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Abstract 
An instrument for utilization of auxiliary information in sample surveys is Jtps sampling, i.e. to 
sample without replacement with inclusion probabilities proportional to given size measures. 
Rosén (1997b) introduced a novel class of Jtps schemes, called order jrps schemes, and advised 
procedures for point and variance estimation. These procedures cover, however, only full 
response situations. Since some portion of non-response is rule rather than exception in practi­
cal surveys, it is desirable to have disposal of estimation procedures which work also under 
non-response. Such procedures is the topic of this paper. 

Section 4, which is the core of the paper, presents the non - response adjusted estimation pro­
cedures, for point estimation and confidence intervals, which thereafter are given theoretical as 
well as simulation based justifications. The simulation results are presented in Section 5 and 
the theoretical justifications in Sections 6-8. 

The tentative conclusion are as follows. Provided, of course, that response mechanism and 
response model comply with each other, the non - response adjusted estimation procedures 
work satisfactorily under quite general conditions. In particular, point estimator biases are 
negligible for all non - response rates already for quite small sample sizes. Good performance 
of the confidence intervals requires larger sample sizes, and depends on the type of relation 
between the size variable and the study variable. 
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Estimation from Order πps Samples 
with Non - Response 

1 Introduction and outline 
An instrument for utilization of auxiliary information in sample surveys is Jtps sampling, i.e. to 
sample without replacement with inclusion probabilities proportional to given size measures. 
Rosén (1997b) introduced a novel class of jtps schemes, called order Tips schemes, and 
advised procedures for point and variance estimation. The procedures cover, however, only 
full response situations. Since some portion of non - response is rule rather than exception in 
practical surveys, it is desirable to have disposal of estimation procedures which work also 
under non-response. Such procedures is the topic of this paper, which is organized as follows. 

Section 2 briefly reviews some basic concepts, notably that of order jtps sampling. Section 3 
specifies the response models that are considered. Section 4, which is the core of the paper, 
presents procedures for non-response adjusted estimation. Thereafter the procedures are given 
theoretical as well as simulation justifications. In the belief that the latter are the most con­
vincing they are presented first, in Section 5. The theoretical justifications are given in Sec­
tions 6, 7 and 8. The broad conclusion from the simulation findings is that the non - response 
adjusted estimation procedures work quite satisfactorily, provided that response mechanism 
and response model comply with each other. 

The theoretical justifications are based on a limit result for an auxiliary notion, called quota 
random retain order sampling, which is introduced in Section 6, where also the limit result is 
formulated. The proof is deferred to Section 8. Section 7 provides the bridge from quota ran­
dom retain order sampling to order jtps sampling with non - response. Since the estimation 
procedures are based on limit results they are approximate to some extent in "finite" situations. 
The simulation results in Section 5 provide information on approximation goodness. 

Throughout the paper. P, E, V and V denote probability, expectation, variance and variance 
estimator. N(|j,,a2) stands for the normal distribution with mean JA and variance cr. 

2 Basic concepts, notably order πps sampling 
U = (1, 2,..., N) denotes a finite population and y = (y2, y2,.. . , yN) a variable on it. The corre­
sponding y-total over the population is; 

(2.1) 

A sampling frame in the form of a list with items that one - to - one correspond with the units in 
U is used. We let U refer to frame as well as population. For completeness we recall the Rosén 
(1997b) definition of order Jtps sampling. To that end we first present the more general notion 
"order sampling" from Rosén (1997a). 

DEFINITION 2.1 Order sampling : To each unit i in a population U = (1,2,..., N) is as­
sociated a probability distribution F;(t) with density f\ (t), 0 <. t < °° . Order sampling 
with sample size n ,n s N, and order distributions F = (Fv F2,..., FN), denoted OS(n ; F), 
is conducted as follows. Independent ranking variables Q,, Q2,..., QN with distributions 
F]; F2,..., FN are realized. The units with the n smallest Q - values constitute the sample. 
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Order Jtps schemes comprise a subclass of the OS(n ; F) schemes, as follows. 

DEFINITION 2.2 Order πps sampling: H(t) is a probability distribution with density h(t), 
t 2 0, n is a positive integer and X_= (Xv.., XN) real numbers which satisfy; 

(2.2) 

Order Jtps sampling with sample size n, shape distribution H and target inclusion proba­
bilities X is OS(n ; F) with order distributions that satisfy either, and hence both, of the fol­
lowing equivalent conditions (i) and (ii). H_1 denotes inverse function. 

(ii) The ranking variables Q have the structure : < 
where Zlv.., ZN are independent random variables uniformly distributed on [0,1]. 

(i) The order distributions 
(2.3) 

A general order reps scheme is referred to by the notation OSjtps(n;H;X). Particular 
OSjrps schemes are named by their shape distributions. 

In spite of the fact that OSnps schemes are very simple to implement, their definition admit­
tedly looks intricate when first met. The chief reason why OSJtps schemes are of practical 
interest is the following result, which is discussed at length in Rosén (1998). 

APPROXIMATE INCLUSION PROBABILITIES FOR OSπps : For OSJtps(n ; H ; X) 
holds with good approximation, whatever the shape distribution H is ; 

The sample inclusion probability for unit 2.4) 

Result (2.4) implies that OSxcps is a means for sampling with inclusion probabilities (approx­
imately) equal to given target inclusion probabilities X = (XU X2,..., A,N). The X: s are typically 
generated as follows. The sampling frame comprises a size variable s = (sv s2,..., sN). The cor­
responding normalized size variable is obtained by scaling the s - values so that their sum 
becomes 1 ; 

(2.5) 

Then, for a given sample size n, the X : s are defined as ; 
(2.6) 

In (2.5) it may happen that one or more X exceeds 1. If so, some special measure has to be 
taken; Introduction of a "take all" stratum, or something else. We presume that X\ < 1. 

In line with Rosén (1997a & b) we will pay special attention to the following OSjrps schemes. 

Uniform OSxcps : 

with inverse '. (2.7) 

Exoonential OSTTOS : 

with inverse (2.8) 

Pareto OSrcps : 

with inverse (2.9) 
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3 Response modeling 
In situations where non - response occurs during data collection a prerequisite for unbiased 
inference is that the inference is based on a good model of the factual response mechanism. 
We confine to the following simple and well-known response mechanism model. 

RESPONSE MECHANISM 3.1 : To each unit i in U is associated a random 0-1-variable 
Ri, called response indicator, which specifies if unit i responds (Rj = 1) or not (Ri = 0) if 
addressed. The corresponding response propensities are; 

(3.1) 

The following assumptions (i) and (ii) are made. 
(i) Ri,R2,.. . ,RN are mutually independent. (3.2) 

In a sample survey context with sample inclusion indicators Ii,I2, ••• J N , (i-e.1, = 1 if 
unit / is sampled and Ij = 0 otherwise); 

(ii) The stochastic vectors (I1J2, ••• JN) and (Ri,R2, ••• ,RN) are independent. (3.3) 

We sav that over-all uniform response propensities are at hand if; 
(3.4) 

We say that group-wise uniform response propensities are at hand if U partitions into 
disjoint response homogeneity groups #\,#2,---,0G with response propensities |3 , and ; 

(3.5) 

The case with over-all uniform response propensities can of course be seen as a special 
case of group-wise uniform response propensities, with the entire population as the sole 
response homogeneity group. 

When non-response occurs, assumptions about the response mechanism must be introduced in 
the estimation step. Such assumptions are called the response model. We confine to response 
models which comply with the above response mechanism model, to the effect that the 
response model specifies a set %\, ^2, • • •, fc of surmised response homogeneity groups. Note 
that specification of values for response propensities is part of the response mechanism model, 
but not of the response model. It goes without saying that the success of non - response 
adjustment depends on the agreement between response mechanism and response model. 

4 Non - response adjusted estimation for OSπps samples 
In this section we formulate results about non-response adjusted estimation for OSjtps. Theo­
retical justification of the results is deferred to Sections 6, 7 and 8, while the next Section 5 
provides simulation based justification. We provide background for the adjusted procedures by 
stating estimation formulas from Rosén (1997b) for the full response case. 

4.1 Estimation under full response 
ESTIMATION PROCEDURE 4.1 : An OSxcps sample with sample size n, shape distribu­
tion H with density h and target inclusion probabilities X = (Xi, X2-, XN) is drawn from 
U = (l,2, ...,N). The values of a variable y = (yi,y2> — ,yN) a r e observed for all sampled 
units. Then, the following holds under general conditions. 

a) Consistent estimation of the total t(y) is given by ; 

(4.1) 
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b) A confidence interval for x(y) with approximate confidence level 1 - a is given by; 

(4.2) 

where ôa/2 is the (1 -a/2)-fractile in the standard normal distribution, and; 

(4.3) 

with 
(4.4) 

Also, V[x(y)os] yields consistent estimation of the estimator variance V[x(y)os ] . 

The ai-values for the schemes (2.7)-(2.9) are stated in Lemmas 3.1 and 4.1 in Rosén (1997b). 
Thev are listed below. 

For uniform OSrcps : (4.5) 

For exponential OSTCDS : (4.6) 

For Pareto OSrcps : (4.7) 

4.2 Estimation when non-response is modeled by over-all uniform 
response propensities 

The non - response adjusted estimation procedure can broadly be described as follows. Modify 
"sampled" to "responding" and make the corresponding modifications of the target inclusion 
probabilities. Then use the full response estimation formulas (4.1) and (4.3). Under the 
response model with over-all uniform response propensities, the modifications are as follows. 

Sample is exchanged for "responding sampled units". (4.8) 
Sample size is exchanged for "number of responding units". (4.9) 
A,j is exchanged for À'; given by (2.6) with n = "number of responding units". (4.10) 

The precise result is stated below. 

ESTIMATION PROCEDURE 4.2: An OSitps sample with size n, shape distribution H 
with density h and target inclusion probabilities À, = (Xi,À.2,...,XN) is selected from the 
population U = (l,2, ...,N). The a; are according to (4.4). Non-response occurs during 
data collection, and the response model presumes over-all uniform response propen­
sities. Set; 

Orsample = the set of responding sampled units, (4.11) 
n' = number of responding units, (4-12) 

(4.13) 

Then the following holds under general conditions. 

a. Consistent estimation of the total x(y) is given by ; 

(4.14) 

b. A confidence interval for x(y) with approximate confidence level 1 - a is given by ; 

(4.15) 

where ôa/2 is the (1 - a/2)-fractile in the standard normal distribution, and; 
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(4.16) 

Remark 4.1 : Computation of the variance estimator (4.16) is simplified by expansion of the 
square. After some straightforward algebra this yields; 

(4.17) 

(4.18) 

(4.19) 

Remark 4.2 : The variance estimator (4.16) emanates from (6.16) and (6.17), which are based 
on Theorem 8.1. In (4.16) the target inclusion probabilities appear in adjusted versions X' 
while the a; are based on the original X : s. A natural wonder is what happens if also adjusted 
aj-values are used, leading to the following modified estimator; 

(4.20) 

where a'j is given by the following modification of (4.4) ; 

(4.21) 

For the schemes (2.7)-(2.9), (4.21) becomes as follows. 

For uniform OSjtps (4.22) 

For exponential OSrqps 
(4.23) 

For Pareto OSjtps : (4.24) 

To distinguish the two variance estimators, the (4.16) estimator is said to be of Type 1 and the 
(4.20) estimator of Type 2. » 

Remarks 4.3 : (i) Under the present response model, over - all uniform response propensities, 
X\ < 1 always holds. The case k\ = 1 in (4.23) is introduced for later use. 
(ii) Note that V'= Vfor uniform OSjtps, since then a'j = a;. 

(iii) As regards computation of V', the procedure in Remark 4.1 can be used after the fol­
lowing modifications of D and K; 

(4.25) 

4.3 Estimation when non-response is modeled by group-wise uniform 
response propensities 

Also when the response model comprises more than one response homogeneity group the ad­
justed estimation procedure follows the previous lines. First n and hi are modified, here group-
wise, then the full response Procedure 4.1 is applied. The precise formulation is given below. 
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ESTIMATION PROCEDURE 4.3 : An OSjtps(n;H;X) sample is drawn from U = (l, ...,N). 
The a; are according to (4.4). Non-response occurs during data collection, and is modeled 
by group-wise uniform response propensities with homogeneity groups ^1,^2, ••• ,<fc- Set; 

ng = number of sampled units from group ^g, g=l,2,. . . ,G, (4.26) 

n'g = number of responding units from group ^g, g=l,2, . . . ,G, (4.27) 

^sample = the set of responding sampled units from group Ç%, g=l,2,..., G, (4.28) 

^sample = D^sample U ^sample U ... U 9ftGsample, (4.29) 

(4.30) 

where gQ is the index for the $- group to which unit i belongs. 

Then the following holds under general conditions. 

a. Consistent estimation of the total x(y) is given by ; 

(4.31) 

b. A confidence interval for x(y) with approximate confidence level 1 - a is given by ; 

(4.32) 

where ôa/2 is the (1 - a/2)-fractile in the standard normal distribution, and; 

;4.33) 

Remark 4.4: The X - modification in (4.30) can be concretized as follows. First the size values 
are normalized on each Ç- group. Thereafter the X':s are computed by group-wise application 
of the modified version of (2.6). Note that this operation requires "frame knowledge" of $-
belonging. The min( •, 1) operation in (4.30) is introduced for the following reason. Without 
this, admittedly somewhat ad hoc, rule it can happen, although only in exceptional cases, that 
one or more X\ becomes greater than 1. This operation also explains formula (4.23). H 

Remark 4.5 : In analogy with what is said in Remark 4.1, computation of the variance estima­
tor (4.33) is simplified by expansion of the squares. This leads to the formula; 

(4.34) 

where Ag,Bg,.. .,Kg are the ^sample analogues of the quantities in (4.18) and (4.19). a 

Remark 4.6: In Remark 4.2 we introduced a modified version of the estimator (4.16). The cor­
responding modification of the variance estimator (4.33) is; 

where a' is defined by (4.21). As in Remark 4.2, we distinguish the two variance estimators by 
calling (4.33) the Type 1 estimator and (4.35) the Type 2 estimator. a 
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4.4 Approximate formulas for estimator variances 
The theme in this section is theoretical estimator variances. Even if such variances are un­
important in the estimation phase, they are of interest in the survey planning phase and also in 
a method evaluation of the present type. As stated in Procedure 4.1, in the full response case 
the variance estimator (4.3) provides consistent estimation of the corresponding theoretical 
variance. An asymptotically correct approximation formula from Rosén (1997b) is repeated 
below. The novel part concerns analogous asymptotically correct approximation formulas for 
theoretical estimator variance under non - response. There is a difference, though, between the 
cases without and with non-response, which is discussed first. 

4.4.1 The non-response adjusted estimation procedures are conditional 
inference procedures 

When non - response occurs, the number of responding units is random. As a consequence 
Estimation Procedures 4.2 and 4.3 are, which is discussed in more detail in Section 7, condi­
tional inference procedures, with conditioning on the number of responding units in the dif­
ferent response homogeneity groups. In particular, (4.16) and (4.33) are consistent estimators 
of the corresponding conditional estimator variances. Derivation of exact formulas for these 
conditional variances is unfeasible, but asymptotically correct approximate formulas are given. 
Justifications are given in Sections 6 and 7. 

4.4.2 Results on approximate conditional estimator variances 
As before we start by giving background by stating results for the full response case, fetched 
from Approximation Result 3.1 in Rosén (1997b) 

APPROXIMATE VARIANCE FOR THE ESTIMATOR (4.1) : Let assumptions and nota­
tion be as in Procedure 4.1. Then, under general conditions, (4.36) provides an asymptoti­
cally correct approximation of the variance of t(y)o s ; 

(4.36) 

(4.37) 

The ar values for the schemes in (2.7)-(2.9), which are given in Lemmas 3.1 and 4.1 in Rosén 
(1997b), are as stated below. 

For uniform OSjtps : (4.38) 

For exponential OSjrps : (4.39) 

Fnr Pnrptn DSTTDS • (4.4U) 

We now turn to theoretical conditional variances corresponding to the adjusted estimators. As 
stated earlier, conditioning is made on the number of responding units, n' in the over - all case 
and (n'i,n'2,...,n'G) in the group case. 

APPROXIMATE CONDITIONAL VARIANCE FOR THE ESTIMATOR (4.14) : Let ass­
umptions and notation be as in Procedure 4.2, and a, be according to (4.38)-(4.40). Then, 
an asymptotically correct approximation of the conditional variance V[t(y)0SA| n'] is; 

(4.41) 
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APPROXIMATE CONDITIONAL VARIANCE FOR THE ESTIMATOR (4.31) : Let 
assumptions and notation be as in Procedure 4.3, and a; as in (4.38)-(4.40). Then, an 
asymptotically correct approximation of the conditional variance V[t(y) 0SGA| n,,.., n G ] 
is, where Ng denotes the number of units in group ^g; 

(4.42) 

5 Simulation study of the non-response adjusted procedures 
5.1 Introduction 
The estimation procedures in Section 4 are derived by limit considerations, which are carried 
out in Sections 6 - 8. Since practical survey situations are "finite", procedures based on 
asymptotic results are always afflicted with some amount of approximation error when used in 
practice. In the present context, point estimator bias and confidence level bias are of 
particular interest. It is important to have an idea of the magnitude of the biases due to the 
approximations. The natural, not to say the only, feasible way to study approximation good­
ness is by Monte Carlo simulations, which is the theme of this section. We start by giving 
some background from the full response case. 

5.1.1 On the performance of OSπps schemes under full response 
Approximation goodness in the full response case is studied in Rosén (1997b) where, i.a. uni­
form, exponential and Pareto OSjtps are considered. The findings can be summarized as fol­
lows. For all three schemes the point estimator bias is negligible already for very small sample 
sizes (say n s 10). For confidence levels the broad lines are as follows. Biases are "bearable" 
for fairly small sample sizes (say n s 20), "moderate" when sample size increases (say n & 50) 
and negligible for large sample size (say n ;> 100). However, a comprehensive picture is more 
complex, as always when goodness of the normal distribution approximation is involved. 
There is no simple rule of thumb for small confidence level bias in terms of just sample size. 

Rosén (1997b) also compares the estimation precision for a number of Jtps schemes, including 
the present OSitps schemes, with the following chief result. Among reps schemes which admit 
objective assessment of sampling errors, Pareto OSitps is the superior one. It never performs 
worse than uniform and exponential OSjtps, but sometimes considerably better. Its degree of 
superiority varies from situation to situation, though. Crucial factors in that context are the 
sampling rate and the relation between the study variable y and the size variable s. For the last 
factor, a fairly rough classification was introduced in Rosén (1997b). The relation between the 
study and size variables is said to have linear, increasing convex or increasing concave trend, 
depending on the shape of the curve for regression of y on s. In broad terms the following 
holds. As regards estimation precision the three OSitps schemes perform very similarly in 
situations with linear trend, but Pareto OSxcps is superior in situations with convex or concave 
trend, the more superior the larger the sampling rate is. 

5.1.2 Main aim of the present study of non-response adjusted estimation 

Even if three OSπps schemes are considered in this paper, comparison of their over - all per­
formances under non - response is not a chief aim, but to see how well the adjusted estimation 
procedures work for each of them. Background for this is that Statistics Sweden surveys use 
uniform as well as Pareto OSups. Point estimator bias and confidence level bias are taken as 
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the central performance measures. Under non - response additional potentially crucial factors 
enter the picture, notably ; 

• The response mechanism, 
• The response propensities, 
• The agreement between response mechanism and response model. 

5.2 Organization of the simulation study 
5.2.1 Broad lines 
The broad lines in the simulation study are stated below. Details are given afterwards. 

Step 1 Population generation : A population size, N, was decided on and value pairs 
{(yi,Si); i=l,2,...,N} fora study variable y and a size variable s were generated. 

A generated population was used unaltered throughout the subsequent steps. 

Step 2 Generation of responders : A response mechanism was decided on, and used 
to divide the population into responders and non-responders. 

Step 3 Sample selection : A sample size, n, was decided on, and uniform, exponential 
and Pareto OSjtps samples of size n were drawn. 

Steps 2 and 3 yielded responding samples. For fixed combinations of population, response 
mechanism and sample size, 3000 independent runs of (Step 1 + Step 2) were made. 

Step 4 Estimates from responding samples: A response model, i.e. a set of surmised 
response homogeneity groups, was decided on. Then estimates from observation data 
for the responding samples were computed, using Estimation Procedures 4.2 and 4.3. 

Also approximate conditional estimator variances were computed. 

The estimates from the 3000 responding samples were stored in a separate file. 

Step 5 Compilation of performance measures: From the data in the "estimate 
store file" various means and standard deviations were computed, to provide meas­
ures for judging the performance of the adjusted estimation procedures. 

5.2.2 Step 1 : Population generation 
Population values {(y;, Sj) ; i = 1,2,..., N} were generated by model (5.1) below, which is the 
same as the one used in Rosén (1997b); 

5.1 

The parameter y determines the shape of the size - variable trend. For y close to 1 the trend is 
linear, for y greater than 1 it is convex and it is concave for y less than 1. The parameter <j 
determines how much the y-values scatter around the trend curve. 

Four populations, named A, B, C and D, were considered. They were generated by the model 
(5.1) with parameters as stated below. 

Pnnulatinn A : Has linear trend. 

Population B : Has convex trend. 
Population C : Has concave trend. 

Population D : Has concave trend. 

As seen, the populations range over the three trend shapes. Populations A, B and C have size 
N = 100, which certainly is a very small population size in a practical context. The main rea­
son for considering such small populations was to keep computation times down. Moreover, if 
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approximations in fact are quite good for small population and sample sizes, they are (reas­
onably) only better for larger ones. However, population D, which has the same y and o as 
population C but N = 500, was introduced to allow for larger sample sizes than possible for C. 

The populations are illustrated graphically in the figures below. 
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5.2.3 Step 2: Generation of responders 
Responders were generated by realizing independent R-values in Response Mechanism 3.1. 
Models with over-all as well as group-wise uniform response propensities were employed, in 
the sequel referred to as Response Mechanisms O and G respectively. 

For Response Mechanism O the following response propensities were used : (3 =70, 80, 90 and 
100 %. Hence, the simulations also covered situations with full response. 

For Response Mechanism G the following response homogeneity groups were employed ; 

(5.2) 

Two sets of group-wise response propensities were employed; 

Response propensities increase with size. (5.3) 
Response propensities decrease with size. (5.4) 

5.2.4 Step 3: Sample selection 
Sample sizes were determined by prescription of sampling rates, which were chosen to be : 
10, 20, 30, 40 and 50 %. As a consequence, for N= 100 the sample sizes were n = 10, 20, 30, 
40 and 50 and for N = 500 they were n = 50,100,150, 200 and 250. 

Uniform, exponential and Pareto OSjtps samples were drawn by the procedures in Defini­
tions 2.1 and 2.2. The same Z -variables [see (ii), Def. 2.2] were used for all three schemes. 

Steps 2 and 3 were carried out with independent random numbers Z and R. 

5.2.5 Step 4: Estimates from responding samples 
The employed response models were "no grouping" and "grouping with the three ^- groups in 
(5.2)", referred to as Response Modell and Response ModelII. 

For each responding sample the estimator t(y) and its variance were estimated. Associated 

confidence intervals were computed, and it was checked if they contained the true x(y) - value 
or not. Moreover were computed approximate conditional variances (which do not depend on 
the entire responding sample, though, only on the number of responding units). 

Details of the estimation procedures are specified below, with labeling after response model. 
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Estimation procedure I 
X • modification: By (4.13). 
Point estimator for x(y) : According to (4.14). 
Variance estimators: According to (4.16), Type 1, as well as (4.20), Type 2. 
Confidence interval: By (4.15) + (4.16), with approx. 95% confidence level, ôa/2= 1.96. 
Approximate conditional estimator variance : According to (4.41). 

Estimation procedure II 
À, - modification: By (4.30). 
Point estimator for x(y) : According to formula (4.31). 
Variance estimators: According to (4.33) as well as (4.35). 
Confidence interval : By (4.32)+ (4.33), with approx. 95% confidence level, ôa/2= 1.96. 
Approximate conditional estimator variance: According to (4.42). 

5.2.7 Step 5: Summarizing performance measures 
The final step comprised computation of various averages based on the estimates generated in 
the simulation runs, to yield performance measures for the adjusted estimation procedures. 

Conditional versus unconditional performance measures 
As stated in Section 4.4.1, the non - response adjusted estimation procedures are conditional 
inference procedures, with conditioning after number(s) of responding units. Accordingly the 
most informative type of evaluation would be by conditional performance measures, com­
puted by partitioning samples after the number of responding units before averaging. In con­
trast, unconditional performance measures are computed by averaging over all samples. In 
the sequel we confine to unconditional performance measures, though, for two main reasons. 
One is that presentation of conditional material is very space demanding. Another that reliable 
conditional means require very large numbers of simulation runs. Evaluations based on con­
ditional means will be presented elsewhere. We want to mention, though, that we have com­
puted conditional performance measures in some situations, and that they only support the 
subsequent conclusion drawn from the unconditional ones. 

Before proceeding we give some justification of the fact that unconditional measures do yield 
information on the performances. First note the formulas : E(E(X | W)) = E(X) and V(X) = 
E[V(X | W)] + V[E(X | W)], which hold for any random variables X and W. If E(X | W) = con­
stant = E(X), the last formula reduces to V(X) = E[V(X | W)]. With X = x(y) and W = n' (= 
number of responding units, for simplicity we confine to over - all uniform response propensi­
ties) we get, where (5.6) holds provided that t(y)0SA is (at least nearly) conditionally unbi-

(5.5) 

(5.6) 

From (5.5) and (5.6) the following is seen. If x(y) agrees well with the average of x(y)0SA over 
all generated samples, i.e. the empirical version of E(x(y)0SA), (5.5) tells that the majority of 
conditional means E(x(y)0SA |n'= q) can neither all be upwards nor downwards biased. How­
ever, the possibility that there may be cancellation effects in the summation in (5.5) is not 
ruled out, but we believe that this is unlikely (and this belief is supported by the conditional 
means which have been studied). Hence, we take agreement of x(y) and the empirical version 
of E(x(y)0SA) as a strong indication that also E(x(y)0SA |n'= q) agrees with x(y) for the raa-
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jority of q:s. Analogously, agreement between the empirical version of V[i(y)0SA] and the 

average of V[t(y)0SA |n' = q]appr over all samples is an indication that V[x(y)0SA |n' = q]appr 

yields good approximation of V[t(y)0SA |n' = q] for the majority of q:s 

Performance measures 
Since averages are based on as many as 3 000 simulation runs, we are in the sequel a bit sloppy 
to distinguish between "empirical" and "true". 

For point estimator bias 

Relative point estimator bias •• (5.7) 

For estimator precision 

True estimator standard deviation (5.8) 

For variance estimators 

Stdev. based on average variance estimates of Type 1 (5.9) 

Stdev. based on average variance estimates of Type 2 (5.10) 

For the approximate conditional variance formulas 

Stdev. based on average appr. conditional variances (5.11) 

For confidence levels 

Confidence level (5.12) 

where COVERu indicates if the confidence interval for the u : th responding sample covers t(y). 

5.3 Numerical simulation results and conclusions from them 
5.3.1 Introduction 
This section presents and discusses numerical results from the simulations. Aiming at easy 
reading, conclusions are presented first. When looking at the tables the reader may then agree 
or disagree in the conclusions. The numerical material is organized as follows. For the com­
binations AO, AG, BO, BG, CO, CG and DO of a population (A, B, C or D) and a response 
mechanism (O or G) a triple of tables, numbered .1, .2 and .3, is presented. The .1 tables con­
cern point estimator bias, .2 tables estimator variances and .3 tables confidence levels. 

The G-tables contain the classification adequate / non - adequate with the following meaning. 
Estimates are adequate if response mechanism and response model have the same homogene­
ity groups, otherwise non-adequate. Note that O-tables comprise only adequate estimates. 

5.3.2 Concerning point estimator bias 
From the 0.1 tables and the adequate parts of the G.l tables the following is seen. Under ade­
quate response model, the non - response adjusted estimation procedures have negligible point 
estimator bias, relative biases are of order promille. This holds for all considered response 
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rates and sample sizes and for all three OSrcps schemes. The tables also show negligible point 
estimator bias under full response, in agreement with the findings in Rosén (1997b). 

As can be expected matters differ, though, when the response model is non - adequate. The G -
tables show that point estimator bias then is at hand, even if not of dramatically large. 

Conclusion : Provided that the response model is adequate, the following holds for all three 
OSjrps schemes under any of the two response models. Point estimator bias is negligible, for 
all considered non-response rates and already for very small sample sizes. 

5.3.3 Concerning estimator variances 
The 0.2 and G.2 tables comprise information which allows evaluation with regards to different 
aspects of estimator variability. 

The (a) rows tell true standard deviations for the point estimator. 
The (b) and (c) rows show average point estimator standard deviations based on the 
variance estimators V and V respectively. 
The (d) row shows unconditional average point estimator standard deviations based 
on the approximate conditional variance formulas. 

Comparison of the variance estimators V and V' 
From rows (b) and (c) is seen that the alternative variance estimators V and V', in (4.16) and 
(4.20) respectively in (4.33) and (4.35), lead to almost identical estimates. This holds for all 
three OSxcps schemes, whether the response model is adequate or not, and for all considered 
non - response rates and sample sizes. 

Conclusion : In practice it does not matter which of V and V' that is used. 

Performance of the variance estimators 
Comparison of row (a) with (b) and/or (c) in the 0.2 tables and the adequate parts of the G.2 
tables yields the following, for all three OSjtps schemes. When response mechanism and res­
ponse model have over - all uniform response propensities the variance estimators are fairly 
close to being unbiased for all considered response rates, at least when n a 20. Under grouped 
response mechanism with adequate response model, larger sample sizes are needed for the 
same conclusion, say n a 30. However, performance of variance estimators is not so inter­
esting per se, the performance of the corresponding confidence intervals is more crucial from a 
practical point of view. 

Tables AG.2, BG.2 and CG.2 also show that the variance estimators can be seriously biased 
when the response model is non-adequate. 

Conclusion : The following holds for all three OSjtps schemes and all considered response 
rates. Under adequate response model the variance estimators work quite satisfactorily, at least 
for "not too small" sample sizes. Under non-adequate response model the variance estimators 
may be seriously biased, though. 

On point estimator precision 
Section 5.1.1 summarized the findings in Rosén (1997b) on estimation precision under full 
response as follows. Pareto OSjtps never performs notably worse than uniform and exponential 
OSjtps, but sometimes considerably better. In situations with linear size - variable trend the 
three schemes perform very similarly, but Pareto OSnps is better in situations with curved 
trend, and is the more superior the larger the sampling rate is. The (a) rows in the tables show 
that this picture holds true under non - response as well, at least in O - situations but less pro­
nounced in G-situations. 
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Inevitable, though, point estimates become less reliable the higher the non - response rate is, 
which is seen in all O tables. Table 1 below, based on the O - situations, exhibit the relative 
estimator variance increase due to non-response, with full response point estimator variance 
as nominal value. We have also listed the corresponding variance increases for simple random 
sampling (SRS), using the formula : ^-(l-p-n/NVOl-n/N). 

Table 1. Relative increase of estimator variances due to non-response 

The following conclusions are drawn from Table 1. (i) With exception for situations with very 
high sampling rates and pronounced curved size - variable trend, deterioration of point estima­
tor precision due to non - response follows very much the same pattern as for simple random 
sampling, (ii) The point estimator precision for Pareto OSjtps deteriorates slightly faster than 
for the other OSjtps schemes. However, point estimator precision for Pareto OSjrps never falls 
notably below that for the other two OSjtps schemes. 

Conclusion : Also under non - response holds that Pareto OSjtps never has notably worse point 
estimator precision the other two OSjrps schemes, but sometimes noteworthy better. With 
increasing non-response its edge over the other two schemes gradually lowers, though. 

Performance of the approximate conditional variance formulas 
Rows (d) and (a) in the tables show that what is said above about "good approximate unbi-
asedness" for the variance estimators also holds for "good approximation" for the approximate 
conditional variance formulas, yielding the conlusion below. 

Conclusion : For all three OSjrps schemes the following holds for all considered response 
rates. Under adequate response model the approximate conditional variance formulas work 
fairly satisfactorily, at least for "not too small" sample sizes. Under non - adequate response 
model the formulas may be quite misleading, though. 

5.3.4 On confidence levels 
Thinking that true levels even for our most commonly employed asymptotic result based con­
fidence intervals in fact are not as good as we want to believe, the reaction to the confidence 
levels exhibited here is as follows. For populations A and B, with linear respectively convex 
size - variable trend, true confidence levels lie surprisingly close to the nominal one already for 
fairly small sample sizes. This holds irrespective of response rate. Some confidence level bias 
is at hand, though, in the direction that true confidence levels lie below nominal ones. 
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The picture for population C is, however, not so good. The agreement between the true and 
nominal confidence level for a confidence interval based on asymptotic considerations 
depends on two main factors ; the accuracy of the variance estimate and the goodness of the 
normal distribution approximation. The distribution of t(y) is for populations of type C, with 
a concave size-variable trend, more skewed (with tail to the right) than for populations of types 
A and B, for reasons that we do not quite understand. Hence, good normal distribution 
approximations requires larger sample sizes in situations with concave trend. To allow for 
larger sample sizes than admitted by population C we introduced population D, which is of the 
same shape type as C (y = 0.5, o=0.5) but has larger size, N = 500. For population D the sample 
sizes n = 50, 100, 150, 200 and 250 were used. From Tables DO is seen that with increased 
sample sizes the true confidence levels come considerably closer to the nominal 95%. 

Under non-adequate response model the confidence intervals may be quite misleading,though. 

Conclusion : Provided that the response model is adequate the following holds. Under linear 
and convex size - variable trend the non-response adjusted confidence intervals have reasona­
bly good confidence levels already for fairly small sample sizes. Under concave size - variable 
trend larger sample sizes are required to avoid skewed point estimator distribution with an 
adverse effect on confidence levels. Irrespective of trend shape the following holds, (i) The 
response rate has little influence on the confidence levels, (ii) The bias direction is that true 
confidence levels are lower than the nominal one. 

With non-adequate response model the confidence intervals may be severely misleading. 

5.3.5 Tentative over-all conclusions 
The main conclusion from the simulation findings are, at least tentatively. Under adequate 
response model the non - response adjusted estimation procedures work quite satisfactorily for 
all three OSreps schemes. In particular, point estimator biases are negligible for all (reasonable) 
non - response rates already for quite small sample sizes. The behavior of the confidence inter­
vals is more complex. Response rate has little importance in this context, though, the shape of 
the size - variable trend seems to be the crucial factor. Under linear and convex trends true and 
nominal confidence levels agree quite well even for fairly small sample sizes. Under concave 
trend considerably larger sample sizes are require for small confidence level bias. 

Under non - adequate response model the adjusted estimation procedures may be quite mis­
leading. However, this is not particular to OSjrps sampling, it holds for any sampling scheme. 
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5.3.6 Numerical results 

Tables AO 

Population A, Response Mechanism O, Estimation Procedure I. 

Table AO.1 Relative point estimator bias (in %) 

Table AO.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 
(b) = Average estimated standard deviation by (4.16) + (5.9) 
(c) = Average estimated standard deviations by (4.20) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.41) + (5.11) 

Table AO.3 Confidence levels (in %) 
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Tables AG 

Population A, Response Mechanism G, Estimation Procedures II and I. 

Table AG.1 Relative point estimator bias (in %) 

Table AG.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 
(b) = Average estimated standard deviation by (4.33) + (5.9) 
(c) = Average estimated standard deviations by (4.35) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11) 

Table AG.3 Empirical confidence levels (in %) 
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Tables BO 

Population B, Response Mechanism O, Estimation Procedure I. 

Table BO.l Relative point estimator bias (in %) 

Table BO.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 
(b) = Average estimated standard deviation by (4.16) + (5.9) 
(c) = Average estimated standard deviations by (4.20) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.41) + (5.11) 

Table BO.3 Confidence levels (in %) 
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Tables BG 

Population B, Response Mechanism G, Estimation Procedures II and I 

Table BG.l Relative point estimator bias (in %) 

Table BG.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 

(b) = Average estimated standard deviation by (4.33) + (5.9) 
(c) = Average estimated standard deviations by (4.35) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11) 

Table BG.3 Empirical confidence levels (in %) 
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Tables CO 

Population C, Response Mechanism O, Estimation Procedure I. 

Table CO.l Relative point estimator bias (in %) 

Table CO.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 
(b) = Average estimated standard deviation by (4.16) + (5.9) 
(c) = Average estimated standard deviations by (4.20) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.41) + (5.11) 

Table CO.3 Confidence levels (in %) 
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Tables CG 

Population C, Response Mechanism G, Estimation Procedures II and I 

Table CG.l Relative point estimator bias (in %) 

Table CG.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (5.8) 

(b) = Average estimated standard deviation by (4.33) + (5.9) 
(c) = Average estimated standard deviations by (4.35) + (5.10) 
(d) = Average approximate theoretical standard deviations by (4.42) + (5.11) 

Table CG.3 Empirical confidence levels (in %) 
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Tables DO 

Population D (N=500), Response Mechanism O, Estimation Procedure I. 

Table DO.l Relative point estimator bias (in %) 

Table DO.2 Estimator standard deviations and standard deviation estimation 
(a) = True point estimator standard deviations by (7.4) 
(b) = Estimated standard deviations (4.16) + (7.5) 
(c) = Estimator standard deviations (4.20) + (7.6) 
(d) = Approximate theoretical standard deviations (4.41) + (7.8) 

Table DO.3 Confidence levels (in %) 
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6 Quota random retain order sampling 
Here we enter the theoretical justifications of the non-response adjusted estimation procedures 
in Section 4. They are admittedly a bit involved, but the simplest we know of. Unfortunately 
the case with non-response cannot be brought back on the full response case "right away", but 
on the other hand situations with non - response are more complicated than full response situa­
tions. In the following an instrumental role is played by an auxiliary type of sampling scheme, 
called "quota random retain order sampling". Although this notion lies close to "order sam­
pling with random non - response" it is introduced as a separate concept, an important reason 
being that the crucial limit result will concern this sampling scheme. 

6.1 Definition 
To each unit / in U = (1,2,..., N) is associated a pair (Q;, R;) of random variables. The Q:s are 
called ranking variables and the R:s retain indicators with retain frequency p. The following 
assumptions are made. 

Qj, Q2,..., QN are independent random variables with distributions F=(F1; F2,..., FN ), 
where Fj is a probability distribution on [0, °°) with density function fj. (6.1) 

Rj, R2,..., RN are independent equally distributed 0-1 variables with P(R; = 1)= p. (6.2) 

The random vectors (Q,, Q2,..., QN) and (R]5 R2,..., RN) are independent. (6.3) 

The sampling process starts with realization of (Q1; Q2,..., QN) and (Rt, R2,..., RN). Thereafter 
at least the following two variations of "order sampling with random retain" can be thought of. 

The Q:s select a first-stage order sample of (fixed) size n from all of U, according to 
Definition 2.1. The final sample consists of the retained units (those with R= 1) in the 
first-stage sample. Then the size n' of the final sample is random. (6.4) 

A sample size n' is prescribed. The sample is selected as the retained units (those with 
R = 1) with the n' smallest Q-values. Then the sample size n' is fixed, but it may hap­
pen that the desired sample size cannot be reached. (6.5) 

The (6.4) variant is nothing but order sampling with non-response. However, in the sequel we 
consider the (6.5) type of sampling scheme. 

DEFINITION 6.1: Quota random retain order sampling with (fixed) sample size n', 
order distributions F and retain frequency p, denoted OSRRQ(n';F;p), is carried out 
as follows. Variables Qx, Q2,..., QN and Rl5 R2,..., RN that satisfy (6.1) - (6.3) are real­
ized. The sample consists of the units with R= 1 which have the n' smallest Q-values. 

Remark 6.1: For p = l, OSRRQ(n';F;p) is simply "ordinary" OS(n';F). « 

6.2 Approximate distribution of an OSRRQ sample sum 
As a preparation for derivation of estimation procedures for OSRRQ we consider the distri­
bution of an OSRRQ sample sum. For a variable z = (z,,z2 ...,zN) and a sample we set; 

(6.6) 

APPROXIMATION RESULT 6.1 : z = (z,, z2, ...,zN) is a variable on U = (l,2, ..,N), from 
which an OSRRQ(n';F;p) sample is drawn. S(n';z) denotes the corresponding z sample 
sum. Then, with \i and o as specified below, (6.7) holds under general conditions; 

The distribution of S(n' ; z) is well approximated by N(|i, a2). (6.7) 
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Specification of parameters 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Justification of the above result is given in Section 8. 

6.3 Estimation of a population total from an OSRRQ sample 

6.3.1 Estimation when the retain frequency is known 

ESTIMATION PROCEDURE 6.1 : y = (yt, y2,..., yN) is a variable on U = (1,...,N), from 
which an OSRRQ(n';F; p) sample is drawn and fully observed. The retain frequency p 
is known. The OSRRQ estimator of the total x(y) is, where H is according to (6.8); 

(6.12) 

Then the following holds under general conditions. 

a. The distribution of t(y)0SRRQ is well approximated by '. (6.13) 

(6.14) 

(6.15) 

b. In particular, i(y)0SRRQ yields consistent estimation of x(y). 

c. In particular, %2 yields an asymptotically correct value for V[t(y)0SRRQ ] 

d. A consistent estimator of V[t(y)0SRRQ ] is given by; 

(6.16) 

(6.17) 

Start of justification: The above result can be derived from Approximation Result 6.1 by an 
almost verbatim repetition of the arguments for justification of Approximation Result 3.2 in 
Rosén (1997a). A reader interested in more details than given below is referred to that paper. 

We regard Approximation Result 6.1 as justified (although this is not done until Section 8). 
The a -, b - and c - parts in the above procedure are obtained by choosing zs = y; / [p • F;(§)] and 
noting that [i in (6.9) then becomes x(y). In the step from (6.11) to (6.14) we make a somewhat 
ad hoc modification, to the effect that the factor N/(N-1) is introduced. The reason is that with 
this "extra" factor, (6.14) becomes the correct formula in the case when all order distributions 
are equal (which entails that order sampling is nothing but simple random sampling). This 
(asymptotically negligible) modification yields improved approximation also in the general 
situation. In (6.16) we introduce the factor n'/(n'-l) with the same motivation. 

For the d-part, we view the sum in (6.14) as a population total. Its estimate by (6.12) is; 
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(6.18) 

The estimate (6.18) has, however, the "defect" that y is unknown. We circumvent this crux in 
the usual way, i.e. by inserting an estimate of y into (6.18). The estimate is constructed as the 
ratio of estimators of nominator and denominator in (6.15). Estimation by (6.12) yields; 

is estimated by C6.19Ï 

is estimated by (6.20) 

The estimates in (6.19) and (6.20) now lead to the y - estimate in (6.17). H 

6.3.2 Estimation when the retain frequency is unknown 
In Estimation Procedure 6.1 the retain frequency p is presumed to be known, and it enters in 
the estimators (6.12) and (6.16). The natural modification of the estimation procedure to a 
situation where p is unknown is to exchange p for an estimate of it. 

ESTIMATION PROCEDURE 6.2: y = (y„y2, ...,yN) is a variable on U = (1,2,...,N), from 
which an OSRRQ (n';H ;X;p) sample is drawn. The retain frequency p is unknown, but an 
estimate p of it is available. The y-values for all sampled units are observed. 

The claims in Procedure 6.1 then hold after the modification that p is exchanged for p . An 
important aspects of the modification is that equation (6.8) modifies to ; 

solves the equation (in t) : (6.21) 

7 Derivation of the estimation procedures in Section 4 
We now return to order reps sampling with non -response. The non - response adjusted estima­
tion procedures will be based on the following general inference principle. 

Principle for conditional inference: A population characteristic is to be estimated from 
observations on a random sample. If a specific statistic carries no, or only little, informa­
tion about the characteristic of interest (is ancillary), inference should preferably be made 
conditional on the ancillary statistics. 

7.1 The case with over-all uniform response propensities 
We start with Procedure 4.2, where assumptions are as follows, y = (y1; y2,..., yN) is a variable 
on the population U = (l,2, ...,N). The estimation interest concerns the total x(y). An OS(n;F) 
sample is drawn from U with the aim to observe y for all selected units. However, only n' (<, n) 
units respond. The task is then to estimate t(y) from the y-values for the responding units. 

The statistic n' = "number of responding units" is regarded as ancillary under estimation of x(y). 
Hence, the above conditioning principle says that we shall condition on n', and regard it as 
fixed. The following conditioning result should be evident upon some thought. 

LEMMA 7.1 : An OSjcps(n ; H ; X) sample is selected from U. During data collection, non-
responses occur by Response Mechanism 3.1 with over-all uniform response propensi­
ty (3. Conditional on the number n' of responding units, the D ŝample is probabilistically 
equivalent to an OSRRQ(n';H;^; P) sample from U. 
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The ^sample is completely observed for y. Hence, Lemma 7.1 entails that Procedures 6.1 and 
6.2 can be applied to the ^sample. Since we presume that the response propensity (= retain 
frequency) is unknown, Procedure 6.2 with p = (3 is the relevant result. The first task is to 
exhibit a (3-estimate. We use the following "natural" |3-estimate under Response Mechanism 
3.1 with over-all uniform response propensities; 

(7.1) 

With this |3- estimate and order distributions according to (2.3), equation (6.21) becomes; 

(7.2) 

From (2.2) is readily seen that (7.2) is solved by § = 1. With this "E, we have; 

(7.3) 

Now, insertion as stated in Procedure 6.2 into the formulas in Procedure 6.1 leads, after some 
straightforward algebra which is left to the reader, to the claims in Procedure 4.2. In the inser­
tion step note the following consequences of the formulas in (7.3): (i) (3 • Fj(§) shall be 
exchanged for |3• F;(£) = (n'/n)-X- = by (4.13) =X[ , (ii) f(£j) = ai = X.; • a;, with a, and a; 
according to (4.4) and (4.30). Moreover, insertion into (6.14) and (6.15) yields (4.34). 

7.2 The case with group-wise uniform response propensities 
The case with group - wise uniform response propensities is treated along the same lines as 
above. Lemma 7.1 is modified as follows, and again the result should be clear upon thought. 

LEMMA 7.2: An OSjtps(n ; H ; À.) sample is selected from U. During data collection, non-
responses occur by Response Mechanism 3.1 with group-wise uniform response propen­
sities, with response uniformity groups #I,02,---,#G- Conditional on the numbers (n'i, 
n'2,...,n'G) of responding units from the different groups, the DtgSample is probabilistic­
ally equivalent with an OSRRQ(n'g;H;X;(3(g)) sample from $g, g = l,2,...,G. 

Let: 

(7.4) 

Then we have ; 

(7.5) 

which leads to the following estimation formula ; 

(7.6) 

Lemma 7.2 tells that the estimator (4.14) can be used group - wise in (7.6), which leads to 
(4.25). As regards the variance of the estimator (7.6), we make the following observation. 

Conditional on (n'i,n'2,...,n'G) the ^samples are independent, g=l,2,...,G. (7.7) 

By (7.6) and (7.7) we arrive at; 
r. 

(7.8) 

which in turn leads to the variance estimation formula; 
n 

(7.9) 
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By applying the variance estimator (4.16) in (7.9), the variance estimator (4.27) is obtained. 
Analogously, application of (4.34) in (7.8) yields (4.35). 

8 Justification of Approximation Result 6.1 
The chief task in this section is to justify Approximation Result 6.1. Thereby the main step 
will be derivation of a limit result for the distribution of OSRRQ sample sums, which is for­
mulated in Theorem 8.1. 

8.1 A limit theorem for quota retain order sampling 
THEOREM 8.1: For k = 1,2,..., an OSRRQ(n'k;Fk;pk) sample is drawn from the popu­
lation Uk= (1,2,..., Nk). The density for Fki is denoted fki. zk = (zkl,zk2,..., zkNk) is a 

variable on Uk and Sk(n'k;zk) is the corresponding zk sample sum. Let Çk, [ik, fa and ok 

be in accordance with (7.8)-(7.11). Then, with => denoting convergence in law; 

(8.1) 

provided that conditions (Bl) - (B6) below are satisfied. 

(Bl) 

(B2) 

(B3) 

(B4) For some Ô > 0, some C < oo and some function w(A) which tends to 0 as A - 0, 
the following inequalities hold f o r l - ô s t , s s l + ô; 

(8.2) 

(B5) 

(8.3) 

(B.6) 

Remark 8.1 : The concrete contents of condition (B.6) is that the expected number of retained 
units, pk • Nk, must exceed the desired sample size n'k. n 

Remark 8.2 : Even if the conditions in Theorem 8.1 look quite complicated they are in fact 
satisfied under very general conditions in many, not to say most, types of sampling situations 
of practical interest. Illustrations are given in Rosén (1997a&b). H 

Before proving Theorem 8.1 we discuss how Approximation Result 7.1 follows from it. 

8.2 Justification of Approximation Result 6.1 from Theorem 8.1 
Approximation result 6.1 is obtained from Theorem 8.1 by employing the limit distribution 
already in the finite situation, i.e. by the approximation Law[ (S(n; z) - \i)/o] « N(0,1), or 
equivalently Law[ (S(n;z)] « N ^ a 2 ) . The "algebraic step" from Theorem 8.1 to Approxima­
tion Result 7.1 is straightforward, and left to the reader. The practical follow-up problem is 
then : When is a situation sufficiently "close to infinity" for the approximations to be good 
enough for practical purposes ? This problem was discussed Section 5. 
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8.2 Proof of Theorem 8.1 
Theorem 8.1 is very similar to Theorem 3.1 in Rosén (1997a), henceforth referred to by 
RTh3.1. To the best of our understanding, though, it is not similar enough to be a corollary to 
RTh3.1, it must be given its own proof. This, however, will be very parallel to that of RTh3.1. 
Therefore we leave out a great deal of proof details, and refer the interested reader to the proof 
of RTh3.1 for more details. The chief proof tool for Theorem 8.1 will be Theorem 5.1 in 
Rosén (1997a), for simplicity referred to by RTh5.1 in the sequel. Analogously, formula (x.y) 
in Rosén (1997a) is referred to as (R.x.y). We start with some preparations for application of 
RTh5.1. To begin with we disregard the sequence context, and omit subscripts k. 

Qj, Q2,..., QN and Rl5 R2,..., RN stand for the ranking variables and retain indicators in Defini­
tion 6.1. We introduce the following stochastic processes, where 1A is the indicator of the set 
A, z=(zj, z2..., zN) are given real numbers and £ > 0 is an arbitrary (but fixed) number; 

(8.4) 

(8.5) 

The contents of these processes are as follows. H;(t) "signalizes" (by jumping from 0 to 1) the 
value of the ranking variable Qj. J(t) tells the number retained units with ranking variable val­
ues ^ t, and L(t;z) is the z-sum for these units. 

Let T denote the passage time when J(t) reaches the level n', and let A(n' ; z) denote the corre­
sponding passage z-sum; 

(8.6) 

(8.7) 

The claim in (8.8) below should be evident upon some thought. It provides the crucial link 
between an OSRRQ sample sum and passage variables, which enables application of RTh5.1. 

An OSRRQ sample sum S(n' ; z) has the same distribution as A(n' ; z) in (8.7). (8.8) 

We now turn to the limit considerations, and let index k signify that a quantity relates to situa­
tion k. Let Jk(t), L^^Zk), Tkand Ak(n'k;zk) be in accordance with (8.4)-(8.7), and let S;k, Hk> 
<])k and ok be in accordance with (6.8) - (6.11). As a consequence of (8.8) we have; 

(8.9) 

We employ RTh5.1 to show that (Ak(n'k;zk) - nk)/ok is asymptotically N(0,1) distributed under 
the conditions in Theorem 8.1. Having done that, (8.9) tells that also (Sk(n'k ; zk) - [xk)/o k is 
asymptotically N(0,1) distributed, and Theorem 8.1 is proved. 

For future use we list the following formulas, which are straightforward consequences of the 
fact that Hki(t)-Rki is a 0-1 random variable with expected value F;(t)-pk; 

(8.10) 

The entities Yk, Xk, xk, yk,Vk, Uk, 6k and xk in RTh5.1 are chosen as stated in (8.11) - (8.17), 
and the interval under consideration is [t0, t j = [1- Ô, 1+ ô], where Ô comes from condition 
(B4). Moreover, c denotes centering at expectation. When checking (8.11) - (8.15), recall the 
expectation formula in (8.10). 
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(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(B.6), (8.12) and (6.8) yield that t in (R.5.6), i.e. the solution to yk(t) = xk = 1, takes the value 
tj = 1 for all k. Condition (B.6) is an "extra" condition in comparison with RTh3.1. Its con­
crete meaning is discussed in Remark 8.2. Technically it guarantees that the range of yk(t) 
contains 1, so that yk(t) = 1 in fact has a solution which also is an interior point in [t0, tj]. 

The proof is divided into two parts, stated in (8.18) and (8.19) below. Together they yield that 
(AM,r:z,.)-vuMo,. is asvmototicallv NfO,!) distributed. 

Under conditions (Bl) - (B6): (8.18) 

Under conditions (Bl) and (B2) (8.19) 

We start bv proving the simplest oart. (8.19). 

Proof of (8.19) : Since Qkl,—,QkN
 a r e independent, so are ;8.i5), 

(8.20) 

is a sum of independent random variables with means 0. By (6.11) and the variance formula in 
(8.10) it is readily checked that the variance of Uk(l) is 1. Liapunov's condition in 4:th moment 
version yields the asymptotic normality in (8.19). See the proof of RTh3.1 for details. 

Proof of (8.18) : First we derive expressions for the two terms in (R.5.8). By (8.13), (8.5) and 
(8.7) is readily checked that; 

(8.21) 

(8.22) 

(8.23) 
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The formulas for yk and xk in (8.12) and (8.14), and the assumption that the Fki have densities 
imply that yk(t) and xk(t) are differentiable on [t0 ,tj], with the following derivatives; 

(8.24) 

(8.25) 

From (8.25), t = 1 and (6.10) follows that x'k(Vk) = x^(l) = 0. Hence, the term to the right in 
(R.5.8) simplifies to Uk(l). This together with (8.23) yields that if RThS.l applies in the pres­
ent situation, it leads to (8.18). This in conjunction with (8.19) yields the algebraic part of 
Theorem 8.1. It remains, though, to show that RTh5.1 in fact does apply, to the effect that 
conditions (A.l) - (A.8) in it in fact are satisfied. 

At this junction we confine to saying the following. With conditions (B.1)-(B.5) in RTh3.1 
modified to those in Theorem 8.1, verifications of (A.l)-(A.8) in RTh5.1 are obtained by par­
alleling the verifications in the proof of RTh3.1 making the "obvious" modifications at appro­
priate places. H 
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