non - response adjusted estimation pro-
cedures, for point estimation and confidence intervals, which thereafter are given theoretical as
well as simulation based justifications. The simulation results are presented in Section 5 and
the theoretical justifications in Sections 6-8.

The tentative conclusion are as follows. Provided, of course, that response mechanism and
response model comply with each other, the non - response adjusted estimation procedures
work satisfactorily under quite general conditions. In particular, point estimator biases are
negligible for all non - response rates already for quite small sample sizes. Good performance
of the confidence intervals requires larger sample sizes, and depends on the type of relation
between the size variable and the study variable.
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Estimation from Order nps Samples
with Non - Response

1 Introduction and outline

An instrument for utilization of auxiliary information in sample surveys is nps sampling, i.e. to
sample without replacement with inclusion probabilities proportional to given size measures.
Rosén (1997b) introduced a novel class of smps schemes, called order mps schemes, and
advised procedures for point and variance estimation. The procedures cover, however, only
full response situations. Since some portion of non - response is rule rather than exception in
practical surveys, it is desirable to have disposal of estimation procedures which work also
under non - response. Such procedures is the topic of this paper, which is organized as follows.

Section 2 briefly reviews some basic concepts, notably that of order stps sampling. Section 3
specifies the response models that are considered. Section 4, which is the core of the paper,
presents procedures for non-response adjusted estimation. Thereafter the procedures are given
theoretical as well as simulation justifications. In the belief that the latter are the most con-
vincing they are presented first, in Section 5. The theoretical justifications are given in Sec-
tions 6, 7 and 8. The broad conclusion from the simulation findings is that the non - response
adjusted estimation procedures work quite satisfactorily, provided that response mechanism
and response model comply with each other.

The theoretical justifications are based on a limit result for an auxiliary notion, called quota
random retain order sampling, which is introduced in Section 6, where also the limit result is
formulated. The proof is deferred to Section 8. Section 7 provides the bridge from quota ran-
dom retain order sampling to order mps sampling with non - response. Since the estimation
procedures are based on limit results they are approximate to some extent in “finite” situations.
The simulation results in Section 5 provide information on approximation goodness.

Throughout the paper. P, E, V and V denote probability, expectation, variance and variance
estimator. N(u1,02) stands for the normal distribution with mean w and variance o”.

2 Basic concepts, notably order nps sampling

U=(1,2,...,N) denotes a finite population and y=(y,, ¥,, ..., ¥n) @ variable on it. The corre-
sponding y-total over the population is;

LOEDIE @.1)

A sampling frame in the form of a list with items that one - to - one correspond with the units in
U is used. We let U refer to frame as well as population. For completeness we recall the Rosén
(1997b) definition of order nips sampling. To that end we first present the more general notion
"order sampling" from Rosén (1997a).

DEFINITION 2.1 Order sampling : To each unit i in a population U=(1, 2, ...,N) is as-
sociated a probability distribution Fi(t) with density fi(t), 0 < t < o . Order sampling
with sample size n,n <N, and order distributions F = (F,, F,, ..., Fy), denoted OS(n; F),
is conducted as follows. Independent ranking variables Q,, Q,, ..., Qy With distributions
F,, F,,..., Fy are realized. The units with the n smallest Q - values constitute the sample.



Order nps schemes comprise a subclass of the OS(n; F) schemes, as follows.

DEFINITION 2.2 Order nps sampling : H(t) is a probability distribution with density h(t),

t= 0, n is a positive integer and A = (A, .., Ay) real numbers which satisfy;
N

0<Ai<1, i=1,2,.,N, YA =n. (2.2)

1=1
Order nps sampling with sample size n, shape distribution H and target inclusion proba-
bilities }. is 0S(n; F) with order distributions that satisfy either, and hence both, of the fol-
lowing equivalent conditions (i) and (ii). H ' denotes inverse function.

(ii) The ranking variables Q have the structure: Q; = H\(Z;)/H'(\), i=1,2,...,N,
where Z,,..., Zy, are independent random variables uniformly distributed on [0, 1].
(i) The order distributions F = (F;, F,, ..., Fy) are;
Fi(t)= H(t-H'(A;)) with density fi(t) =H'(A)-h(t-H'(A;)), i=1,2,...,N.  (2.3)
A general order mips scheme is referred to by the notation OSstps(n; H;A). Particular
OSmps schemes are named by their shape distributions.

In spite of the fact that OSmps schemes are very simple to implement, their definition admit-
tedly looks intricate when first met. The chief reason why OSnps schemes are of practical
interest is the following result, which is discussed at length in Rosén (1998).

APPROXIMATE INCLUSION PROBABILITIES FOR OSntps: For OSnps(n;H;2)
holds with good approximation, whatever the shape distribution H is;

The sample inclusion probability for unit i =2, i=1,2,...,N. (2.4)
Result (2.4) implies that OSsips is a means for sampling with inclusion probabilities (approx-
imately) equal to given target inclusion probabilities A = (A, Ay, ..., Ay). The A:s are typically
generated as follows. The sampling frame comprises a size variable s =(s,, s,, ..., Sy). The cor-

responding normalized size variable is obtained by scaling the s - values so that their sum
becomes 1;

N
$*=(51%,8,%, .., 5™ ) =(81, 5550015 SN)/E S; . (2.5)
1=1
Then, for a given sample size n, the A:s are defined as;
ANi=n-s* i=1,2,..,N. (2.6)

In (2.5) it may happen that one or more A exceeds 1. If so, some special measure has to be
taken; Introduction of a "take all" stratum, or something else. We presume that A; < 1.

In line with Rosén (1997a & b) we will pay special attention to the following OSnips schemes.
Uniform OSnps: H(t)=t, h(t)=1, O=<t<1, H(t)=1, h(t)=0, 1stsoo,

with inverse H'(A\) =i, i=1,2,...,N. (2.7)
Exponential OSnps: H(t)=1-¢™", h(t)=e™, Ost<o,

with inverse H '(A;)=-log (1-Aj), i=1,2,...,N. (2.8)
Pareto OSnps: H(t)=t/(1+t), h(t)=1/1+1)?, Ost<oo,

with inverse H'(M)=Ai/(1-Ai), i=1,2,...,N. (2.9)



3 Response modeling

In situations where non - response occurs during data collection a prerequisite for unbiased
inference is that the inference is based on a good model of the factual response mechanism.
We confine to the following simple and well - known response mechanism model.

RESPONSE MECHANISM 3.1: To each unit i in U is associated a random 0- 1-variable
R;, called response indicator, which specifies if unit i responds (Ri=1) or not (R;=0) if
addressed. The corresponding response propensities are ;

Bi=P[Ri=1), i=1,2,...,N. (3.1)
The following assumptions (i) and (ii) are made.
(i) Ry,R,...,Rn are mutually independent. (3.2)

In a sample survey context with sample inclusion indicators Iy, 1,,...,In, (i.e. I; =1 if
unit i is sampled and [; = 0 otherwise);

(ii) The stochastic vectors (I1,1z,...,In) and (R4, Ry, ..., RN) are independent. (3.3)
We say that over-all uniform response propensities are at hand if;

Bi=P2=...=PBn=B. (3.4)
We say that group - wise uniform response propensities are at hand if U partitions into
disjoint response homogeneity groups 4,,4,, ... ,Gs with response propensities B(g), and;

Bi=[3(g)a ieég: g'—_l,za"'aG' (35)

The case with over-all uniform response propensities can of course be seen as a special
case of group-wise uniform response propensities, with the entire population as the sole
response homogeneity group.

When non - response occurs, assumptions about the response mechanism must be introduced in
the estimation step. Such assumptions are called the response model. We confine to response
models which comply with the above response mechanism model, to the effect that the
response model specifies a set &y, &, ... , G of surmised response homogeneity groups. Note
that specification of values for response propensities is part of the response mechanism model,
but not of the response model. It goes without saying that the success of non - response
adjustment depends on the agreement between response mechanism and response model.

4 Non - response adjusted estimation for OSnps samples

In this section we formulate results about non - response adjusted estimation for OSnps. Theo-
retical justification of the results is deferred to Sections 6, 7 and 8, while the next Section 5
provides simulation based justification. We provide background for the adjusted procedures by
stating estimation formulas from Rosén (1997b) for the full response case.

4.1 Estimation under full response

ESTIMATION PROCEDURE 4.1: An OSrips sample with sample size n, shape distribu-
tion H with density h and target inclusion probabilities A = (A1, Az.., AN) is drawn from
U=(1,2,...,N). The values of a variable y=(y;, y,,..., yy) are observed for all sampled
units. Then, the following holds under general conditions.

a) Consistent estimation of the total ©(y) is given by ;

t(Vos = D, Vi/M- (4.1)

1ESample



b) A confidence interval for t(y) with approximate confidence level 1- a is given by

¥)os = Barr VIE®)os] > (4.2)

where 8, is the (1-0/2)-fractile in the standard normal distribution, and;
2

V['AC(Y)OS]=;“I_1_*1' E (%— E yj}\:aj/ Eai) “(1-1,), (4.3)

i€ Sample i jE Sample j € Sample

with
a, =h(H'(A)-H (M)A, i=1,2,..,N, (4.4)

Also, V[%(y)s] yields consistent estimation of the estimator variance V[(y)os].

The a;-values for the schemes (2.7)-(2.9) are stated in Lemmas 3.1 and 4.1 in Rosén (1997b).
They are listed below.
For uniform OSnps: a;=1, i=1,2,...,N. (4.5)
For exponential OSnps: a, =-In(1-A,)-(1-A,)/A;, i=1,2,..,N. (4.6)
For Pareto OSmps: a, =1-A,, i=1,2,...,N. 4.7)

4.2 Estimation when non-response is modeled by over-all uniform
response propensities

The non - response adjusted estimation procedure can broadly be described as follows. Modify

"sampled" to "responding" and make the corresponding modifications of the target inclusion

probabilities. Then use the full response estimation formulas (4.1) and (4.3). Under the

response model with over-all uniform response propensities, the modifications are as follows.

Sample is exchanged for "responding sampled units". (4.8)
Sampile size is exchanged for "number of responding units". (4.9
Ai is exchanged for A'; given by (2.6) with n="number of responding units". (4.10)

The precise result is stated below.

ESTIMATION PROCEDURE 4.2: An OSnps sample with size n, shape distribution H
with density h and target inclusion probabilities A = (A1, Az,...,AN) is selected from the
population U=(1,2,...,N). The a; are according to (4.4). Non-response occurs during
data collection, and the response model presumes over-all uniform response propen-

sities. Set;
Hfsample = the set of responding sampled units, (4.11)
n' = number of responding units, (4.12)
Al=(n'"/n) A, =n'"s*, i=1,2,..,N. (4.13)

Then the following holds under general conditions.

a. Consistent estimation of the total t(y) is given by;
(Y osa = E Yi/A;. (4.14)

i€ Rsample
b. A confidence interval for t(y) with approximate confidence level 1- a is given by;

T(Vosa = Oupn vV VIEHF)osal > (4.15)

where 0, is the (1- a/2)-fractile in the standard normal distribution, and;



2

. n' Y Y3 , :

eWonl=77 2 |- 2 5 ) 2 aj) 1-1).  (416)
i€ Rsample ! j € Rsample J j € Rsample

Remark 4.1 : Computation of the variance estimator (4.16) is simplified by expansion of the

square. After some straightforward algebra this yields;

1

VR(Y) o6 ] =;Il—1—-(A—2-B-D/K+C-D2/K2), where 4.17)

A= SEADA-A), B= SEADU-A), C= Sa-1), (18)
i€ Rsample i€ Rsample ie fsample

D= Y (vi/A)a,, K= Y a. X (4.19)
iERsample 1ERsample

Remark 4.2 : The variance estimator (4.16) emanates from (6.16) and (6.17), which are based
on Theorem 8.1. In (4.16) the target inclusion probabilities appear in adjusted versions A’
while the a; are based on the original A :s. A natural wonder is what happens if also adjusted
ai-values are used, leading to the following modified estimator;

2

tre n‘ yi y ' a’, f ,

V[T(Y)OSA]=_HT1' > i D —f Eaj)-(l-xi), (4.20)
i€ Msample ! j € Rsample J j& Rsample

where a'; is given by the following modification of (4.4);

al =h(H" () -H'(A)D/A], i=1,2,.,N. (4.21)
For the schemes (2.7)-(2.9), (4.21) becomes as follows.
For uniform OSnps: a'i=1, i=1,2,...,N. (4.22)
For exponential OSnps: a; =-In(1-A))-(1-A))/A], ifA;<]1,
=0 ifA;=1, i=1,2,..,N. (4.23)
For Pareto OSmps: a; =1-A[, i=1,2,...,N. (4.24)

To distinguish the two variance estimators, the (4.16) estimator is said to be of Type I and the
(4.20) estimator of Type 2. X

Remarks 4.3 : (i) Under the present response model, over - all uniform response propensities,
A'i < 1 always holds. The case A} = 1 in (4.23) is introduced for later use.

(i) Note that V'= V for uniform OSmps, since then a'; = a;.

(iii) As regards computation of V', the procedure in Remark 4.1 can be used after the fol-
lowing modifications of D and K;

D= Y (vi/A)aj, K= Ya. = (425)

i € Rsample i € Rsample

4.3 Estimation when non-response is modeled by group-wise uniform
response propensities
Also when the response model comprises more than one response homogeneity group the ad-

justed estimation procedure follows the previous lines. First n and A; are modified, here group-
wise, then the full response Procedure 4.1 is applied. The precise formulation is given below.



ESTIMATION PROCEDURE 4.3: An OSnps(n; H;A) sample is drawn from U=(1,...,N).
The a; are according to (4.4). Non-response occurs during data collection, and is modeled

by group- wise uniform response propensities with homogeneity groups 4,4, ..., %c. Set;

n, = number of sampled units from group 4, g=1,2,...,G, (4.26)

n'g = number of responding units from group &, g=1,2,...,G, (4.27)

NRgsample = the set of responding sampled units from group &, g=1,2,...,G, (4.28)

Rsample = R sample U Rysample U ... U Rgsample, (4.29)

A= min(n;(i)%i/ E)»J » 1) = min(n,," s/ ESJ D, i=1,2,..,N, (4.30)
i€, 1€

where g; is the index for the - group to which unit i belongs.
Then the following holds under general conditions.

a. Consistent estimation of the total ©(y) is given by;

(¥)osoa = E yi/Ai (4.31)
i € Rsample
b. A confidence interval for 1(y) with approximate confidence level 1-a is given by;
UY)osoa = Oa '\/V[f(Y)oscA] > (4.32)

where 0, is the (1- a/2)-fractile in the standard normal distribution, and;

VIR(Y) os0a ] E n— E (% - E }Ivj}\ﬁi} 2 ajj “(1-A]). (4.33)

ie R, sample ! jE€ R ysample ] JE R gsample

Remark 4.4: The A -modification in (4.30) can be concretized as follows. First the size values
are normalized on each 4- group. Thereafter the A':s are computed by group - wise application
of the modified version of (2.6). Note that this operation requires "frame knowledge" of & -
belonging. The min( -, 1) operation in (4.30) is introduced for the following reason. Without
this, admittedly somewhat ad hoc, rule it can happen, although only in exceptional cases, that
one or more A'; becomes greater than 1. This operation also explains formula (4.23). =

Remark 4.5 : In analogy with what is said in Remark 4.1, computation of the variance estima-
tor (4.33) is simplified by expansion of the squares. This leads to the formula;
G n’

V["A:(Y)OSGA] = E n' i

g=1

where Ag, By, ..., K, are the R sample analogues of the quantities in (4.18) and (4.19). ™

Remark 4.6: In Remark 4.2 we introduced a modified version of the estimator (4.16). The cor-
responding modification of the variance estimator (4.33) is;

V[f<y>OSGA1=2n,n > (-}yj 3 Ya ) (1-4), (4.35)

8=l g i€ R sample ! JE R sample J j& R sample

2 2
,-2B,-D,/K, +C, D!/K?), (4.34)

where a' is defined by (4.21). As in Remark 4.2, we distinguish the two variance estimators by
calling (4.33) the Type 1 estimator and (4.35) the Type 2 estimator. H



4.4 Approximate formulas for estimator variances

The theme in this section is theoretical estimator variances. Even if such variances are un-
important in the estimation phase, they are of interest in the survey planning phase and also in
a method evaluation of the present type. As stated in Procedure 4.1, in the full response case
the variance estimator (4.3) provides consistent estimation of the corresponding theoretical
variance. An asymptotically correct approximation formula from Rosén (1997b) is repeated
below. The novel part concerns analogous asymptotically correct approximation formulas for
theoretical estimator variance under non - response. There is a difference, though, between the
cases without and with non-response, which is discussed first.

4.4.1 The non-response adjusted estimation procedures are conditional
inference procedures

When non - response occurs, the number of responding units is random. As a consequence
Estimation Procedures 4.2 and 4.3 are, which is discussed in more detail in Section 7, condi-
tional inference procedures, with conditioning on the number of responding units in the dif-
ferent response homogeneity groups. In particular, (4.16) and (4.33) are consistent estimators
of the corresponding conditional estimator variances. Derivation of exact formulas for these
conditional variances is unfeasible, but asymptotically correct approximate formulas are given.
Justifications are given in Sections 6 and 7.

4.4.2 Results on approximate conditional estimator variances

As before we start by giving background by stating results for the full response case, fetched
from Approximation Result 3.1 in Rosén (1997b)

APPROXIMATE VARIANCE FOR THE ESTIMATOR (4.1): Let assumptions and nota-
tion be as in Procedure 4.1. Then, under general conditions, (4.36) provides an asymptoti-
cally correct approximation of the variance of () ;

VIE(¥)os]= N-1 E(YI iyj /_1 ) A (1-A;), where (4.36)

=h(H'(\)-H'(\), i=1,2,. (4.37)

The a;-values for the schemes in (2.7)- (2.9), which are given in Lemmas 3.1 and 4.1 in Rosén
(1997b), are as stated below.

For uniform OSnps: ai=A;, i=1,2,...,N. (4.38)
For exponential OSnps: o, =~-In(1-A;)-(1-A;), i=1,2,..,N. (4.39)
For Pareto OSmps: o, =A,-(1-A,), i=12,..,N. (4.40)

We now turn to theoretical conditional variances corresponding to the adjusted estimators. As
stated earlier, conditioning is made on the number of responding units, n' in the over - all case
and (n'1,n',,...,n'c) in the group case.

APPROXIMATE CONDITIONAL VARIANCE FOR THE ESTIMATOR (4.14): Let ass-

umptions and notation be as in Procedure 4.2, and a; be according to (4.38)-(4.40). Then,
an asymptotically correct approximation of the conditional Variance VIE(Y) osal 0'] 15

VIE(¥)osal n'] =l-i I y’ A (1=, (4.41)
OSA appr N—]. - )\’: _]-1 i i



APPROXIMATE CONDITIONAL VARIANCE FOR THE ESTIMATOR (4.31) : Let
assumptions and notation be as in Procedure 4.3, and o as in (4.38)-(4.40). Then, an
asymptotically correct approximation of the conditional variance V[(¥)osgal 015-->0g ]

is, where N denotes the number of units in group &,;
N
=

2
S N N vy .
P ' ! Yi y o . ', !
V[T(y)OSGA'“1""’“G]avvr=2Ngg_1'2(#’—z v /E O‘JJ A
i j
(4.42)

—_

g=1 igg, j=1

5 Simulation study of the non-response adjusted procedures

5.1 Introduction

The estimation procedures in Section 4 are derived by limit considerations, which are carried
out in Sections 6 - 8. Since practical survey situations are "finite", procedures based on
asymptotic results are always afflicted with some amount of approximation error when used in
practice. In the present context, point estimator bias and confidence level bias are of
particular interest. It is important to have an idea of the magnitude of the biases due to the
approximations. The natural, not to say the only, feasible way to study approximation good-
ness is by Monte Carlo simulations, which is the theme of this section. We start by giving
some background from the full response case.

5.1.1 On the performance of OSnps schemes under full response

Approximation goodness in the full response case is studied in Rosén (1997b) where, i.a. uni-
form, exponential and Pareto OSnips are considered. The findings can be summarized as fol-
lows. For all three schemes the point estimator bias is negligible already for very small sample
sizes (say n = 10). For confidence levels the broad lines are as follows. Biases are “bearable”
for fairly small sample sizes (say n =20), “moderate” when sample size increases (say n = 50)
and negligible for large sample size (say n = 100). However, a comprehensive picture is more
complex, as always when goodness of the normal distribution approximation is involved.
There is no simple rule of thumb for small confidence level bias in terms of just sample size.

Rosén (1997b) also compares the estimation precision for a number of mps schemes, including
the present OSmps schemes, with the following chief result. Among mps schemes which admit
objective assessment of sampling errors, Pareto OSzps is the superior one. It never performs
worse than uniform and exponential OSmps, but sometimes considerably better. Its degree of
superiority varies from situation to situation, though. Crucial factors in that context are the
sampling rate and the relation between the study variable y and the size variable s. For the last
factor, a fairly rough classification was introduced in Rosén (1997b). The relation between the
study and size variables is said to have linear, increasing convex or increasing concave trend,
depending on the shape of the curve for regression of y on s. In broad terms the following
holds. As regards estimation precision the three OSmps schemes perform very similarly in
situations with linear trend, but Pareto OSmps is superior in situations with convex or concave
trend, the more superior the larger the sampling rate is.

5.1.2 Main aim of the present study of non-response adjusted estimation

Even if three OSnps schemes are considered in this paper, comparison of their over - all per-
formances under non - response is not a chief aim, but to see how well the adjusted estimation
procedures work for each of them. Background for this is that Statistics Sweden surveys use
uniform as well as Pareto OSnips. Point estimator bias and confidence level bias are taken as



the central performance measures. Under non - response additional potentially crucial factors
enter the picture, notably;

* The response mechanism,
* The response propensities,
* The agreement between response mechanism and response model.

5.2 Organization of the simulation study
5.2.1 Broad lines
The broad lines in the simulation study are stated below. Details are given afterwards.

Step 1 Population generation: A population size, N, was decided on and value pairs
{(yi,s1); i=1,2,...,N} for a study variable y and a size variable s were generated.

A generated population was used unaltered throughout the subsequent steps.

Step 2 Generation of responders: A response mechanism was decided on, and used
to divide the population into responders and non - responders.

Step 3 Sample selection: A sample size, n, was decided on, and uniform, exponential
and Pareto OSmps samples of size n were drawn.

Steps 2 and 3 yielded responding samples. For fixed combinations of population, response
mechanism and sample size, 3000 independent runs of (Step 1+ Step 2) were made.

Step 4 Estimates from responding samples: A response model, i.e. a set of surmised
response homogeneity groups, was decided on. Then estimates from observation data
for the responding samples were computed, using Estimation Procedures 4.2 and 4.3.

Also approximate conditional estimator variances were computed.
The estimates from the 3000 responding samples were stored in a separate file.

Step 5 Compilation of performance measures: From the data in the "estimate
store file" various means and standard deviations were computed, to provide meas-
ures for judging the performance of the adjusted estimation procedures.

5.2.2 Step 1: Population generation
Population values {(yi,s;); i=1,2,..., N} were generated by model (5.1) below, which is the
same as the one used in Rosén (1997b);

si=i, y,=c (sl +0°L;-fs! ), ¢>0, o= 0, the L; being iid N(0,1), i=1,2,...,N. (5.1)

1

The parameter y determines the shape of the size - variable trend. For y close to 1 the trend is
linear, for y greater than 1 it is convex and it is concave for y less than 1. The parameter o
determines how much the y-values scatter around the trend curve.

Four populations, named A, B, C and D, were considered. They were generated by the model
(5.1) with parameters as stated below.

Population A: N=100, y=1, o=2. Has linear trend.

Population B: N=100, y=1.5, 0=2.  Has convex trend.

Population C: N =100, y=0.5, 0=0.5. Has concave trend.

Population D: N =500, y=0.5, 0=0.5. Has concave trend.

As seen, the populations range over the three trend shapes. Populations A, B and C have size
N = 100, which certainly is a very small population size in a practical context. The main rea-
son for considering such small populations was to keep computation times down. Moreover, if
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approximations in fact are quite good for small population and sample sizes, they are (reas-
onably) only better for larger ones. However, population D, which has the same y and o as
population C but N=500, was introduced to allow for larger sample sizes than possible for C.

The populations are illustrated graphically in the figures below.
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Population D

5.2.3 Step 2: Generation of responders

Responders were generated by realizing independent R - values in Response Mechanism 3.1.
Models with over-all as well as group - wise uniform response propensities were employed, in
the sequel referred to as Response Mechanisms O and G respectively.

For Response Mechanism O the following response propensities were used : f =70, 80, 90 and
100 % . Hence, the simulations also covered situations with full response.

For Response Mechanism G the following response homogeneity groups were employed;
Group1: {1<is50}, Group2:{50<is75}, Group3:{75<i=100}. (5.2)

Two sets of group - wise response propensities were employed;

a) p1=0.7, B>=0.8 and P3=0.9. Response propensities increase with size. (5.3)
b) B:1=0.9, B,=0.8 and P;=0.7. Response propensities decrease with size.  (5.4)

5.2.4 Step 3: Sample selection

Sample sizes were determined by prescription of sampling rates, which were chosen to be:
10, 20, 30, 40 and 50 %. As a consequence, for N= 100 the sample sizes were n=10, 20, 30,
40 and 50 and for N=500 they were n=50, 100, 150, 200 and 250.

Uniform, exponential and Pareto OSmps samples were drawn by the procedures in Defini-
tions 2.1 and 2.2. The same Z -variables [see (ii), Def. 2.2] were used for all three schemes.

Steps 2 and 3 were carried out with independent random numbers Z and R.

5.2.5 Step 4: Estimates from responding samples

The employed response models were "no grouping" and "grouping with the three &- groups in
(5.2)", referred to as Response Model I and Response Model I1.

For each responding sample the estimator (y) and its variance were estimated. Associated

confidence intervals were computed, and it was checked if they contained the true t(y) - value
or not. Moreover were computed approximate conditional variances (which do not depend on
the entire responding sample, though, only on the number of responding units).

Details of the estimation procedures are specified below, with labeling after response model.
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Estimation procedure |
A - modification: By (4.13).
Point estimator for t(y): According to (4.14).
Variance estimators: According to (4.16), Type 1, as well as (4.20), Type 2.
Confidence interval: By (4.15)+(4.16), with approx. 95% confidence level, 8q2=1.96.
Approximate conditional estimator variance: According to (4.41).

Estimation procedure Il

A - modification: By (4.30).

Point estimator for t(y): According to formula (4.31).

Variance estimators: According to (4.33) as well as (4.35).

Confidence interval : By (4.32)+(4.33), with approx. 95% confidence level, 8¢2=1.96.
Approximate conditional estimator variance: According to (4.42).

5.2.7 Step 5: Summarizing performance measures

The final step comprised computation of various averages based on the estimates generated in
the simulation runs, to yield performance measures for the adjusted estimation procedures.

Conditional versus unconditional performance measures

As stated in Section 4.4.1, the non - response adjusted estimation procedures are conditional
inference procedures, with conditioning after number(s) of responding units. Accordingly the
most informative type of evaluation would be by conditional performance measures, com-
puted by partitioning samples after the number of responding units before averaging. In con-
trast, unconditional performance measures are computed by averaging over all samples. In
the sequel we confine to unconditional performance measures, though, for two main reasons.
One is that presentation of conditional material is very space demanding. Another that reliable
conditional means require very large numbers of simulation runs. Evaluations based on con-
ditional means will be presented elsewhere. We want to mention, though, that we have com-
puted conditional performance measures in some situations, and that they only support the
subsequent conclusion drawn from the unconditional ones.

Before proceeding we give some justification of the fact that unconditional measures do yield
information on the performances. First note the formulas : E(E(X | W)) = E(X) and V(X) =
E[V(X|W)] + V[E(X |W)], which hold for any random variables X and W. If E(X| W) = con-
stant = E(X), the last formula reduces to V(X) = E[V(X|W)]. With X = #(y) and W=n' (=

number of responding units, for simplicity we confine to over - all uniform response propensi-
ties) we get, where (5.6) holds provided that %(y)s, is (at least nearly) conditionally unbi-
ased, i.e. if E(2(¥) o5 [n) = T(¥);

E(#(¥)osa) = E[EG(Y) ') = ), E(R(¥) osa |n'= @) - P(n'=q), (5.5)
VIR(Y) osa ] = E[VIE(Y) [n']= D, V[#(¥) gsa |n'= q] P(0'= q). (5.6)

From (5.5) and (5.6) the following is seen. If ©(y) agrees well with the average of $(y) s, Over
all generated samples, i.e. the empirical version of E(£(y)qsa ), (5.5) tells that the majority of
conditional means E(2(y)s, |n'=q) can neither all be upwards nor downwards biased. How-

ever, the possibility that there may be cancellation effects in the summation in (5.5) is not
ruled out, but we believe that this is unlikely (and this belief is supported by the conditional
means which have been studied). Hence, we take agreement of t(y) and the empirical version
of E(R(y)osa) s a strong indication that also E(£(y)qss |n'=q) agrees with 1(y) for the ma-
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jority of q:s. Analogously, agreement between the empirical version of V[(y)s, ] and the
average of V[%(¥)osa |n'=q],,, over all samples is an indication that V[£(¥)gsa |0'=q],,

yields good approximation of V[t(y)s, [n'= q] for the majority of q:s

Performance measures

Since averages are based on as many as 3000 simulation runs, we are in the sequel a bit sloppy
to distinguish between "empirical" and "true".

For point estimator bias

3000
Relati int estimator bias = .
elative point estimator bias (r(y) 3000 Z (y), ) /t(y)
For estimator precision
3000
T timator standard deviation = Y (7(y), - %(y)* - 5.8
rue estimator standard deviation \/3000_1 uZl(r(y)u i(y)) (5.8)
For variance estimators
3000
Stdev. based on average variance estimates of Type 1 = 3000 z V)], - (5.9)
u=1
3000
Stdev. based on average variance estimates of Type 2 = 3000 2 V'R(y)], - (5.10)
u=1
For the approximate conditional variance formulas
3000
Stdev. based on average appr. conditional variances = 3000 E V[i(y)|n' ;;;g,r . (5.11)
u=1
For confidence levels
1 3000
Confidence level = 3000 ;COVERu , (5.12)

where COVER, indicates if the confidence interval for the u: th responding sample covers ©(y).

5.3 Numerical simulation results and conclusions from them

5.3.1 Introduction

This section presents and discusses numerical results from the simulations. Aiming at easy
reading, conclusions are presented first. When looking at the tables the reader may then agree
or disagree in the conclusions. The numerical material is organized as follows. For the com-
binations AO, AG, BO, BG, CO, CG and DO of a population (A, B, C or D) and a response
mechanism (O or G) a triple of tables, numbered .1, .2 and .3, is presented. The .1 tables con-
cern point estimator bias, .2 tables estimator variances and .3 tables confidence levels.

The G-tables contain the classification adequate / non - adequate with the following meaning,.
Estimates are adequate if response mechanism and response model have the same homogene-
ity groups, otherwise non-adequate. Note that O-tables comprise only adequate estimates.

5.3.2 Concerning point estimator bias

From the O.1 tables and the adequate parts of the G.1 tables the following is seen. Under ade-
quate response model, the non - response adjusted estimation procedures have negligible point
estimator bias, relative biases are of order promille. This holds for all considered response
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rates and sample sizes and for all three OSstps schemes. The tables also show negligible point
estimator bias under full response, in agreement with the findings in Rosén (1997b).

As can be expected matters differ, though, when the response model is non-adequate. The G-
tables show that point estimator bias then is at hand, even if not of dramatically large.

Conclusion : Provided that the response model is adequate, the following holds for all three
OSmps schemes under any of the two response models. Point estimator bias is negligible, for
all considered non - response rates and already for very small sample sizes.

5.3.3 Concerning estimator variances
The 0.2 and G.2 tables comprise information which allows evaluation with regards to different
aspects of estimator variability.

The (a) rows tell true standard deviations for the point estimator.

The (b) and (c) rows show average point estimator standard deviations based on the
variance estimators V and V' respectively.

The (d) row shows unconditional average point estimator standard deviations based
on the approximate conditional variance formulas.

Comparison of the variance estimators ¥V and V'

From rows (b) and (c) is seen that the alternative variance estimators V and V', in (4.16) and
(4.20) respectively in (4.33) and (4.35), lead to almost identical estimates. This holds for all
three OSnps schemes, whether the response model is adequate or not, and for all considered
non -response rates and sample sizes.

Conclusion: In practice it does not matter which of ¥V and V' that is used.

Performance of the variance estimators

Comparison of row (a) with (b) and/or (c) in the 0.2 tables and the adequate parts of the G.2
tables yields the following, for all three OSnps schemes. When response mechanism and res-
ponse model have over - all uniform response propensities the variance estimators are fairly
close to being unbiased for all considered response rates, at least when n = 20. Under grouped
response mechanism with adequate response model, larger sample sizes are needed for the
same conclusion, say n = 30. However, performance of variance estimators is not so inter-
esting per se, the performance of the corresponding confidence intervals is more crucial from a
practical point of view.

Tables AG.2, BG.2 and CG.2 also show that the variance estimators can be seriously biased
when the response model is non-adequate.

Conclusion : The following holds for all three OSmps schemes and all considered response
rates. Under adequate response model the variance estimators work quite satisfactorily, at least
for "not too small" sample sizes. Under non - adequate response model the variance estimators

may be seriously biased, though.

On point estimator precision

Section 5.1.1 summarized the findings in Rosén (1997b) on estimation precision under full
response as follows. Pareto OSmnps never performs notably worse than uniform and exponential
OSmps, but sometimes considerably better. In situations with linear size - variable trend the
three schemes perform very similarly, but Pareto OSmps is better in situations with curved
trend, and is the more superior the larger the sampling rate is. The (a) rows in the tables show
that this picture holds true under non - response as well, at least in O - situations but less pro-
nounced in G-situations.

14



Inevitable, though, point estimates become less reliable the higher the non - response rate is,
which is seen in all O tables. Table 1 below, based on the O - situations, exhibit the relative
estimator variance increase due to non - response, with full response point estimator variance
as nominal value. We have also listed the corresponding variance increases for simple random

sampling (SRS), using the formula: B~ (1-B-n/N)/(1-n/N).

Table 1. Relative increase of estimator variances due to non-response

Situa- | Resp. Sampling rate
tion | rate 10% 20% 30% 40% 50%
B (%) {Uni Exp Par SRS |Uni Exp Par SRS|{Uni Exp Par SRS{Uni Exp Par SRS |Uni Exp Par SRS
70 |52 51 49 48 |58 59 58 54 |63 64 64 61 |70 70 70 71 [74 76 78 86
AO 80 |30 29 28 28 |32 32 32 31|37 37 37 36|39 39 40 42 |42 42 45 50
90 15 15 14 1216 16 16 1418 18 18 16 )17 16 16 19|16 15 17 22
70 {58 57 55 48 |59 S9 63 S4 )64 67 68 61 |79 8 88 71 |100 125 130 86
BO 80 |35 34 33 28|37 37 40 31|39 40 41 36 [48 53 55 42|60 73 74 50
90 18 17 16 12 |17 18 20 14|19 20 21 16 |24 26 28 19 |27 31 31 22
70 |41 40 42 48 [s4 s6 s8 s4 |61 62 60 61 |61 66 67 71|64 70 74 86
Co 80 |26 25 34 28 131 34 36 31 |37 38 36 36|36 39 41 42|38 42 44 50
90 12 11 13 1216 19 20 14|21 21 20 16 |16 18 19 19 {17 17 20 22
70 |44 43 44 48 |45 45 44 54 |46 45 46 61 |54 56 56 71|55 61 62 86
DO 80 |26 25 26 28 |28 28 27 31 |28 28 28 36 |33 34 33 42133 36 36 50
15 22

90 12 12 12 12 [ 1 10 10 14 9 9 10 16 [ 15 15 14 19 | 14 15

The following conclusions are drawn from Table 1. (i) With exception for situations with very
high sampling rates and pronounced curved size - variable trend, deterioration of point estima-
tor precision due to non - response follows very much the same pattern as for simple random
sampling. (ii) The point estimator precision for Pareto OSmps deteriorates slightly faster than
for the other OSnps schemes. However, point estimator precision for Pareto OSmps never falls
notably below that for the other two OSmps schemes.

Conclusion : Also under non-response holds that Pareto OSzps never has notably worse point
estimator precision the other two OSmps schemes, but sometimes noteworthy better. With
increasing non - response its edge over the other-two schemes gradually lowers, though.

Performance of the approximate conditional variance formulas

Rows (d) and (a) in the tables show that what is said above about "good approximate unbi-
asedness" for the variance estimators also holds for "good approximation" for the approximate
conditional variance formulas, yielding the conlusion below.

Conclusion : For all three OSnps schemes the following holds for all considered response
rates. Under adequate response model the approximate conditional variance formulas work
fairly satisfactorily, at least for "not too small" sample sizes. Under non - adequate response
model the formulas may be quite misleading, though.

5.3.4 On confidence levels

Thinking that true levels even for our most commonly employed asymptotic result based con-
fidence intervals in fact are not as good as we want to believe, the reaction to the confidence
levels exhibited here is as follows. For populations A and B, with linear respectively convex
size - variable trend, true confidence levels lie surprisingly close to the nominal one already for
fairly small sample sizes. This holds irrespective of response rate. Some confidence level bias
is at hand, though, in the direction that true confidence levels lie below nominal ones.
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The picture for population C is, however, not so good. The agreement between the true and
nominal confidence level for a confidence interval based on asymptotic considerations
depends on two main factors ; the accuracy of the variance estimate and the goodness of the
normal distribution approximation. The distribution of €(y) is for populations of type C, with
a concave size - variable trend, more skewed (with tail to the right) than for populations of types
A and B, for reasons that we do not quite understand. Hence, good normal distribution
approximations requires larger sample sizes in situations with concave trend. To allow for
larger sample sizes than admitted by population C we introduced population D, which is of the
same shape type as C (y=0.5, 0=0.5) but has larger size, N=500. For population D the sample
sizes n = 50, 100, 150, 200 and 250 were used. From Tables DO is seen that with increased
sample sizes the true confidence levels come considerably closer to the nominal 95%.

Under non-adequate response model the confidence intervals may be quite misleading,though.

Conclusion : Provided that the response model is adequate the following holds. Under linear
and convex size - variable trend the non - response adjusted confidence intervals have reasona-
bly good confidence levels already for fairly small sample sizes. Under concave size - variable
trend larger sample sizes are required to avoid skewed point estimator distribution with an
adverse effect on confidence levels. Irrespective of trend shape the following holds. (i) The
response rate has little influence on the confidence levels. (ii) The bias direction is that true
confidence levels are lower than the nominal one.

With non-adequate response model the confidence intervals may be severely misleading.

5.3.5 Tentative over-all conclusions

The main conclusion from the simulation findings are, at least tentatively. Under adequate
response model the non - response adjusted estimation procedures work quite satisfactorily for
all three OSmps schemes. In particular, point estimator biases are negligible for all (reasonable)
non - response rates already for quite small sample sizes. The behavior of the confidence inter-
vals is more complex. Response rate has little importance in this context, though, the shape of
the size - variable trend seems to be the crucial factor. Under linear and convex trends true and
nominal confidence levels agree quite well even for fairly small sample sizes. Under concave
trend considerably larger sample sizes are require for small confidence level bias.

Under non - adequate response model the adjusted estimation procedures may be quite mis-
leading. However, this is not particular to OSzps sampling, it holds for any sampling scheme.

16



5.3.6 Numerical results

Tables AO

Population A, Response Mechanism O, Estimation Procedure |.

Table AO.1 Relative point estimator bias (in %)
Resp. :
prop. Sampling rate
B 10% 20% 30% 40% 50%
(%) | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
70 | 002 004 002015 015 013|006 007 005|007 006 004|003 003 003
80 |-005 -005 -006! 011 011 009 |-000 001 -002{002 001 -001{001 -000 000
9 |[001 002 001|014 014 013|003 003 003|005 004 002|001 000 000
100 |-004 -0.05 -006|003 002 005 (-002 -002 -001|-001 001 0.02][-001 000 0.01
Table AO.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)

(b) = Average estimated standard deviation by (4.16) + (5.9)

{c) = Average estimated standard deviations by (4.20) + (5.10)
(d) = Average approximate theoretical standard deviations by (4.41) + (5.11)

Resp.
prop.

B
(%)

Sampling rate

10%

20%

30%

0%

50%

Unif

Exp

Pare

Unif

Exp Pare

Unif

Exp

Pare

Unif

Exp

Pare

Unif

Exp Pare

70

80

90

160

@
(b
(©
(d)

(a)
(®
©
(d

(a)
(b)
©
(d

(@)
(b)
©
(d)

497.4
500.9
500.9
503.9

460.0
459.4
459.4
462.7

4333
428.3
428.3
431.0

404.1
403.4
403.4
403.2

498.0
501.2
501.3
503.6

460.5
4594
4594
462.6

4342
4283
4283
430.9

4053
403.9
403.9
403.2

497.4
502.0
502.0
503.5

460.6
459.8
459.8
462.5

433.8
428.7
428.7
431.0

407.1
403.6
403.6
403.2

3393
337.1
337.1
338.6

3103
309.1
309.1
311.0

290.7
287.2
287.2
289.3

270.1
268.2
268.2
270.0

340.7
337.7
337.7
338.5

311.3
309.7
309.7
311.0

291.2
287.6
287.6
2893

270.5
268.5
268.5
270.0

340.8
3383
338.2
3385

312.0
3104
310.3
311.0

291.9
288.1
288.1
289.3

271.6
268.6
268.6
270.0

264.8
263.3
263.3
264.9

242.4
240.6
240.6
2422

2252
2224
222.4
223.7

207.4
206.5
206.5
2074

265.1
263.8
263.8
265.0

2425
241.0
241.0
2422

225.6
222.7
222.8
223.7

207.3
206.4
206.4
2074

266.0
263.9
263.9
265.0

242.5
241.0
241.0
2422

2253
222.8
222.8
223.7

207.6
206.4
206.4
207.3

218.3
218.0
218.0
219.1

197.4
197.7
197.7
198.9

180.7
181.2
181.2
182.2

167.3
166.6
166.6
167.5

218.6
217.7
217.7
219.1

197.7
197.4
197.5
199.0

180.8
180.9
181.0
182.2

167.9
166.4
166.4
1674

219.0
218.2
218.0
219.1

198.5
197.9
197.8
199.0

181.2
181.3
181.2
182.2

168.0
166.3
166.3
167.4

183.5
185.7
185.7
186.8

165.6
166.8
166.8
168.0

149.5
1513
151.3
1522

139.0
137.6
137.6
138.1

1839 184.8
185.5 186.3
1855 185.7
186.8 186.7

165.5 166.5
166.6 167.1
166.7 166.8
168.0 168.0

148.8 149.7
1509 151.1
151.0 151.0
152.2 1522

138.8 1384
136.9 136.8
136.9 136.8
138.1 138.1

Table AO.3 Confidence levels (in %)

Resp.
prop.

(%)

Sampling rate

10%

20%

30%

40%

50%

Unif

Pare

Unif

Exp

Pare

Unif

Exp

Pare

Unif

Exp

Pare

- Unif

Exp

Pare

70
80
90
100

90.6
91.6
91.2
91.9

90.7
91.6
91.2
91.8

90.7
91.6
91.2
91.7

93.2
93.6
93.5
93.6

93.0
93.5
93.6
93.7

92.8
93.3
93.5
93.7

93.5
93.5
93.8
93.8

93.3
934
93.4
93.9

93.1
93.6
93.6
94.0

94.4
94.7
94.3
94.2

94.4
94.6
94.2
94.0

94.4
94.5
93.9
93.6

94.6
94.4
93.9
93.4

94.4
94.1
94.0
92.5

94.5
94.2
94.1
92.7
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Tables AG
Population A, Response Mechanism G, Estimation Procedures Il and |.

Table AG.1 Relative point estimator bias (in %)
Response Sampling rate
mecha - Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
Ga II (adequate) 049 048 044 010 009 009|011 0.09 007|002 0.02 0.02
See (5.3) | I (non-adequate) | 0.01 0.01 -0.00}-0.11 -0.10 -0.11-0.09 -0.11 -0.12]-0.12 -0.12 -0.12
Gb II (adequate) 028 027 0251010 009 009|010 009 007|005 003 0.04
See (5.4) |I (non-adequate) | 0.28 029 0.27 | 0.19 0.19 018 | 020 019 017 ] 016 015 O0.15
Table AG.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)
(b) = Average estimated standard deviation by (4.33) + (5.9)

(c) = Average estimated standard deviations by (4.35) + (5.10)
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11)

Response Sampling rate
mecha- | Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare
(a) | 388.6 388.2 3854 268.0 2675 267.9}216.7 2161 216.6|178.6 177.9 1785
1| (b) | 324.7 3255 32492633 2624 262.6|218.2 2173 217.2[181.0 1803 181.0
(adequate) | (c) |324.7 325.5 32492633 2625 262.5]218.2 2173 217.1|181.0 1804 180.8
Ga (d) 13569 3560 3562|2725 271.6 271.21220.0 219.2 218.9(184.0 1833 1832
See (5.3) (a) 1295.0 296.0 2964 |228.6 2292 229211859 186.1 186.7]|154.2 154.0 154.6
I (b) | 267.5 268.1 268.62148 2153 2152|1784 1782 1785|1509 150.7 1509
(non-adeq.) | (c) | 267.5 268.1 268.6]214.8 2153 2152|1784 1783 178.5(150.9 150.8 150.9
(d) {306.0 306.0 306.0[238.0 2381 23K8.1|1953 1953 1953 164.7 164.7 164.6
(a) 1352.1 3515 351.7[252.8 2522 252.0}204.2 203.4 203.1|166.6 165.7 166.5
I (b) | 317.1 317.0 316.8|248.9 2483 248.2|202.5 201.5 201.6|167.4 167.0 167.4
(adequate) | (c) |317.1 317.0 316.8|248.9 2483 248.21202.5 201.5 201.6(167.4 167.0 167.2
Gb (d) |335.6 3352 335.0]252.1 2514 251.5}203.5 2029 202.7)169.2 168.6 168.6
See (5.4) (a) 13289 3294 330.2|257.2 2572 2573|2107 2109 211.0176.1 175.8 176.8
I (b) [301.0 301.5 302.2|243.3 2438 243.8|203.9 203.8 204.2 (1745 1744 1747
(non-adeq.) | (c) | 301.0 301.6 302.2|243.3 243.8 243.8{203.9 203.8 204.2|1745 1745 174.6
(d) {3149 3148 314.8[245.6 2455 2455]202.1 2020 202.0(171.0 1709 170.9
Table AG.3 Empirical confidence levels (in %)
Response Sampling rate
mecha- Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
Ga IT (adequate) 853 851 853|911 911 910 ]931 931 929|934 934 932
See (5.3) {1 (non-adequate) | 89.6 89.5 894 | 91.9 919 91.8 | 928 927 923|928 927 928
Gb II (adequate) 888 887 887918 916 9181929 927 928 1936 936 935
See (5.4) |1 (non-adequate) | 89.9 89.7 89.6 [ 91.1 909 91.0 [ 923 921 919|931 930 931
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Tables BO

Population B, Response Mechanism O, Estimation Procedure .

Table BO.1 Relative point estimator bias (in %)
Resp. .
prop. Sampling rate
B 10% 20% 30% 40% 50%
(%) | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare
70 |-011 -007 -003]002 008 013]-004 004 005]-007 -003 -001] 000 000 0.02
80 |-013 -0.10 -0.06|-002 0.05 0.10]-009 -002 -0.01|-0.11 -0.06 -0.02|-0.02 -0.01 -0.00
9 |-0.10 -0.07 -0.04|001 007 011 |-004 003 005 [-007 -0.03 001 |-000 000 001
100 |-0.14 -0.08 -0.06|-0.11 -0.07 -0.01|-009 -0.03 002 |-0.10 -0.02 001 |-0.02 -0.02 -0-02
Table BO.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)

(b) = Average estimated standard deviation by (4.16) + (5.9)

(c) = Average estimated standard deviations by (4.20) + (5.10)

(d) = Average approximate theoretical standard deviations by (4.41) + (5.11)

Resp. Sampling rate
prop.
B 10% 20% 30% 40% 50%
(%) Unif Exp Pare | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare | Unif Exp Pare
70 | (@ | 3364 3351 3343 | 2244 2239 2249 | 1745 1731 1723 | 1445 1404 1396 | 1214 1157 1151
(b) | 3336 3336 3337|2239 2235 2238 | 1742 1733 1741 | 1433 1412 1434 | 1215 1187 1245
(c) | 3336 3336 3336 | 2239 2236 2236 | 1742 1736 1733 | 1433 1417 1413 | 1215 1184 1176
(d) | 3341 3338 3338|2239 2233 2235|1746 1734 1741 | 1438 1416 1436 | 1220 1191 1247
80 | (a) | 3106 3095 3088 {2079 2078 2085|1607 1584 1576 | 1315 1274 1265|1086 1013 1002
(b) | 3053 3053 3053 | 2053 2047 2049 | 1590 1576 1579 | 1297 1267 1278 | 1088 1032 1066
(c) | 3053 3053 3053|2053 2048 2048 | 1590 1579 1575|1297 1273 1268 | 1088 1042 1030
(d) | 3067 3064 3064 | 2055 2048 2048 | 1594 1579 1581 | 1303 1272 1281 [ 1094 1036 1069
90 | (a) | 2905 2896 2890 | 1927 1923 1934 | 1485 1468 1462 | 1203 1159 1149 [ 967.8 882.6 868.8
(b) | 2829 2829 2828 1905 1898 1897 | 1464 1448 1446 | 1184 1146 1145 [ 980.3 895.7 905.2
(c) | 2829 2830 2828 | 1905 1898 1897 | 1464 1449 1445 | 1184 1150 1142 [980.3 9083 893.5
(d) | 2856 2853 2853 | 1910 1902 1901 | 1469 1451 1449 | 1190 1150 1149 |985.7 899.9 908.7
100 | (@) | 2676 2673 2678 | 1779 1774 1764 | 1364 1339 1329 | 1081 1031 1017 | 858.8 771.2 7586
(b) | 2655 2656 2655|1773 1765 1765 | 1354 1334 1329 | 1084 1038 1027 [884.1 768.0 750.9
(c) | 2655 2656 2655|1773 1765 1765 | 1354 1334 1329 [ 1084 1038 1027 | 884.1 768.0 750.9
(d) | 2670 2668 2667 | 1780 1771 1769 | 1359 1338 1332 | 1090 1042 1030 | 889.4 7732 755.6
Table BO.3 Confidence levels (in %)
Resp. Sampling rate
prop.
10% 20% 30% 40% 50%
B
(%) | Unif Exp Pare| Unif Exp Pare| Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
70 | 875 87.8 879 [ 920 92.0 920 | 934 933 933 [ 931 937 940 | 93.8 943 953
80 | 883 885 886|918 91.8 91.6 | 926 927 928|929 934 938|932 937 947
90 | 89.0 89.2 895 {925 926 924|931 929 930 931 933 934 (938 938 945
100 | 904 904 903|923 923 925|928 928 932|931 933 937|937 935 934
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Tables BG
Population B, Response Mechanism G, Estimation Procedures Il and |

Table BG.1 Relative point estimator bias (in %)

Sampling rate

Response
mecha - Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
Ga II (adequate) 027 026 025 ]-0.02 -002 -001]-002 -0.02 -0.02]-007 -0.06 -0.05
See (5.3) |1 (non-adequate) | -1.87 -1.81 -1.77|-194 -1.88 -1.86]-1.97 -1.93 -1.90|-1.90 -1.90 -1.89
Gb II (adequate) 012 011 0.1 {-003 -0.02 -0-02{-0.02 -0-02 -0.01f-0.02 -0.02 -0.02
See (5.4) | I (non-adequate) | 1.98 2.05 2.10 | 1.94 2.02 2.04 | 191 196 200|197 199 2.00
Table BG.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)
(b) = Average estimated standard deviation by (4.33) + (5.9)
(c) = Average estimated standard deviations by (4.35) + (5.10)
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11)

Response Sampling rate
mecha- | Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
(a) | 1510 1504 1485|8823 877.6 886.2|710.1 7055 7047|5754 570.6 566.5
H (b) | 1057 1053 1052 | 8544 850.7 851.4|701.9 699.9 701.3|585.7 5824 583.6
(adequate) | (c) | 1057 1053 1052 | 8544 850.8 850.9(701.9 700.0 700.5|585.7 5823 581.8
Ga (d) ] 1147 1144 1145 {8744 871.2 869.9703.6 700.3 699.8]|586.3 582.7 583.2
See (5.3)) (a) | 1968 1959 1970 | 1516 1504 1497 | 1238 1197 1188 | 1021 956.2 945.9
I (b) [ 8679 868.3 869.6|693.1 6938 693.61572.4 5723 572.81482.1 4810 482.1
(non-adeq.) | (c) | 867.9 868.4 869.4|693.1 693.8 693.4|572.4 572.5 572.6482.1 480.7 480.4
(d) | 9854 9853 9853|7644 7639 764.0}624.8 623.8 623.9524.6 5231 523.8
(2) | 1356 1339 1339 | 842.7 8409 839.9 16763 6743 672.8533.8 527.0 525.0
II (b) | 1042 1040 1037 | 807.3 8042 803.9]651.4 648.7 648.8]538.7 5382 539.8
(adequate) | (c) | 1042 1040 1037 | 807.3 804.2 803.6|651.4 648.6 648.2|538.7 536.5 536.0
Gb (d) | 1084 1083 1082 [ 8123 809.6 809.7|653.6 6509 650.4|541.4 5393 5403
See (5.4) (a) | 2160 2158 2168 | 1681 1661 1656 | 1379 1338 1331 | 1131 1058 1048
1 (b) 19763 9772 978.0|784.4 7849 784.5|654.1 653.6 6543|5575 557.4 558.6
(non-adeq.) | (c) | 976.3 9772 978.0 (7844 7850 784.3(654.1 653.8 654.0557.5 557.0 556.7
(d) | 1015 1014 1014 }788.8 788.0 788.1|647.1 6459 646.0(545.2 5440 545.1
Table BG.3 Empirical confidence levels (in %)
Response Sampling rate
mecha- Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare
Ga II (adequate) 845 847 846|899 90.0 902|913 916 91.7 922 922 924
See (5.3) {1 (non-adequate) | 51.8 525 52.7 | 53.1 540 546 | 504 523 536|515 526 529
Gb 11 (adequate) 88.0 882 8831916 918 918928 927 926 933 939 942
See (5.4) | I (non-adequate) | 57.6 57.6 573 | 583 576 57.8 573 577 578|556 583 586
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Tables CO
Population C, Response Mechanism O, Estimation Procedure |.

Table CO.1 Relative point estimator bias (in %)

l::sg' Sampling rate
B 10% 20% 30% 40% 50%

(%) | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare | Unif Exp Pare | Unif Exp Pare

70 | 033 028 021|015 006 -0.03|010 000 -002] 018 011 002 ] 008 005 0.01
& {023 020 0124017 009 -002)010 001 -001]017 011 001 (009 0.05 002
% | 024 020 0141017 0.08 000} 006 -003 -006| 015 0.09 -000|005 002 -001
100 | 0.18 0.08 0.06 | 020 014 010|012 0.03 -0.02| 014 006 0.04 ] 006 006 0.07

Table CO.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)

(b) = Average estimated standard deviation by (4.16) + (5.9)

(c) = Average estimated standard deviations by (4.20) + (5.10)

(d) = Average approximate theoretical standard deviations by (4.41) + (5.11)

Resp. .

prop. Sampling rate

B 10% 20% 30% 40% 50%

(%) Unif Exp Pare| Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare

70 (@ |110.1 1101 1109 778 783 788 | 62.9 627 623 | 533 529 527 | 463 454 455
(b) 11093 109.6 110.1| 77.6 77.8 782 | 621 62.1 621 | 525 520 52,6 | 457 452 465
(¢) [1093 109.6 1101 77.6 778 78.1 | 621 621 619 [ 525 521 521 | 457 453 453
(d) | 1144 1143 1143} 783 782 782 | 626 624 625|530 526 53.0 | 464 459 46.8

80 (a) | 104.1 1041 1079 72.0 725 73.0 | 581 579 573 }149.0 484 484|425 414 414
(b) {101.6 101.8 1022} 71.2 713 71.7 | 572 570 570|483 476 48.0 (419 412 419
(c) [101.6 101.8 102.2| 71.2 714 716|572 571 569|483 478 478|419 414 413
(d) {1053 1053 1053 724 723 723 | 578 57.6 57.6 | 489 484 485 | 427 418 423

90 (@ | 980 982 989|676 682 685|545 542 539|453 446 445|391 377 378
(b) ] 957 96.0 963 | 666 667 669 | 536 534 534|451 443 445391 379 381
() | 957 960 963 | 666 667 669 | 536 534 533|451 444 444|391 381 380
(d) | 984 984 983 | 67.8 676 676 | 540 537 536|455 449 449|396 384 385

100 | (@) | 927 931 931|628 62.6 62.6 | 496 492 49.2 (420 411 408 | 362 348 345
() | 913 916 913 | 629 62.8 627 | 50.0 49.7 49.6 | 421 413 411 | 365 347 344
() | 913 916 913 | 629 628 62.7 | 500 497 496 | 421 413 411|365 347 344
(dy [ 923 923 923637 635 635|506 503 502|426 419 417|370 354 351

Table CO.3 Confidence levels (in %)

gresg' Sampling rate
8 10% 20% 30% 40% 50%

(%) | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare

70 | 804 804 805|844 842 843|847 849 851|845 851 858853 855 865
80 [ 814 814 817|840 839 839|844 847 849 (841 844 854|847 853 859
9 | 815 816 819|843 843 843|839 840 843|854 857 863|848 853 859
100 | 82.1 824 823|843 843 845|856 860 862|858 865 865 ]| 8.0 862 859
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Population C, Response Mechanism G, Estimation Procedures Il and |

Tables CG

Table CG.1 Relative point estimator bias (in %)

Response Sampling rate
mecha - Estimation 20% 30% 40% 50%
nism procedure Unif Exp Paret| Unif Exp Paret| Unif Exp Paret| Unif Exp Paret
Ga II (adequate) 067 068 0621018 017 018 ] 021 020 0.14 015 0.12 010
See (5.3) |1 (non-adequate) | 2.44 236 229 | 237 229 227 | 244 238 230 ] 235 233 230
Gb II (adequate) 043 041 038 {018 015 0.15 {018 017 0.11 [ 0.15 0.10 0.08
See (5.4) |I (non-adequate) { -2.23 -2.31 -2.41[-231 -242 -245-224 -230 -241}-233 -238 -241
Table CG.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (5.8)
(b) = Average estimated standard deviation by (4.33) + (5.9)
(c) = Average estimated standard deviations by (4.35) + (5.10)
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11)

Response Sampling rate

mecha. | Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
(@] 769 763 758 | 553 544 542 | 460 457 457 ] 38.6 387 39.0
11 ® 626 623 6211531 529 528 | 450 447 449 | 384 385 387
(adequate) | (¢) | 62.6 623 621 | 531 529 528|450 447 448|384 385 386
Ga (1717 715 715562 560 559 | 46.6 464 463 | 40.2 400 400
See (5.3) (a) | 66.1 667 670 | 537 535 532|455 451 449 ]394 384 385
1 (b) ] 483 486 488 ] 408 408 40.7 | 351 350 3513095 309 310
(non-adeq.) | (c) | 483 486 488 | 408 408 40.7 | 351 350 351|309 309 310
(d)| 596 596 596 | 477 476 47.6 | 404 403 403353 352 352
(@) | 632 629 630|476 474 474 ;399 395 395 (336 337 339
I ® 578 577 578 471 469 469 | 397 393 394 {338 339 340
(adequate) { (c){ 57.8 577 57.8 | 471 469 469 | 39.7 393 394} 338 339 339
Gb (d)] 63.1 63.0 629 | 487 484 484 | 405 403 402 | 349 346 346
See (5.4) (@] 774 780 785|623 620 617521 514 514451 438 438
I (b)| 584 587 59.0 | 489 490 489 | 422 420 422} 372 372 374
(non-adeq.) { (c) | 584 587 59.0 489 490 489 | 422 421 422|372 373 374
(dy| 612 611 61.1 | 490 489 489 ] 415 414 414 | 364 363 363

Table CG.3 Empirical confidence levels (in %)
Response Sampling rate

mecha- Estimation 20% 30% 40% 50%
nism procedure Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
Ga II (adequate) 789 789 790 | 823 826 826|832 835 836|837 840 837
See (5.3) | I (non-adequate) | 64.4 644 64.8 [ 643 650 651 | 63.8 643 649 | 649 653 652
Gb I1 (adequate) 833 832 834|844 848 848|851 853 855851 854 852
See (5.4) | I (non-adequate) | 77.1 769 76.9 | 79.7 804 80.7 | 820 829 837|840 852 857
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Tables DO
Population D (N=500), Response Mechanism O, Estimation Procedure I.

Table DO.1 Relative point estimator bias (in %)

Resp. Sampling rate

prop. 10% 20% 30% 40% 50%

B(%) | Unif Exp Pare| Unif Exp Pare| Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
70 005 004 001 {012 012 0131008 009 008 | 004 0.05 005|004 0.04 004
80 0.0s 004 0.01 |01t 011 012006 006 005] 003 003 003|002 002 002
90 0.04 003 001012 012 013 0.07 0.08 0.07 ] 004 005 005]004 005 004
100 0.07 0.04 0.01 }-007 -0.09 -0.10]-0.00 -0.02 -0.02] 001 -0.00 -0.01| 000 -0.00 -0.01

Table DO.2 Estimator standard deviations and standard deviation estimation

(a) = True point estimator standard deviations by (7.4)
(b) = Estimated standard deviations (4.16) + (7.5)
(c) = Estimator standard deviations (4.20) + (7.6)
(d) = Approximate theoretical standard deviations (4.41) + (7.8)

Resp. .
prop Sampling rate
B 10% 20% 30% 40% 50%
(%) Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare | Unif Exp Pare
70 (@) |486.3 4853 487.2|340.5 341.2 3402 )274.8 271.8 271.5)233.7 229.9 2283]203.1 197.1 1958
(b) |491.4 4913 493.1|340.7 340.3 339.5[272.8 271.1 272.0(230.4 228.1 229.9 2015 198.7 204.2
(c) 1491.4 4913 493.1)340.7 3404 33932728 2714 271.4]230.4 2286 2281]201.5 1989 1984
(d) 1493.6 4934 49353423 341.8 341.9|2739 2728 273.4|232.4 2304 232.1]203.5 200.7 205.7
80 (a) |455.3 454.6 455.9(320.7 3209 320.2|256.8 254.7 254.3|217.6 2133 2109]188.1 1814 1798
(b)y |460.2 460.2 461.7]316.3 3158 31502525 250.7 251.0}213.0 210.1 210.8]1185.8 181.0 184.1
(c) |460.2 460.2 461.7(3163 315.9 3149 (2525 251.0 250.8|213.0 210.7 2100|1858 182.0 181.2
(d) 1460.2 460.0 460.0318.2 317.6 317.7|254.0 2527 252.9|214.8 212.1 21281874 182.6 1853
90 (a) |429.3 429.0 430.5(297.7 297.6 297.5(237.8 235.8 235.1{2024 197.6 19571740 166.7 1653
(b) 4324 4322 4334|2963 2957 295.0(236.0 234.1 233911984 1949 194.7|172.2 1654 166.3
(c) 1432.4 4322 433.4(2963 295.8 294.9}236.0 234.2 233.8|198.4 1954 194.4]172.2 166.6 165.5
(d) |432.3 4321 4321|2983 297.6 297.5|2373 235.7 2355]200.0 1968 196.6|173.8 1672 167.7
100 | (a) |405.0 405.9 406.7}283.1 2832 283.9(227.4 2254 2245|1884 1842 183.0!163.1 1554 154.0
(b) |403.6 403.7 404.1282.4 2819 2821|2226 220.8 220.3|186.6 182.6 181.5]161.2 152.7 151.5
(c) |403.6 403.7 404.1|282.4 281.9 282.1|222.6 220.8 220.3|186.6 182.6 181.5|161.2 152.7 151.5
(d) ]408.7 408.5 408.4|281.2 2804 280.2(223.0 221.2 220.7}187.2 1835 182.41162.0 153.7 152.1
Table DO.3 Confidence levels (in %)
Resp. Sampling rate
prop.
B 10% 20% 30% 40% 50%
(%) | Unif Exp Pare| Unif Exp Pare | Unif Exp Pare | Unif Exp Pare| Unif Exp Pare
70 90.0 899 900 9.7 907 908915 916 916|916 91.6 919 ! 926 924 932
80 89.9 899 900|910 909 909|913 914 916|920 91.8 922|925 925 930
90 90.0 90.1 902 {915 914 912920 919 918|923 919 919|920 92.0 924
100 | 90.9 91.0 909 { 920 922 922 {917 91.9 921|923 921 923} 926 922 920
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6 Quota random retain order sampling

Here we enter the theoretical justifications of the non-response adjusted estimation procedures
in Section 4. They are admittedly a bit involved, but the simplest we know of. Unfortunately
the case with non - response cannot be brought back on the full response case "right away", but
on the other hand situations with non - response are more complicated than full response situa-
tions. In the following an instrumental role is played by an auxiliary type of sampling scheme,
called "quota random retain order sampling". Although this notion lies close to "order sam-
pling with random non - response" it is introduced as a separate concept, an important reason
being that the crucial limit result will concern this sampling scheme.

6.1 Definition
To each unit i in U=(1, 2,...,,N) is associated a pair (Q;, R;) of random variables. The Q:s are
called ranking variables and the R:s retain indicators with retain frequency p. The following
assumptions are made.

Q;, Q,, ..., Qy are independent random variables with distributions F=(F, F,, ..., Fy ),

where F; is a probability distribution on [0, ) with density function f;. (6.1)

Ry, R,, ..., Ry are independent equally distributed 0-1 variables with P(R;=1)=p. (6.2)
The random vectors (Q;, Q,, ..., Qy) and (R, R,, ..., Ry) are independent. (6.3)

The sampling process starts with realization of (Q;, Q,, ..., Qy) and (R, Ry, ..., Ry). Thereafter
at least the following two variations of "order sampling with random retain" can be thought of.

The Q:s select a first-stage order sample of (fixed) size n from all of U, according to
Definition 2.1. The final sample consists of the retained units (those with R=1) in the
first-stage sample. Then the size n' of the final sample is random. (6.4)

A sample size n' is prescribed. The sample is selected as the retained units (those with
R =1) with the n' smallest Q-values. Then the sample size n' is fixed, but it may hap-
pen that the desired sample size cannot be reached. (6.5)

The (6.4) variant is nothing but order sampling with non - response. However, in the sequel we
consider the (6.5) type of sampling scheme.

DEFINITION 6.1: Quota random retain order sampling with (fixed) sample size n',
order distributions F and retain frequency p, denoted OSRRQ(n'; F; p), is carried out
as follows. Variables Q,, Q,, ..., Qy and R, R,, ..., Ry, that satisfy (6.1) - (6.3) are real-
ized. The sample consists of the units with R=1 which have the n' smailest Q- values.

Remark 6.1: For p=1, OSRRQ(n'; F; p) is simply "ordinary” OS(n'; F). =

6.2 Approximate distribution of an OSRRQ sample sum
As a preparation for derivation of estimation procedures for OSRRQ we consider the distri-
bution of an OSRRQ sample sum. For a variable z=(z,,z, ..., Zy) and a sample we set;

The z sample sum = E z. . (6.6)

1
i€ Sample

APPROXIMATION RESULT 6.1: z=(z,, Z,, ..., zy) is a variable on U=(1,2,..,N), from
which an OSRRQ(n'; F; p) sample is drawn. S(n'; z) denotes the corresponding z sample
sum. Then, with p and o as specified below, (6.7) holds under general conditions;

The distribution of S(n'; z) is well approximated by N(u,, 62). (6.7)
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Specification of parameters

E solves the equation (in ): Y. F()=1'/p, Ost<oo, (6.8)
w=p Yoz EE©), 6.9)
0=z LE) Y 1), (6.10)

=S @ -9 0 E® [1-pE©) . 6.11)

Justification of the above result is given in Section 8.

6.3 Estimation of a population total from an OSRRQ sample
6.3.1 Estimation when the retain frequency is known

ESTIMATION PROCEDURE 6.1: y = (y;, ¥y, ..., ¥y) is @ variable on U=(1,...,N), from
which an OSRRQ(n'; F; p) sample is drawn and fully observed. The retain frequency p
is known. The OSRRQ estimator of the total T(y) is, where £ is according to (6.8);
tYosna =, ¥i/[P E(©)]. (6.12)
i € Sample

Then the following holds under general conditions.

a. The distribution of #(y) o is Well approximated by N(t(y),x?), with (6.13)
“No1 2 [pEE®]1 - 1) pE® (- pE®), (6.14)
Y= 2 v/ [0 E®)D £, (€) / 2 f,(€). (6.15)

b. In particular, T(y)qsrrq Yiclds consistent estimation of t(y).
¢. In particular, Xz yields an asymptotically correct value for V[ T(y) osrra J

d. A consistent estimator of V[T(y)srrqo ] IS given by;

VEWoswal =77 2O/ F®] = 1) [1-p-F(©)], where (6.16)
| E[yi/mzf]-ﬂ@) D LEEE) . (6.17)

Start of justification: The above result can be derived from Approximation Result 6.1 by an
almost verbatim repetition of the arguments for justification of Approximation Result 3.2 in
Rosén (1997a). A reader interested in more details than given below is referred to that paper.

We regard Approximation Result 6.1 as justified (although this is not done until Section 8).
The a-, b- and c-parts in the above procedure are obtained by choosing z;=y,/[p - F;(E)] and
noting that  in (6.9) then becomes 1(y). In the step from (6.11) to (6.14) we make a somewhat
ad hoc modification, to the effect that the factor N/(N-1) is introduced. The reason is that with
this "extra" factor, (6.14) becomes the correct formula in the case when all order distributions
are equal (which entails that order sampling is nothing but simple random sampling). This
(asymptotically negligible) modification yields improved approximation also in the general
situation. In (6.16) we introduce the factor n'/(n'-1) with the same motivation.

For the d- part, we view the sum in (6.14) as a population total. Its estimate by (6.12) is;
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e S e E®] - 1)l p E@)]. (6.18)

N -1 i € Sample

The estimate (6.18) has, however, the "defect" that y is unknown. We circumvent this crux in
the usual way, i.e. by inserting an estimate of y into (6.18). The estimate is constructed as the
ratio of estimators of nominator and denominator in (6.15). Estimation by (6.12) yields;

> (/[P E®D f,(§) isestimated by | >y £E©/p EE) , (6.19)
ﬁfi(g) is estimated by > L&)/ [P F®] . (6.20)

The estimates in (6.19) and (6.20) now lead to the y - estimate in (6.17). =

6.3.2 Estimation when the retain frequency is unknown

In Estimation Procedure 6.1 the retain frequency p is presumed to be known, and it enters in
the estimators (6.12) and (6.16). The natural modification of the estimation procedure to a
situation where p is unknown is to exchange p for an estimate of it.

ESTIMATION PROCEDURE 6.2: y = (Y}, ¥, ..., Yy) is a variable on U=(1,2,...,N), from
which an OSRRQ (n';H ; A; p) sample is drawn. The retain frequency p is unknown, but an
estimate p of it is available. The y - values for all sampled units are observed.

The claims in Procedure 6.1 then hold after the modification that p is exchanged for p. An

important aspects of the modification is that equation (6.8) modifies to;
N

E solves the equation (in t): 2 E({)=n'/p, O0st<oo. (6.21)

1=1

7 Derivation of the estimation procedures in Section 4

We now return to order sips sampling with non -response. The non - response adjusted estima-
tion procedures will be based on the following general inference principle.

Principle for conditional inference: A population characteristic is to be estimated from

observations on a random sample. If a specific statistic carries no, or only little, informa-
tion about the characteristic of interest (is ancillary), inference should preferably be made
conditional on the ancillary statistics.

7.1 The case with over-all uniform response propensities

We start with Procedure 4.2, where assumptions are as follows. y=(y;, ¥,, ..., yn) is @ variable
on the population U=(1, 2, ...,N). The estimation interest concerns the total t(y). An OS(n; F)
sample is drawn from U with the aim to observe y for all selected units. However, only n' (< n)
units respond. The task is then to estimate t(y) from the y-values for the responding units.

The statistic n'="number of responding units" is regarded as ancillary under estimation of t(y).
Hence, the above conditioning principle says that we shall condition on n', and regard it as
fixed. The following conditioning result should be evident upon some thought.

LEMMA 7.1: An OSnps(n;H;)\) sample is selected from U. During data collection, non-
responses occur by Response Mechanism 3.1 with over-all uniform response propensi-
ty B. Conditional on the number n' of responding units, the Rsample is probabilistically
equivalent to an OSRRQ(n'; H; A ; B) sample from U.
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The Rsample is completely observed for y. Hence, Lemma 7.1 entails that Procedures 6.1 and
6.2 can be applied to the Rsample. Since we presume that the response propensity (= retain
frequency) is unknown, Procedure 6.2 with p = 8 is the relevant result. The first task is to
exhibit a 3 - estimate. We use the following "natural" - estimate under Response Mechanism
3.1 with over-all uniform response propensities;

B=n'/n. (7.1)
With this 3 - estimate and order distributions according to (2.3), equation (6.21) becomes;

N
E solves the equation (in t): 2 H(t-H'(A))=n'/B= [by(6.1)]=n, Ost<o. (7.2)

i=1

From (2.2) is readily seen that (7.2) is solved by & = 1. With this § we have;
F(8)=F(1)=HH"'(A\))=N and €)= f;1)=h(H'\))-H'M), i=1,2,...,N. (7.3)
Now, insertion as stated in Procedure 6.2 into the formulas in Procedure 6.1 leads, after some
straightforward algebra which is left to the reader, to the claims in Procedure 4.2. In the inser-
tion step note the following consequences of the formulas in (7.3): (i) B - Fi(§) shall be
exchanged for -F.(E)=(nYn)-A, = by (4.13) =A! , (i) f(§) = o = Ai - a;, with & and o;
according to (4.4) and (4.30). Moreover, insertion into (6.14) and (6.15) yields (4.34).

7.2 The case with group-wise uniform response propensities

The case with group - wise uniform response propensities is treated along the same lines as
above. Lemma 7.1 is modified as follows, and again the result should be clear upon thought.

LEMMA 7.2: An OSnps(n; H;A) sample is selected from U. During data collection, non-
responses occur by Response Mechanism 3.1 with group - wise uniform response propen-
sities, with response uniformity groups &;,4, ..., 4. Conditional on the numbers (n',
n',...,0n'g) of responding units from the different groups, the R, sample is probabilistic-
ally equivalent with an OSRRQ(n'g; H; A; B(g)) sample from &, g=1,2,...,G.

Let;

1(y), = the y-total over group &,, g=1,2,...,G. (7.4)
Then we have;

Wy) =Y+ Y2+ .. +UY)o, (7.5)
which leads to the following estimation formula;

Wy) =2y, +UY), + + UF)s - (7.6)

Lemma 7.2 tells that the estimator (4.14) can be used group - wise in (7.6), which leads to
(4.25). As regards the variance of the estimator (7.6), we make the following observation.

Conditional on (n'y,n',,...,n') the R samples are independent, g=1,2,...,G. (7.7)
By (7.6) and (7.7) we arrive a(t;;

VIE®I nfsngsenp]= X VIRG) ], (78)
which in turn leads to the va%ance estimation formula;

VR Ing,nj,..on5]= Y V)] n,]. (7.9)

g=1
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By applying the variance estimator (4.16) in (7.9), the variance estimator (4.27) is obtained.
Analogously, application of (4.34) in (7.8) yields (4.35).

8 Justification of Approximation Result 6.1

The chief task in this section is to justify Approximation Result 6.1. Thereby the main step
will be derivation of a limit result for the distribution of OSRRQ sample sums, which is for-

mulated in Theorem 8.1.

8.1 A limit theorem for quota retain order sampling
THEOREM 8.1: For k=1,2,..., an OSRRQ(n'; F; px) sample is drawn from the popu-
lation U, = (1,2,...,Ny). The density for F,; is denoted fy;. z, = (2,2, .-, 24y, ) 1S @
variable on U, and S,(n';; z,) is the corresponding z, sample sum. Let §,, w,, ¢x and o,
be in accordance with (7.8)-(7.11). Then, with = denoting convergence in law;
Law[ (Sy(ny; ) - w)/o ] = N(0,1), ask — =, (8.1)

provided that conditions (B1) - (B6) below are satisfied.

(Bl) n, > ®ask —>x,

(B2) max, |z, - ¢, | /ok -0, ask—o.

(B3) 0< lim p“ 5.3 Efkl(?; ) = Iim p“ S Efkl(‘g ) <o,

k—o =1 =1

(B4) For some 6 > 0, some C < o and some functlon w(A) which tends to 0 as A— 0,
the following inequalities hold for 1-d < t,s < 1+ §;

£, (tE) -, (5°E) s Cow([t-s]) £, (€D, i=12,..,N,, k=1,23,.... (82)

(BS) For some m > 0, we have;
Fi(B) A-pe KGO znE¢ £ (§,), i=12..,N,, k=123,.... (8.3)

‘N
B.6) lim2s1,
k-~ nk
Remark 8.1: The concrete contents of condition (B.6) is that the expected number of retained
units, px- Ni, must exceed the desired sample size n'x. X

Remark 8.2 : Even if the conditions in Theorem 8.1 look quite complicated they are in fact
satisfied under very general conditions in many, not to say most, types of sampling situations
of practical interest. Illustrations are given in Rosén (1997a&b). =

Before proving Theorem 8.1 we discuss how Approximation Result 7.1 follows from it.

8.2 Justification of Approximation Result 6.1 from Theorem 8.1
Approximation result 6.1 is obtained from Theorem 8.1 by employing the limit distribution
already in the finite situation, i.e. by the approximation Law[ (S(n; z) - w)/o] = N(0,1), or
equivalently Law[ (S(n; z) ] = N(u,0%). The "algebraic step"” from Theorem 8.1 to Approxima-
tion Result 7.1 is straightforward, and left to the reader. The practical follow - up problem is
then : When is a situation sufficiently "close to infinity" for the approximations to be good
enough for practical purposes ? This problem was discussed Section 5.
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8.2 Proof of Theorem 8.1

Theorem 8.1 is very similar to Theorem 3.1 in Rosén (1997a), henceforth referred to by
RTh3.1. To the best of our understanding, though, it is not similar enough to be a corollary to
RTh3.1, it must be given its own proof. This, however, will be very parallel to that of RTh3.1.
Therefore we leave out a great deal of proof details, and refer the interested reader to the proof
of RTh3.1 for more details. The chief proof tool for Theorem 8.1 will be Theorem 5.1 in
Rosén (1997a), for simplicity referred to by RTh5.1 in the sequel. Analogously, formula (x.y)
in Rosén (1997a) is referred to as (R.x.y). We start with some preparations for application of
RTh5.1. To begin with we disregard the sequence context, and omit subscripts k.

Q,,Q,, ...,Qy and R, R,, ..., Ry stand for the ranking variables and retain indicators in Defini-
tion 6.1. We introduce the following stochastic processes, where 1, is the indicator of the set
A, 2=(z,,2,...,zy) are given real numbers and § > 0 is an arbitrary (but fixed) number;

H)= 1y, 0st<o, i=1,2,..,N, (8.4)

N N
)= Y H(t'E)R;, Ost<w, and L(;2)= ) z - H,('E)'R;, Ost<e.  (85)
i=1 1=1

The contents of these processes are as follows. Hy(t) "signalizes" (by jumping from 0 to 1) the
value of the ranking variable Q; . J(t) tells the number retained units with ranking variable val-

ues < t, and L(t;z) is the z-sum for these units.

Let T* denote the passage time when J(t) reaches the level n', and let A(n'; z) denote the corre-
sponding passage z-sum;
T* = inf(t: J(t)=n"), (8.6)

N

A(n';z) = I(T*;2) =Ezi-Hi(T*-§)-Ri. (8.7)

1=1
The claim in (8.8) below should be evident upon some thought. It provides the crucial link
between an OSRRQ sample sum and passage variables, which enables application of RTh5.1.

An OSRRQ sample sum S(n'; z) has the same distribution as A(n';z) in (8.7). (8.8)

We now turn to the limit considerations, and let index k signify that a quantity relates to situa-
tion k. Let J, (1), L(t;z:), T,*and A,(n'; z,) be in accordance with (8.4)-(8.7), and let &, w,,
¢ and o, be in accordance with (6.8) - (6.11). As a consequence of (8.8) we have;

Law[(S(n'y52) - w)/0y] = Law[(Ay(n';2)-w)/o ], k=1,2,3,.... (8.9)

We employ RThS5.1 to show that (A (n'y; z,) - W) /0, is asymptotically N(0,1) distributed under
the conditions in Theorem 8.1. Having done that, (8.9) tells that also (S(n'; z,) - W) /0 is
asymptotically N(0,1) distributed, and Theorem 8.1 is proved.

For future use we list the following formulas, which are straightforward consequences of the
fact that Hyi(t)- Ry is a 0-1 random variable with expected value Fi(t)- px;
E[Hyi() Rii] = p-Fi(®),  V[H(1) R ] = pi Fy(®)  [1-px Fg(®)], Ost<oo. (8.10)

The entities Yy, Xy, X, , ¥i, Yy Uy, € and 1, in RThS.1 are chosen as stated in (8.11) - (8.17),
and the interval under consideration is [t;, t,] = [1- 8, 1+ 8], where 8 comes from condition
(B4). Moreover, © denotes centering at expectation. When checking (8.11) - (8.15), recall the
expectation formula in (8.10).
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Yk(t)=;1-2Hkl(t £)R, —yk(t)+\/1— V (1), tystst, (8.11)

k 1=1
Ny
m(t)—""EFk.(t £, Vo= FE [H,(8,) R,I°, ty=tst, (8.12)
k =] k =1
X, (t L §2u- Py @g)R O+ U, (1), tpstst (8.13)
= =X stst,, .
«® n,k; o H 6 =0+ oststh
-0
X, (1) = P 2 <R (t°E,), tpstst, (8.14)
k 1=1 k
& Zy -9,
U= ) = [Hy (&) Ry tystst, (8.15)
(=1 k
c=1nL, k=1,2,3,.., (8.16)
t=1, k=1,2,3,... (8.17)

(B.6), (8.12) and (6.8) vield that t} in (R.5.6), i.e. the solution to yi(t) =t =1, takes the value
t¥ = 1 for all k. Condition (B.6) is an "extra" condition in comparison with RTh3.1. Its con-

crete meaning is discussed in Remark 8.2. Technically it guarantees that the range of yi(t)
contains 1, so that yy(t)=1 in fact has a solution which also is an interior point in [t,t;].

The proof is divided into two parts, stated in (8.18) and (8.19) below. Together they yield that
(Ay(n'y;Z) - W)/ o is asymptotically N(0,1) distributed.
A (n ;z, )-
Under conditions (B1) - (B6): 1 ko Sl ~U W50, ask—co. (8.18)

k

Under conditions (B1) and (B2): Law[Uy(1)] = N(0,1), ask — . (8.19)

We start by proving the simplest part, (8.19).
Proof of (8.19) : Since Q,4,..., Q, are independent, so are H (), i=1,...,Ni. Hence, cf. (8.15),

U= > P, ) R (320)

1=1 k
is a sum of independent random variables with means 0. By (6.11) and the variance formula in
(8.10) it is readily checked that the variance of Uy(1) is 1. Liapunov's condition in 4:th moment

version yields the asymptotic normality in (8.19). See the proof of RTh3.1 for details.

Proof of (8.18) : First we derive expressions for the two terms in (R.5.8). By (8.13), (8.5) and
(8.7) is readily checked that;

L (T2) -6 1 (T) _ A (0520 -9, 1y (8.21)
Ok'ﬁf Ok'\m |

By (8.14), t} =1, (6.9) and (6.8) we have;

Xk(Tl:) =

_ ‘n!
x, (1) = x, (1) = T+ =P T b = (8.22)
Oy "I
From (8.21), (8.22) and (8.16) we get;
X (T) - x,(t;) A, (nz,) -1,
. - o , (8.23)
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The formulas for yi and xi in (8.12) and (8.14), and the assumption that the Fy; have densities
imply that yi(t) and x.(t) are differentiable on [t,,t,], with the following derivatives;
Pi B <
— 3 f (t- tyst st .
o B, s s, (8:24)
Ny

Py & Z; =0,
X, (1) = ‘ . (E), tystst,. 8.25
O i e N (8:25)

From (8.25), tf = 1 and (6.10) follows that x,(t;) = x,(1) = 0. Hence, the term to the right in

(R.5.8) simplifies to Ug(1). This together with (8.23) yields that {f RTh5.1 applies in the pres-
ent situation, it leads to (8.18). This in conjunction with (8.19) yields the algebraic part of
Theorem 8.1. It remains, though, to show that RThS5.1 in fact does apply, to the effect that
conditions (A.1) - (A.8) in it in fact are satisfied.

Y=

At this junction we confine to saying the following. With conditions (B.1) - (B.5) in RTh3.1
modified to those in Theorem 8.1, verifications of (A.1)-(A.8) in RThS.1 are obtained by par-
alleling the verifications in the proof of RTh3.1 making the "obvious" modifications at appro-
priate places. X
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