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ABSTRACT 
A vehicle for utilization of auxiliary information is to employ a ftps scheme, i.e. to sample 
with inclusion probabilities proportional to given size values. Pareto ftps is a scheme for 
selection of 7rps list samples, having a number of attractive properties, in particular the fol­
lowing. It has predetermined sample size. It works with negligible point estimator bias. As 
regards point estimate accuracy it is, in our best understanding, optimal among schemes 
which admit objective assessment of sampling errors. Simple procedures for variance esti­
mation and non - response adjustment are available. The scheme admits sample coordina­
tion by permanent random numbers. A sampling-estimation strategy with particularly good 
properties is obtained by combining Pareto 7tps and generalized regression estimation. 

Aim with the report 
This report contains a paper presented at the International Conference on Establishment Surveys - II, Buffalo 
June 17-21, 2000, which will appear in the forthcoming conference proceedings. The chief reason for print­
ing it also as a Stat Sweden R&D Report is as follows. As the title indicates, the paper advices on practical 
application of the Pareto Jtps scheme. This scheme is already in use at various Stat Sweden's surveys, and is 
perhaps considered for use in others. It is believed to be of value for existing and potential users at Stat Swe­
den to have a User's Guide easily available as a Stat Sweden R&D Report. It has the same contents and 
layout as the conference proceeding paper, but for some minor changes to the effect that detected printing 
errors have been corrected and some references have been updated. 
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A User's Guide to Pareto πps Sampling 
Bengt Rosén 

Statistics Sweden, Box 24 300, S-104 51 Stockholm, Sweden. bengt.rosen@scb.se 

ABSTRACT 
A vehicle for utilization of auxiliary information is to employ a Tips scheme, i.e. to sample 
with inclusion probabilities proportional to given size values. Pareto Tips is a scheme for 
selection of a list sample with predetermined size. It has a number of attractive properties, 
in particular the following. As regards point estimate accuracy it is, in our best under­
standing, optimal among schemes which admit objective assessment of sampling errors. 
Simple procedures for variance estimation and non - response adjustment are available. 
The scheme admits efficient sample coordination by permanent random numbers. A sam­
pling - estimation strategy with particularly good properties is obtained by combining 
Pareto 7tps and generalized regression estimation. 

Key words: Pareto Jtps, order Ttps, point and variance estimation, non-response adjustment. 

1 Introduction 
The following situation will be considered. Information about a population characteristic is to be gained from 
observations on a probability sample from the population U = (1,2 ,..., N). List sampling is used, from a frame 
that one-to-one corresponds with the units in U, and also contains unit-wise auxiliary information. Until Section 
7 the auxiliary data are assumed to be size values s = (sh s2,... , sN), Sk> 0, which typically are positively corre­
lated with the study variable y = (yu y2,..., yN)- (Example : unit= enterprise, y = sales during Mach 2000, s = num­
ber of employees.) As is well known, estimation precision for a population total (or mean) often benefits from 
use of a Tips scheme, i.e. a scheme with sample inclusion probabilities Tti,Tt2,... ,TtN such that; 

(1.1) 

A well - known Ttps scheme is Poisson sampling, which has simple sample selection and estimation procedures. 
However, it and various other Ttps schemes have the drawback of random sample size. It is generally desirable 
that a sampling scheme has fixed sample size, and we confine to schemes with that property. Then (1.1) leads to 
the following desired inclusion probabilities "k\,7^,... ,%s, where n is sample size and T(S)= SI + S2+... + SN; 

(1.2) 

Formula (1.2) may yield X. : s exceeding 1, which is incompatible with being probabilities. If so, some adjustment 
has to be made, usually by introducing a "take all" stratum. In the sequel is presumed that A.k< 1, t = 1,2,..., N. 

A scheme with inclusion probabilities according to (1.2) has the following Horvitz - Thompson estimator for the 
population total x(y) = yj + y2 +... + yN ; 

(1.3) 

A "perfect" Ttps scheme shall satisfy Ttk= Xk, k = 1,2,..., N. We will be a bit more generous, though, and accept a 
sampling scheme as a nps schemes if (1.4) below is met; 

7tk = îc holds with good approximation for k= 1,2, ...,N. (1.4) 

The literature offers several Ttps schemes, and the statistician must choose. The main desired properties 
of a nps scheme, besides having fixed sample size, are listed below. 

- The scheme has simple sample selection. (1.5) 
- The scheme yields good estimation accuracy. (1.6) 
- The scheme admits objective assessment of sampling errors (consistent variance estimation). (1.7) 

- Variance estimators are available, the simpler the better. 
- Variance estimates never become negative. 

- The scheme admits sample coordination overtime and between surveys. (1.8) 

The Ttps scheme which is most frequently used in practice is systematic nps. This is in fact is a whole family of 
schemes generated by different frame ordering rules, whereby random frame order (rfo) and frame ordered by 
size (sfo) are chief possibilities. Sunter nps, Sunter (1977), is highlighted in Särndahl et al. (1992). 
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This paper focuses on Pareto 7ps, a member in the family of order iq>s schemes specified in Section 2.2. The 
aim is to (hopefully) demonstrate that Pareto Tcps meets the desires formulated above particularly well and, 
accordingly, to recommend it for practical use. Rigorous justifications of subsequent claims require quite sophis­
ticated theory, though, which is not presented in this paper. We confine to just giving references. 

2. Order πps schemes, notably Pareto πps 
2.1. Pareto πps 

DEFINITION 2.1 : Pareto πps with size values s=(s b s2,..., sN) and sample size n generates a sample 
as follows. 

1. Desired inclusion probabilities X = (ku X2, —, ht) are computed by (1.2). 
2. Independent random variables Rh R2,..., RN with uniform distributions on the interval [0,1] 

are realized, and ranking variables Q are computed as follows ; 

(2.1) 

3. The sample consists of the units with the n smallest Q - values. 

The somewhat fancy name Pareto is explained in next section. When all sic (or equivalently all Xk) agree, Pareto 
7ips is nothing but simple random sampling (SRS). 

All order Trps schemes and, hence, also Pareto nps are based on asymptotic considerations. They are approximate 
jcps schemes in the (1.4) sense, having perfect 7cps properties only for "infinite" samples. In particular, desired 
and factual inclusion probabilities do not agree exactly for finite samples. However, as discussed in Section 5, 
these imperfections have negligible effects in most practical survey situations, even for quite small sample sizes. 

Pareto ftps certainly meets desire (1.5), as is illustrated by the SAS - program below. It selects a Pareto 7tps sam­
ple with sample size SAMPZ from the records in the SAS data set FRAME, equipped with desired inclusion 
probabilities in the variable LAMB. 

Data RANKING; Set FRAME; R=ranuni(SEED); 
Q = R ( 1 - LAMB) / (LAMB( 1 - R)) ; Proc SORT ; By Q ; Run ; 
Data SAMPLE; Set RANKING; If _N_<=SAMPZ then output; Run; 

2.2 Order πps 
As stated, Pareto ftps is a particular member in the family of order 7rps schemes introduced in Rosén (1997b), 
which is defined below. H(-) denotes the distribution function of a probability distribution with density. 

DEFINITION 2.2 : Order vps with size values s = (sj, s2,..., SN) , sample size n and shape distribution 
H() generates a sample by the same type of steps as in Definition 2.1, with the following modification 
of step 2. The ranking variables Q are computed by (2.2) below, where H"1 denotes inverse function; 

(2.2) 

It is by no means obvious that Definition 2.2 leads to Trps schemes even in the (1.4) sense. However, Rosén 
(2000) proves that this is the case under general conditions on the shape distribution H. 

Pareto itps is the particular order ftps scheme given by the shape distribution; 

(2.3) 

Definition 2.2 introduces a whole family of sampling schemes, different H yield different schemes (although not 
in an entirely one - to - one fashion). To distinguish order Tips schemes they are named by their shape distribution. 
The distribution in (2.3) seems to have no well-established name, though. After literature consultation we follow 
Feller (1966) and call it a Pareto distribution. Hence, the name Pareto nps. 

Hitherto studies of order 7tps schemes have paid special attention to, besides Pareto Trps , uniform order itps 
given by the uniform shape distribution H(t) = min(t, 1), 0 < t< °°, and exponential order nps given by the expo­
nential shape distribution H(t) = l - e " t , 0 < t < o ° . The former scheme was first studied by Ohlsson ( 1990, 1998). 
He calls it sequential Poisson sampling. Ohlsson's work provided background for the generalized notion "order 
7tps". As regards Pareto Jtps, the author and Saavedra (1995) independently came across that scheme. Saavedra 
calls it odds ratio sequential Poisson sampling. Exponential order sampling is considered in the literature under 
the name successive sampling, see e.g. Rosén (1997a). 
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3 Estimation from observations on Pareto πps samples 
Procedures for point and variance estimation are, of course, crucial in practical application of a sampling scheme. 
The following discussion is confined to the key estimation problem, estimation of the characteristic "population 
total", denoted t(y) =yi + y2 + —+ VN- As is well known, if this problem can be handled the estimation problem is 
solved for the vast majority of practically interesting characteristics, including ratios and domain characteristics. 
We first consider the ideal situation when all sampled units respond. 

3.1 Estimation under full response 
3.1.1 Point estimation 
Since a Jtps scheme is presumed to satisfy (1.4) it is natural to use the estimator (1.3), which is re-stated in (3.1) 
below. However, under (1.4) it is not a "perfect", unbiased HT - estimator, rather a "quasi" HT - estimator, 
afflicted with some bias. The bias issue for Pareto Jtps is discussed in Section 5, with the conclusion that the bias 
is negligible almost always in practice. 

(3.1) 

3.1.2 Estimator variance 
At least in survey planning it is of interest to have an expression for the theoretical estimator variance. The fol­
lowing approximate variance formula, derived in Rosén (1997a,b), is asymptotically correct; 

(3.2) 

3.1.3 Assessment of sampling error 
Formula (3.2) is theoretical and involves y-values for all population units. In practice an estimator V[t(y)] of 

V[t(y)] must be exhibited, which together with approximate normal distribution for the estimator justifies the 

following type of (approximate) level 100 • (I - a) % confidence interval for x(y), 5 a / 2 denoting the standard 
normal 1 -a/2 fractile; 

(3.3) 

Consistent estimation of V[t(y)] is provided by, see Rosén (1997b) ; 

(3.4) 

Formula (3.4) may look cumbersome at first glance. However, it is quite innocent from a computation point of 
view, as is seen from the formulas below. Note that only "single-summations" are involved. 

(3.5) 

(3.6) 

Formulas (3.4) - (3.6) show that Pareto ftps meets both desires in (1.7), simple and non - negative variance esti­
mation. Moreover, in Rosén (1997b) is proved that t(y) is asymptotically normally distributed under Pareto 7tps. 

3.2 Estimation when non-response occurs 
Practical surveys are seldom ideal, in particular non-response almost always occurs. Then formulas (3.1) and 
(3.4) cannot be used straight away, some adjustment for non-response has to be made. The following results are 
taken from Rosén &Lundqvist (1998), where adjustment procedures for uniform, exponential and Pareto Jtps are 
presented, with theoretical as well as numerical justifications. 

Non - response adjustment must be based on some model (= assumption) about response behavior. The simplest, 
and most commonly used, is the simple MAR (Missing At Random) model stated below. 

Simple MAR model: Sampled units respond independently, all with the same response propensity. (3.7) 

Under (3.7) adjustment is achieved by a recipe which somewhat sweepingly can be formulated as follows. 

Use (3.1) and (3.4) with "number of sampled units" exchanged for "number of responding units". (3.8) 

More precisely, under (3.7) point estimation is carried out as follows. With 
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n' = number of responding units, (3.9) 

modified inclusion probabilities : (3.10) 

^sample = the collection of responding units, (3-11) 

the following counterpart to the estimator in (3.1) works with negligible bias ; 

(3.12) 

Moreover, the confidence interval (3.3) works with the variance estimator; 

(3.13) 

Formulas (3.5) and (3.6) have the following counterparts ; 

with A', B' and C as in (3.5)-(3.6) with X changed to X'. (3.14) 

A more elaborate response model runs as follows. 

MAR model with several response homogeneity groups : With the population partitioned into (known) 
disjoint groups fr, fc, ..., fe, the following holds. Sampled units respond independently, and units in 
the same group have the same response propensity, which may vary between groups. (3-15) 

Under response model (3.15), adjustment for non - response is achieved by the following post - stratification pro­
cedure. For g = 1,2,..., G, lig denotes the number of sampled units from ^g, n'g the number of responding units 
and StgSample the set of responding units. Set 9îsample = 9tisampleu9?2sampleu... u9îGsample. Modify the A,:s 
according to (3.16) below, where g(k) is the index for the group to which unit k belongs. The somewhat intriguing 
operation min( - , 1) is introduced for the following reason. Without it, it can happen, although only in excep­
tional cases, that one or more X\ becomes greater than 1. 

(3.16) 

After these X-modifications, (3.12) works and also the confidence interval (3.3) with the variance estimator; 

(3.17) 

Numerical computation of variance estimates by (3.17) is simplified by expansion of the squares, which leads to 
formulas analogous to (3.5) and (3.6). Moreover, formulas (3.13) and (3.17) show that both desires in (1.7) are 
met also under non-response adjustment. 

4 Estimation accuracy 
The accuracy of an estimator depends on its variance and possible bias. As already mentioned, t(y) in (3.1) is 

afflicted with some bias which, however, is negligible in almost all practical contexts. Therefore, we confine the 
discussion of estimation accuracy to estimator variance. In the sequel notions as "optimal", "better", etc. relate to 
V[t(y)]. The following result from Rosén (1997b) explains why Pareto 7rps is of special interest. 

Pareto 7rps is asymptotically (as n —» °°) optimal among order 7tps schemes with the same size values 
and sample size, uniformly over study variables y. Moreover, optimality holds not only for estimation 
of totals, it holds for all "usual" types of characteristics, including ratios and domain characteristics. (4.1) 

The result (4.1) tells that Pareto 7ips at least asymptotically performs better than other order nps schemes. How­
ever, there are other "competing" schemes, notably those mentioned at the end of Section 1, as well as small 
sample situations. To compare schemes we use the measure relative (to Pareto 7Tps) variance increase (RVI) ; 

(4.2) 

Factors that affect RVI significantly are : (i) The sampling fraction n/N. (ii) The relation between the size and 
study variables s and y. As regards this relation, ideal for 7rps is when s and y are exactly proportional, then x(y) 
is in fact estimated without error. In that case the (s, y) - values lie along a straight line through the origin. In 
practice this never occurs, though, the (s, y) -values scatter more or less around a trend, which is assumed to be 
increasing. Chief possibilities for trend type are proportional trend (= linear through the origin), convex and con-
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cave trend (when y grows relatively faster respectively slower than s). If the trend is flat or decreasing, itps sam­
pling is non- favorable compared with SRS. 

Table 4.1 presents examples of RVI - values for different schemes in certain sampling situations (N, s and y). As 
seen, the compared schemes are uniform and exponential order Ttps, Sunter Ttps, systematic Ttps(rfo) and Ttps(sfo) 
and SRS. Pareto Tips is covered implicitly with all RVI =0. SRS is included as a benchmark. The figures in the 
table, which come from Rosén (1997b), are based on Monte Carlo simulations. The considered sampling situa­
tions were generated with (s, y) - relation according to model (4.3) below, where a determines the trend shape 
(proportional for a = 1, convex for a > 1, concave for a < 1) and a the magnitude of scatter. 

(4.3) 

The main conclusions from the full collection of numerical findings in Rosén (1997b) are stated in (4.4)- (4.6). 

Under proportional (s, y) - trend the order Ttps schemes perform very similarly, with a slight edge for 
Pareto Tips. Under non-proportional trend Pareto irps performs better than the other, the edge is small, 
though, for small sampling fractions but may be considerable for high ones. (4.4) 

This result tells : (i) The optimality result (4.1) holds not only asymptotically, in essence it holds for quite small 
samples, (ii) Among order jrps schemes, Pareto Ttps provides an "insurance without premium", it never performs 
worse than other order Tips schemes and in some situations considerably better. 

Next comparison is made with schemes outside order Tips, which admit objective assessment of sampling error 
(as all order Tips schemes do), with Sunter Ttps and systematic Ttps(rfo). The chief finding is as follows. 

(4.4) holds with "order Ttps" exchanged for "Ttps scheme which admits consistent variance estimation". (4.5) 

The findings from comparison with systematic Jtps(sfo) (i.e. systematic Ttps with frame ordered by the s - values) 
are more complex. The strong side of this scheme is that it sets two variance reducing forces in action, Ttps and 
"implicit stratification". Its well - known weakness is that it does not admit assessment of sampling errors. The 
following rather confusing comparison picture arose. 

Systematic Tcps(sfo) often yields dramatically better estimation accuracy than Pareto Ttps, notably in 
situations with non- proportional (s, y) - trend,. In situations with fairly proportional (s, y) - trend the 
ranking between systematic Ttps(sfo) and Pareto Ttps seems to be erratic, they take turn to be best. (4.6) 

To the best of our understanding it is hard to tell in advance which of Pareto itps and systematic Tcps(sfo) that is 
advantageous in a particular sampling situation. 
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5 Approximation accuracy, notably estimator bias 
5.1 Some basic notions 
As mentioned several times, since Pareto Tips is based on asymptotic considerations desired and factual inclusion 
probabilities do not agree exactly, which in turn afflicts t(y) in (3.1) with some bias. When discussing these 
issues we use the performance measures in (5.1) and (5.2) below. First a comment on notation. Inclusion prob­
abilities depend on population size N, size values s = (si, s2, ... , sN) and sample size n. In the sequel these 
parameters often are exhibited in notations like Ttk(n ; N ; s) and X^n ; N ; s). 

Maximal absolute relative error for inclusion probabilities : 

(5.1) 

Absolute relative estimator bias : (5.2) 

The above concepts are related as follows, which is demonstrated e. g. in Rosén (2000 a) ; 

(5.3) 

If the study variable is non-negative, i.e. if y^SO, ÄT = 1,2, ...,N, which is the case in most practical surveys, the 
last factor in (5.3) equals 1, and (5.3) takes the simple form; 

(5.4) 

The AREB bounds in (5.3) and (5.4) are often fairly conservative, as discussed in Rosén (2000a). 

P(n ; N ; s) is defined in terms of approximation accuracy for inclusion probabilities, a rather theoretical topic. 
However, by (5.3) and (5.4) P also provides information about estimator bias, which makes it interesting also 
from survey practical point of view. Before entering bias questions we present some results about the asymptotic 
behavior of inclusion probabilities. 

5.2 Asymptotic behavior of inclusion probabilities 
Rosén (2000 a) proves that (5.5) below holds under general conditions for Pareto, uniform and exponential Ttps ; 

(5.5) 

Results of type (5.5) are used to study the asymptotics of inclusion probabilities, in the usual frame - work for 
finite population asymptotics : A sequence of populations with sizes tending to infinity. In particular, the result 
(5.6) below is proved for the schemes mentioned above. It tells that desired and factual inclusion probabilities 
agree asymptotically. It is conjectured that (5.6) holds generally for any order jrps scheme. 

(5-6) 

5.3 On estimator bias 
5.3.1 Factors that affect the bias magnitude 
When considering use of Pareto nps in practice, a crucial question for the statistician is ; 

Will the Pareto reps point estimator bias be negligible in my particular survey situation ? (5.7) 

In search for answers to (5.7), available theoretical bounds of type (5.5), regrettably only add to the general ex­
perience that theoretical error bounds seldom are sharp enough to yield practically valuable information on the 
small sample performance of a large sample procedure. The bound O(logiWn) in (5.5) is too crude for that pur­
pose. In our understanding, practically useful information can only be gained by numerical investigations, exact 
computations or/and Monte Carlo simulations. The results presented in the sequel come from Aires & Rosén 
(2000), which reports on an extensive numerical study of exactly computed Pareto ftps inclusion probabilities. 

Answers to (5.7) are with necessity a bit involved, since the bias depends on several factors. The study variable 
is of course one of them. On this point we confine to the case with non - negative study variables, which is the 
most common in practice. By (5.4), P can then be interpreted as an AREB bound. Other factors that affect 
whether the bias is negligible or not are : (i) The tolerance limit for "negligible", (ii) The variation of the size val­
ues, (iii) The population size, (iv) The sample size. These factors are discussed below. 

Tolerance limit for negligibility 
There is of course no unanimous answer to how large a "negligible" bias may be. This depends on the intended 
use of the statistic and on the magnitude of sampling errors and other survey errors. We believe that most survey 
statisticians regard 1%, and even 2%, as a negligible relative bias. 
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Dependence on size values 
When all size values are equal, Pareto ftps is SRS with 7tk = Xk - n/N. Hence, for bias to be at hand the size val­
ues must show variation. In the following, the size values s are presumed to be normed so that average size is 1, 
i.e. so that (5.8) below is met. A normed s is referred to as a size pattern. 

(5.8) 

The maximal and minimal normed s-values are denoted s ^ and s,^. The size pattern range is specified by the 
interval [s,™, s ^ ] . Another aspect on s - value variation is the size pattern shape, which concerns how size val­
ues spread over [s^,,, smax]. Following Aires & Rosén (2000), where precise definitions are given, three "extre­
mal" shape types are considered, (i) The s-values are fairly evenly spread over [Smn.Smax]- (ii) The majority of s -
values lie in the middle of [ s ^ , s ^ J . (ii) The majority of s - values lie at the boundaries of [s^,,, SnJ . 

Figures 5.1 illustrates how P( • ; N ; s) - sequences may differ for different pattern shapes with the same N, s^,, and 
Smax- In particular it illustrates the following general circumstance. When the sample size is not "very small", the 
boundary shape is most adverse to good agreement between desired and factual inclusion probabilities. 

Figure 5.1 Ps i - sequences for N = 100,Smin=0.1, Smax=5 

The statements in (5.9) and (5.10) below are based on our experience of size value patterns met in practice. 

We believe that s ^ seldom is larger than 5 and that s^n seldom is smaller than 0.1. (5.9) 

The boundary shape is very unusual in practice. Most practical size pattern shapes resemble the 
even spread shape, in the sequel referred to as "lying in the vicinity of even spread". (5.10) 

Some background for (5.9) and (5.10) is as follows, (i) The surveyor disposes of the size values, preliminary val­
ues may be modified. If the frame comprises units with very small preliminary size values, such units are often 
either definition-wise excluded from the survey population or given larger s-values in the sample selection. 

(ii) If size values vary very much over the entire population, there are often subject matter grounds for stratifica­
tion by size before sampling, followed by drawing independent samples from the strata. (An example is an enter­
prise survey with "number of employees" as size. It is usually natural to divide into strata of type "very big", 
"big" and "small" enterprises. Mostly the "very big" stratum is totally inspected.) The strata then take population 
roles, and Sn̂ x and Smin in the strata are usually considerably smaller / larger than in the entire population. 

Table 5.1 below introduces, for later use, a broad categorization of size value patterns. 

Dependence on population size 
The numerical findings show that for given size value pattern s and sample size n, ¥(n ; N ; s) decreases as the 
population size N increases, i.e. desired and factual inclusion probabilities come closer to each other. 

7 



Dependence on sample size 
The assumption Xk< 1 constrains sample sizes as stated in (5.11), where [•] denotes integral part, and - "less than". 
The quantity nm is called the maximal sample size, and an n which satisfies (5.11) is said to be admissible. 

(5.11) 

Since Pareto 7tps is based on asymptotic considerations, one expects in the first round that conditions for small F 
(hence, for small bias) would be of the type "provided that n is at least...". However, as illustrated in Figure 5.1, 
conditions for small F, which encompass all types of size pattern shapes, inclusive the unpleasant boundary 
shape type, rather are of the form "provided that n is at most ..." (For pattern shapes in the vicinity of even 
spread, though, F typically decreases as n increases .) This aspect is handled technically as follows. An a is 
specified, 0 < a < 1, and is used to determine an a - maximal sample size nm> a as follows ; 

(5.12) 

Conditions to the effect "sample size is at most..." are formulated by stating that n must not exceed n^ a . 

5.3.2 Conditions which imply negligible estimator bias 
The numerical findings in Aires & Rosén (2000) are condensed in Table 5.2 below. More detailed information is 
provided in the full report. Population sizes smaller than 25 were not considered in that study. 

Earlier remarks imply that the sufficient sample sizes no in Table 5.2 in most practical situations are conservative 
and, hence, "overly safe". In particular, one should not conclude that the bias necessarily is larger than "guaran­
teed" for sample sizes that are smaller then stated no - values. However, even with the above conservative bounds 
the conclusion is that the bias in almost all practical situations is negligible for all admissible sample sizes. 

6 On sample coordination and adjustment for overcoverage 
Ohlsson (1990, 1995, 1998) emphasizes that uniform order Tips has the attractive properties which are discussed 
below. These properties are shared by all order ;tps schemes, hence also by Pareto 7tps. 

For an order Jtps scheme positive coordination of samples (to achieve great sample overlap) drawn at different 
occasions in time from the "same" (but updated) frame is obtained by associating permanent random numbers 
to the frame units, to be used at successive draw occasions, i.e. by letting the Rk in Definitions 2.1 and 2.2 be 
permanent. Similar technique can be used for positive or negative coordination of simultaneously drawn samples 
to different surveys. Negative coordination is achieved for example if Rk in one sample selection is exchanged 
for 1 - Rfc in another selection. 
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When the frame contains overcoverage (out - of- scope units), a sample of predetermined size from the (unob-
servable) list of in - scope units can be selected as follows. Order the frame units by the Q : s in Definition 2.2, 
and start observing them in that order. Exclude successively encountered out-of-scope units until a sample of in-
scope units of prescribed size is obtained. This procedure yields an order ftps sample from the in - scope units. 
One looses full control of the inclusion probabilities, though, since the size sum over the in - scope list is un­
known. However, if the task is to estimate a ratio T(V)/T(X) , as is the case in e.g. price index surveys, this does 
not matter since the unknown size sums in the estimates of nominator and denominator cancel. In the general case 
the unknown size sum is readily estimated. 

7 Pareto πps as component in optimal sampling-estimation strategies 
So far available auxiliary information has consisted of size values s = (sj, s2 , . . . , sN). Here we turn to a more 
elaborate situation, with auxiliary information in conjunction with a superpopulation model. The general version 
of the simple model below provides background for generalized regression estimation, as described in Chapter 6 
in Särndal et al. (1992). The study variable y relates to auxiliary data Xi, x2, . . . , xN (here one - dimensional) 
according to the following superpopulation model ; 

(7.1) 

where £j, £2, . . . , £N satisfy the following conditions, with £, 1/ and S for superpopulation expectation, variance 

and covariance : B [ej = 0, 1/[Zy\ = a\ and <? [sk, ej = O, k= I, k, l- 1,2, ...,N. The parameters a i ,a2 , . . . ,aN 

are part of the auxiliary information, and are regarded as known modulo a proportionality factor. 

Some notation. Subscript HT signifies Horvitz-Thompson estimators. Algebraic operations on variables shall be 
interpreted as component -wise. For y = (yi,y2,... ,yN) and x = (x,,x2,... ,xN), y x =(y, -x,. y2-x2 yNxN.), 
y/x - (yi/x,, y2/x2 yN/xN), x2 = (x2,x2,...,x^). 

Next we state a result due to Cassel et al (1976). An admissible (sampling-estimation) strategy is a pair [P, ̂ (y) ] 

of a sample design P and a linear, design unbiased estimator î(y). They showed that optimal strategies relative 

to minimization of the anticipated estimator variance 5(V[ t(y) ] ) are characterized by the following properties ; 

P is a 7tps scheme with size values proportional t( (7.2) 

The estimator t(y) is of the form (7-3) 

Since the Cassel et al. paper much effort has been devoted to the estimator part of the optimal strategy, leading 
to the generalized regression estimator (GREG) ; 

(7.4) 

However, only little attention has been paid to the design part, the 7tps scheme. A possible reason may be short­
age of 7tps schemes with good properties. Since Pareto reps provides a nice 7tps scheme, at least in the author's 
opinion, it is of interest to revisit the optimal strategy problem by studying the performance of the strategy 
[Pareto jrps(a), t(y)GREG ]. The Cassel et al. result gives background for the conjecture that this strategy is close to 
"universally optimal" under the above superpopulation model. 

Since Pareto Tips does not admit exact HT - estimation, the GREG estimator in (7.4) has to be modified a bit. In 
the sequel 7tps(s) indicates estimation in accordance with (3.1). The modified GREG estimator is; 

(7.5) 

Theoretical and numerical results on comparison between [Pareto xcps(a), t(y)G^G
) ] and various "competing" 

strategies are presented in Rosén (2000 b). To make a long story short, the findings support the conjecture that 
the strategy in fact is close to being universally optimal when the superpopulation model is correct. 

8 Summarizing conclusions 
In Section 4 is argued that Pareto rcps should be preferred among rcps schemes which admit objective assessment 
of sampling error. The choice of 7tps design then stands between Pareto ftps and systematic 7tps(sfo) (= with 
frame ordered by size). The latter scheme has the following pros and cons. Often it yields more accurate point 
estimates than Pareto 7cps, but the opposite may also occur, and it is hard to tell in advance which will be the case 
in a specific survey situation. On the (very) negative side stands that systematic 7tps(sfo) deprives assessment of 
sampling error as well as sample coordination by (permanent) random numbers. We believe that under these 
premises Pareto Ttps is seen as the best alternative in most practical survey contexts. 
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