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On Sampling with Probability Proportional to Size 

Bengt Rosén 

Abstract. One of the techniques to exploit auxiliary information is to use a sampling scheme 
with inclusion probabilities proportional to given size measures, a Trps scheme. The paper 
addresses the following Trps problem: Exhibit a Trps scheme with prescribed sample size, 
which leads to good estimation precision and has good variance estimation properties. 

Rosén (1995) presented a new class of sampling schemes, called order sampling schemes, 
which are shown to provide interesting contributions to the Tips problem. A notion "order 
sampling with fixed distribution shape" (OSFS) is introduced, and employed to construct a 
general class of Trps schemes, OSFSjrps schemes. A particular scheme, Pareto Trps, is proved to 
be optimal among OSFS Trps schemes, in the sense that it minimizes estimator variances. 

Comparisons are made of three OSFSTrps schemes and three other Trps schemes; Sunter Tips 
and systematic Trps with frame ordered at random respectively by the sizes. The conclusions 
are as follows. Pareto reps is superior among Trps schemes which admit objective assessment of 
sampling errors. Without this requirement, systematic Ttps with frame ordered by the sizes 
sometimes, but not always, leads to better estimator precision. 
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On Sampling with Probability Proportional to Size. 
1 Introduction 
An efficient sample survey should utilize available auxiliary information, and a number of 
techniques for that purpose exist. One is to use sampling schemes with inclusion probabilities 
proportional to given sizes, mps schemes. The paper addresses the problem of exhibiting a rcps 
scheme with prescribed sample size, which leads to good estimation precision and has good 
variance estimation properties. A novel Ttps scheme with favorable qualities is presented. 

1.1 Notation and Basic Assumptions 
U = (1, 2,..., N) denotes a finite population. A variable on it, z = (z,, z2.., zN), associates a 
numerical value to each unit in U. A sampling frame, in the guise of a list with records that 
one - to - one correspond with the units in the population, is available, and we let U refer to 
frame as well as population. We confine to without replacement (wor) probability sampling. 
Then the outcome of a sampling scheme is specified by the sample inclusion indicators Ij, I2, 

...,IN (Ij = 1 if unit i is sampled and = 0 otherwise). P, E, V and V denote probability, expecta­
tion, variance and variance estimator. First and second order inclusion probabilities are 
denoted by rç =P(I; = 1) and 7^= P(Ii =Ij = 1), i,j = 1,2,..., N. The condition n^O, i = 1,2,..., N, 
is presumed to be in force throughout. Moreover, we confine to sampling schemes with fixed 
sample size, denoted n. Then; 

(1.1) 

A linear statistic is of the form stated in (1.2), where the weights w = (w,, w2,..., wN) are pre­
sumed to be known for all units in U while the study variable values y = (yv y2,..., yN) are 
known only for observed units. Unless stated otherwise, it is presumed that non-response does 
not occur (i.e. that sampled and observed units agree). 

(1.2) 

the corresponding Sen - Yates - Grundy variance estimator is; 

(1.3) 

The central finite population inference task is estimation of a population total x(y) = I.,yi. The 
Horvitz- Thompson (HT) estimator for x(y), denoted ^ (y )^ , is (1.2) with weights wi = 1/TCJ . 
It yields unbiased estimation of x(y), and (1.3) specializes to a formula for ^[tCy)^ ]. 

Remark on notation: The printer which was used for this paper did unfortunately not allow for con­
sequent use of bold face letters for variables. Latin letter variables are in bold face, while Greek letter 
variables are underlined. 

1.2 The πps Problem 
Let X = (Xl5 X2, ..., ^N) be a set of desired inclusion probabilities for a size n wor sample, 
referred to as target inclusion probabilities. By (1.1), the condition below must be met; 

(1.4) 

The Tips problem concerns, in its first round, exhibition of a size n wor sampling scheme with 
inclusion probabilities equal to, or at least close to, the target ones, i.e. such that; 

(1.5) 
The problem is usually formulated slightly differently, which complies better with the abbre­
viation îrps = inclusion probabilities 7t proportional to sizes. A size variable s = (s1? s2,..., sN), 
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Si > O, i = 1,2,..., N, is specified, and the task is to exhibit a sampling scheme with the rç pro­
portional to the Si. This is equivalent to the above Tips problem with X\ = n- Sj/Sj Sj, i= 1,2,..., 
N. Note, though, that some size variables s lead to "impossible" problems, since one or more 
of the A,:s exceed 1. When met in practice, this obstacle is usually circumvented by introducing 
a "take all" stratum of units with large sizes. 

The first round of the Ttps problem has many solutions. Therefore, in a second round the prob­
lem also concerns exhibition of a good, preferably even a best, scheme. To that end additional 
requirements have to be introduced, usually the following ones. 

(i) The sample selection should be simple to implement, 
(ii) The scheme should lead to good estimation precision, 
(iii) The scheme should have good variance estimation properties. (1.6) 

Requirement (i) needs no comment, (ii) only that estimation precision is, unless stated 
otherwise, understood to relate to the HT - estimator. Requirement (iii) is more intricate. The 
number one desire under (iii) is that the scheme should satisfy (1.7) below, i.e. be measurable 
in the terminology of Sämdal et al. (1992). This condition is sufficient and essentially neces­
sary for existence of a consistent variance estimator (for the HT - estimator), or in other words 
for admitting objective assessment of sampling errors. 

(1.7) 

For measurable sampling schemes, additional desires under (iii) are; 
A variance estimation procedure should be exhibited, the simpler the better. (1.8) 
Variance estimates should preferably never become negative. (1.9) 

One way to meet (1.8) is to exhibit a formula/algorithm för computation of Tt-, i, j=l,2, ...,N. 
Then (1.3) (or some of its "relatives") can be employed. If also Ttj • n} - n^ > 0, i, j =1,2,..., N, 
(1.9) will be satisfied for the variance estimator (1.3). 

The most frequently employed Ttps scheme in practice, systematic Tips, does in general not 
satisfy (1.7). In fact, systematic Ttps is not one but a whole family of sampling schemes. In 
principle there is one scheme for each ordering of the sampling frame. Even if the HT-estima­
tor does not depend on the frame order, its precision does. It is beneficial for estimation preci­
sion if the study variable values exhibit a "smooth trend" in frame order, and the more linear 
the trend is the better. Then two variance reducing forces are set to work; (a) Variation of 
inclusion probabilities (by Tips), (b) An implicit homogeneity stratification of the population 
(by the frame ordering). With access to a size variable that is fairly proportional to the study 
variable, frame order by sizes leads to a fairly smooth trend. Other ordering principles are also 
used. In many survey contexts it is natural to use geographical order in the sampling frame, 
which leads to a desired geographical spread of the sample. Generally we speak of a sampling 
frame with fixed order, one possibility being "ordered by size". As indicated, fixed frame 
order is often beneficial for estimation precision, but it violates (1.7). Good point estimator 
precision is "bought" to the price that "control" over variance estimation is lost. 

One way to cope with the dilemma, which is used quite widely in practice, is to order the 
frame at random. The sampling scheme comprises then first a totally random ordering of the 
frame and secondly selection of a systematic Ttps. This scheme, called systematic nps with 
random frame order, is measurable. It is a bit unclear, though, how well it complies with (1.8) 
and (1.9). Approximate variance estimators exist, however, notably the Hartley-Rao estimator, 
which yields non-negative estimates. (See e.g. Section 7 in Wolter (1985).) 

Sunter (1977) introduced a Tips scheme, henceforth called Sunter vps, with control of variance 
estimation. In particular, an algorithm for computation of Tt̂  was presented, and it was shown 
that TCj • Ttj - Ttjj > 0 holds. It should be noted, though, that Sunter's scheme yields only approxi-
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mate Ttps, in the sense that some of the original size measures have to be modified before the 
scheme can be set in operation, and Tips refers to the modified sizes. A consequence of the 
modification is that a portion of the list is sampled by simple random sampling, and this por­
tion is larger, the higher the sampling fraction is. Section 3.6.2 in Särndal et al. (1992) gives an 

account of the Tips problem. In particular they present Sunter's scheme on pp. 93-96, to which 
the reader is referred. 

1.3 Outline of the Paper 
Our chief objective is to show that the order sampling schemes, which are introduced and 
studied in Rosén (1995), can provide interesting contributions to the Tips problem. To make 
the paper self-contained, basic concepts and results for order sampling are briefly reviewed in 
Section 2, where also some extensions are made. In particular the notion of order sampling 
with fixed distribution shape, abbreviated OSFS, is introduced. In Section 3 this class of 
sampling schemes is employed to construct a class of (approximate) Ttps schemes, called 
OSFS Tips schemes. Moreover, it is shown that a particular OSFSTtps scheme, called Pareto itps, 
is (asymptotically) optimal among the OSFSTtps schemes, to the effect that it minimizes esti­
mator variances. Section 4 contains a deepened study of Pareto Tips. 

The last Section 5 presents evaluations and comparisons of Ttps schemes, which comprise three 
OSFSTtps schemes; Poisson irps, exponential nps and Pareto Tips, and three Ttps schemes out­
side OSFSTtps; Sunter Tips and systematic Ttps, with frame ordered at random respectively by 
sizes. The main reason for including systematic Ttps is that it is widely used in practice. As 
regards Sunter Ttps, we read Särndal et al. (1992) so that they indicate Sunter Ttps to be a can­
didate for "best so far" among Ttps scheme with variance estimation control. 

The conclusions from the evaluation are as follows. Pareto Ttps is superior among the consid­
ered Tips schemes, relative to all three requests (i)-(iii) in (1.6). However, if (iii) is disregarded 
and one is prepared to loose control over variance estimation, systematic reps with frame 
ordered by sizes leads often, but not always, to better point estimator precision than Pareto 
Ttps. It is a matter of judgment/beliefs for the sampler to chose between the two schemes. 

2 On Order Sampling 

As a preparation for the subsequent approach to the Ttps problem we review, and also extend, 
some concepts and results on order sampling, presented in Rosén (1995). 

2.1 Review of Basic Concepts and Results on Order Sampling 

DEFINITION 2.1: To each unit i in U - (1,2, ...,N) a probability distribution Fi on [0,°o), 

with density fi, is associated. Order sampling from U with sample size n, n < N, and 
order distributions F = (Fj, F2,..., FN), denoted OS(n; F), is carried out as follows. Inde­
pendent random variables Qv Q2,..., QN, called ranking variables with distributions Fv 

F2,..., FN are realized. The units with the n smallest Q - values constitute the sample. 

It is obvious that OS is wor. Moreover, since the F;:s are assumed to be continuous, the real­
ized Q-values contain (with probability 1) no ties. Hence, OS(n; F) has fixed sample size n. 

The following Proposition 2.1, which in essence is a restatement of Approximation Result 3.2 
in Rosén (1995), contains key estimation results for general order sampling schemes. The core 
results in Rosén (1995) are stringent limit theorems. However, from a sampling practical point 
of view limit results are not so interesting, since practical situations are always "finite". The 
main merit of limit theorems is that they lay ground for approximations which can be em­
ployed in practical, finite situations, and the approximation aspect is emphasized in the follow­
ing. A reader with particular interest in precise limit theorem versions of the results to be for­
mulated is referred to Rosén (1995) for additional information. We use the (admittedly 

3 



sweeping) expression that a result holds "with good approximation under general conditions" 
to indicate that there is a corresponding limit theorem, which states that the claim is asymp­
totically true (under appropriate, but general, conditions). 

We prepare the formulation of Proposition 2.1 by introducing a quantity | and the order 
sampling estimator x(y)os of x(y), as stated below; 

(2.1) 

(2.2) 

Remark 2.1: A sufficient condition for a solution Ç to (2.1) to be unique, is that £(£,)>() for at 
least one i, i=l,2,...,N. SeeRemark3.1 in Rosén (1995). # 

Remark 2.2: As discussed in Section 3 in Rosén (1995) there are good grounds to believe that 
the following approximation formula for OS(n; F) inclusion probabilities JU; 

(2.3) 

holds with good approximation under general conditions. This is, however, only a conjecture, 
(2.3) has not been given a stringent justification in terms of a limit theorem. 

With (2.3) as background, the estimator (2.2) can be viewed as a "quasi - HT - estimator", with 
approximate inclusion probabilities instead of the exact ones. # 

The following Proposition 2.1 tells that (2.2) is a good estimator under general conditions. As 
already stated, Proposition 2.1 is in essence a restatement of Approximation Result 3.2 in 
Rosén (1995), to which the reader is referred for justifications. N(u., c2) denotes the normal 
distribution with mean \i and variance a2. 

PROPOSITION 2.1: Consider OS(n;F) sampling from the population U, on which the 
variable y is defined, and let notation be as in (2.1) and (2.2). Then a)-d) hold under 
general conditions; 

a) The distribution of x(y)os is well approximated by N(x(y), a2), with (2.4) 

(2.5) 

(2.6) 

b) In particular, x(y)os yields consistent estimation of x(y). 

c) In particular, a2 yields good approximation of V[x(y)os ]. 

d) A good variance estimator for x(y)os is provided by; 

(2.7) 

(2.8) 

Remark 2.3: There is a slight discrepancy in formulation between the above result and 
Approximation Result 3.2 in Rosén (1995), to the effect that the factor N/(N-1) is inserted in 
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(2.5). This is an ad hoc adjustment in order to make (2.5) to the exactly correct formula in the 
case when all Fj are equal, i.e. when the OS scheme is nothing but simple random sampling. 
Note that the factor asymptotically equals 1. # 

Remark 2.4: As a continuation of Remark 2.2 we stress the following. Justification of 
Approximation Result 3.2 in Rosén (1995) is given by Theorem 3.1 in Rosén (1995). This 
theorem does not rely on the approximation (2.3). As a consequence, the claims in Proposition 
2.1 hold asymptotically under the general conditions in Theorem 3.1 in Rosén (1995), irre­
spective of whether (2.3) is a good approximation or not. # 

2.2 A Uniqueness Issue for Order Sampling 
Definition 2.1 states that a pair (n; F), F = (Fj, F2,..., FN), determines an order sampling scheme. 
However, there is not one - to - one correspondence between OS schemes and pairs (n; F). To 
realize that, consider a function <p on [0, °°) which is strictly increasing, continuous and has 
range [0,°<=). Since an increasing function preserves order, the following holds. 

Two OS schemes with ranking variables Qj,Q2,..., QN and Q*],Q*2, - ,Q*N, which 
are related by Q*i = (p(Qj), i=l,2,...,N, are (probabilistically) equivalent. (2.9) 

The corresponding order distributions F = (F,, F2,..., FN) and F* = (F,*, F2*,..., FN*) are related 
by F,*(t) = Fi((p"'(t)), i = 1, 2,..., N, where <p_1 denotes inverse function. Hence, (2.9) can be 
expressed as follows, which shows that there is not one-to-one correspondence between OS 
schemes and pairs (n; F). 

For a continuous, strictly increasing (p, the schemes OS(n; F) and OS(n; F((p_1) agree. (2.10) 

2.3 Order Sampling with Fixed Order Distribution Shape 
Here we introduce a sub-class of OS schemes which will play an instrumental role in the sub­
sequent considerations of the nps problem. 

DEFINITION 2.2: Let H(t) be a probability distribution with density h(t), t > 0, and let 
8 = (81}62,.., 8N), 8j > 0, be real numbers. An OS(n; F) scheme, F = (F,, F2,..., FN), is said to 
have fixed order distribution shape H(t) and intensities 6, if either, and hence both, of the 
following two equivalent conditions are met. 

(i) The ranking variables Q, Q2..., QN are of type Q^Zj/Si, i= 1,2,...,N, where 
Zi,Z2, ...,ZN are independent, identically distributed (iid) random variables 
with common distribution H. (2.11) 

(ii) The order distributions are (2.12) 

Such a sampling scheme is referred to by the notation OSFS(n;H; 8). 

The following particular OSFS schemes are given special attention in Rosén (1995). As regards 
sequential Poisson sampling, we also refer to Ohlsson (1995). 

DEFINITION 23: a) Sequential Poisson sampling is OSFS(n;H;8) with H = the standard 
uniform distribution; H(t) = min(t,l), 0 < t<°o, and h(t) = 1 on [0,1] and 0 outside [0,1]. 

b) Successive sampling is OSFS(n;H;6) with H = the standard exponential distribution; 
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3 OSFS Schemes and the πps Problem 
Here we employ OSFS schemes to treat the 7ips problem in Section 1.2. In the first round we 
presume that the shape distribution is given, and we seek intensities which lead to inclusion 
probabilities that are equal to, or at least close to, the target inclusion probabilities. In a second 
round, we regard the shape distribution as optional, and consider optimal choice of it. 

3.1 The πps Problem when the Shape Distribution is Given 
Let X = (X,, X2,..., XN) and H be given. We consider the following problem. 

Problem: Find intensities 6 such that the inclusion probabilities n=fa, Xj,..., %) 
for the scheme OSFS(n; H; 6) agree with the target probabilities X = (Xt, X2,..., XN). 

We start with a heuristic treatment of the problem, in which the approximation (2.3) is 
regarded as an exact relation. Then, by combining (2.3) and (2.12) we obtain the relations: K\ = 
H(Ç • 0i), i = 1,2,..., N. Thus, the desired equality Ttj = h holds if intensities 0i and target values 

Xi are related as follows: X-s=H(^ • 00, i = 1,2,..., N. By solving for 0, we get, where H"1 denotes 

inverse function: The intensities 0i = H" 1 ^) /^ , i= 1,2, ...,N, provide a solution to the above 
problem. Moreover, an OSFS scheme is invariant under re - scaling of the intensities (i.e. by 
multiplying them with the same positive number). This is seen from (2.10) with (p(t) = 
c-t, c> 0. Hence, an alternative solution to the problem is 0i=H"1(A,j), i= 1,2, ...,N. 

We use the last formula to construct ranking variables Q; for an OSFS scheme. By (2.11), 

Q;=Zi/0i, i= l,2,...,N, where Zi, Z2,..., ZN are iid random variables with common distribution 
H. Note that such Z-variables can be generated as; 

(3.1) 
Uj, U2,..., UN are independent standard uniform random variables (see Def. 2.3). (3.2) 

Thereby we have arrived at the following heuristic solution: The OS scheme with ranking 

variables Qi = H",(Ui)/H"1(Xi), i = 1,2, ...,N, (which is an OSFS scheme) has inclusion prob­

abilities X = (XVX2,..., À,N). Against this background we make the following formal definition. 

DEFINITION 3.1: The OSFSnps scheme with sample size n, target inclusion probabili­
ties X = (XY, X2,...., A.N) and shape distribution H, in full denoted OSFSrcps(n;À.; H), is the 
OS scheme which satisfies either, and hence both, of the following two equivalent condi­
tions. In particular, the conditions imply that the scheme is an OSFS scheme. 

(i) Ranking variables Q1? Q2,..., QN are; 

(3.3) 

(ii) Order distributions 

(3.4) 

Proof of the equivalence between (i) and (ii): With ranking variables as in (3.3), we have; 

F1(t)=P(Q1<t)=P(H1(U1)/H-1ai)<t)=P(U1<H(t-H-1ai))=H(t-H1ai)), i=l,2,...,N, 
which is the formula for Fi(t) in (3.4). The density f(t) is obtained by differentiation. # 

Since OSFSTtps is a special type of OS scheme, the results in Proposition 2.1 can, and will, be 
applied. We start by exhibiting expressions for the §, F(D and f(|) which enter in Proposition 
2.1. By (3.4), equation (2.1) here takes the form; 
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(3.5) 

By virtue of (1.4), (3.5) is solved by £ = 1. This together with (3.4) yields; 

(3.6) 

Now, by applying Proposition 2.1 with Fi(|) = Xi, and £(£) =h(H"1(^i)) • H"1^), the following 
Approximation Result 3.1 is obtained. Some algebra is left to the reader. 

APPROXIMATION RESULT 3.1: Consider OSFS7cps(n; X; H) sampling from the popu­
lation U, on which the variable y is defined. Define the estimator î(y)x of x(y) by; 

(3.7) 

Then a) - d) below hold under general conditions 

a) The distribution of t(y)x is well approximated by N(x(y), c2(y; H;X)), with (3.8) 

(3.9) 

(3.10) 

b) In particular, x(y)x yields consistent estimation of x(y). 

c) In particular, V[t(y)À] is well approximated by c2(y;A;;H). 

d) A good variance estimator for î(y)x is provided by; 

(3.11) 

(3.12) 

Remark 3.1: In the heuristic reasoning which precedes Definition 3.1, the approximation (2.3) 
plays a crucial role. However, as stated in Remark 2.2, even if (2.3) is conjectured to be a good 
approximation, its goodness is an open question. We want to stress, though, (cf. Remark 2.4) 
that justification of the above Approximation Result 3.1 is given by Theorem 3.1 in Rosén 
(1995), and this theorem does not rely on the approximation (2.3). Hence, the claims in 
Approximation Result 3.1 hold asymptotically under the general conditions in Theorem 3.1 in 
Rosén (1995), whether (2.3) is a good approximation or not. # 

Next we introduce terms and notation for the OSFSrcps schemes which relate to the sampling 
procedures in Definition 2.3. Our general terminological rule is that OSFS7tps(n; X; H) is named 
by its shape distribution H. We start, though, with an exception from the rule. Poisson Tips, 
denoted POlTq>s(n; X) or just POInps, and exponential nps, denoted EXPnps(n; X) or just 
EXPnps, are the OSFS7rps(n; X; H) schemes with H = standard uniform distribution respectively 
H=standard exponential distribution (see Definition 2.3). 

Remark 3.2: By the above terminology rule, Poisson rcps ought to be named "uniform Trps". A 
reason for diverging is that H = the standard uniform distribution (UNIF) has the special 
property H(t) = H"'(t) (on its support [0,1]). Hence, OSF$7rps(n; X; UNIF) = OSFS(n; UNIF; X). 
Since Ohlsson (1995) calls OSFS(n; UNIF; X) "sequential Poisson sampling", we keep Poisson, 
but leave out sequential for brevity throughout this paper. We are aware, though, that 
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confusion may arise in more general contexts, since "Poisson sampling" is already booked for 
another scheme, see e.g. Särndal et al. (1992), pp. 85 - 87. # 

Verification of the following lemma is left to the reader. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Remark 3.3: The associated variance estimators are obtained by inserting the a:s in (3.11). # 

3.2 Optimal Shape Distribution 
The point estimator t{y)x in (3.7) is the same for all shape distributions H. The variance of 
î(y)x depends on H, though, as is seen from (3.9) and (3.10), and exemplified in (3.14) and 
(3.16). Therefore it is natural to wonder about H:s which minimize the asymptotic variance 
o^x;X;U) in (3.9). The answer is stated below. 

THEOREM 3.1: The asymptotic variance o2(y;A,;H) in (3.9) is minimized, for any 
study variable y and any X, by the shape distribution; 

(3.17) 

DEFINITION 3.2: The distribution in (3.17) is called the standardPareto distribution, 
and the associated OSFSrcps scheme Pareto Tips, denoted PARnps(n; X) or just PARnps. 

Remark 3.4: The fact that Pareto 7tps minimizes o2(y; X; H) for any y and X is referred to by 
saying that Pareto Tips is (asymptotically) uniformly optimal among OSFSrcps schemes. # 

Proof of Theorem 3.1: The algebraic details in the following proof are left to the reader. We 
shall employ the following representation of o2(y;X;H) in (3.9); 

(3.18) 

(3.19) 

(3.20) 
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The representation (3.18)-(3.20) is obtained by using the following identity; 

(3.21) 

Now, the following claims (i)-(iii) are straightforward consequences of (3.19) and (3.20); 
(i) M(y; X) does not depend on H, (ii) R(y; X; H) > 0 for all H, (Hi) R(y; A,; H)= 0 if oci is pro­
portional to Xr (1-X.i). By combining (3.18), (i)-(iii) and c) in Approximation Result 3.1, the 
following result is obtained. 

LEMMA 3.2: For a fixed sample size n, OSFSjrps(n; X; H) has, for any y, minimal 

asymptotic variance c2(y;X;H) for t(yx) among OSFS7rps(n;À) schemes if; 

oti(X; H) in (3.10) is proportional to h- (1-A,). (3.22) 

Next we search an H which makes (3.22) satisfied. Relations (3.22) and (3.10) lead to the fol­
lowing functional-differential equation, k being a positive constant; 

(3.23) 

By inverting (3.23) (with respect to multiplication) and using the general differentiation rule 

dy~\X)/dX = l/y'(y^(X)), the following differential equation is obtained; 

(3.24) 

It is readily deduced that the probability distributions H which satisfy (3.24) are specified by; 

(3.25) 

In the first round (3.25) seems to provides quite an extensive class of solutions to (3.22), 
which is not the case, though. From (3.3) and (3.25) it is seen that the associated ranking vari­
ables Q(k; c) are; 

(3.26) 

Since the function cp(t) = t1/k, 0 < t < °°, k > 0, has range [0, °°), is increasing and continuous, 
(3.26) and (2.9) yield that all OSFSnps(n;2_; H) schemes specified by (3.26) are equivalent. The 
"standard" version with c=k= 1 is chosen in Theorem 3.1 and Definition 3.2. # 

Remark 3.5: (3.23) - (3.26) yield a constructive derivation of Pareto ?rps as solution to (3.22). 
If the reader should question the rigor in that derivation, argue instead as follows. Formula 

(4.1) tells that PAR(n; X) satisfies (3.22). Once a shape distribution H that makes (3.22) satis­
fied is exhibited, Lemma 3.2 "directly", and rigorously (but non - constructively), tells that no 

other OSFSjips scheme has smaller asymptotic variance c2(y; X; H). # 
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4 Pareto πps 
The (asymptotic) optimality property stated in Theorem 3.1 gives Pareto Ttps (see Definition 
3.2) particular interest. In this section we provide further information on Pareto Tcps. 

4.1 Properties of Pareto πps 
The algebra relating to (4.1) - (4.3) is left to the reader. Recall relation (1.4). 

LEMMA 4.1: For PAR7tps(n; X), a, a, Q:s and a2 in (3.10), (3.12), (3.3) and (3.9) are; 

(4.1) 

(4.2) 

The corresponding variance estimator (3.11) is 

(4.3) 

Remark 4.1: By the Lagrange equality version of Schwarz inequality, (4.2) can be re-written; 

(4.4) 

Remark 4.2: The uniform asymptotic optimality of PARTtps (see Remark 3.3) for estimation of 
population totals x(y) entails that PARTtps is asymptotically optimal also for estimation of other 
population characteristics. In the discussion of this matter we use the following conventions. 
Arithmetic operations on variables are to be interpreted component - wise, e.g. for x = (x1; x2, 
...,xN) andy = (yj,y2,...,yN), x-y = (Xj •y1,...,xN-yN). Moreover, optimal stands for "minimiz­
ing estimator variance". 
Consider estimation of a ratio |i(y;x)=x(y)/x(x). By standard principles, |i(y;x) is estimated by 
(l(y; x)x= î(y)x/î(x)x. Taylor linearization leads to the asymptotic variance formula 

V[p.(y; x)x]~ V[x(y - p,(y; x) • x)x ]/x(x)2. Hence, minimization of V[jl(y; x)x ] is asymptoti­
cally equivalent to minimization of V[x(y - u.(y; x) • x)x ], i.e. minimization of the variance for 

the estimator of the total of x - |i(y;x) • y. Since, by Theorem 3.1, Pareto ftps effectuates minimi­
zation uniformly (irrespective of the study variable), it is asymptotically optimal also for esti­
mation of ratios. 

The optimality extends also to estimation of domain characteristics (totals and ratios). To 
illustrate, we consider estimation of a domain ratio |i(y;x; D) = x(y; D)/x(x; D), where x(y; D) 
denotes the y - total over domain D, which can be written x(y; D) = x(y • ID), where 1D is the 
domain D indicator. The previous reasoning leads to jl(y;x;D)x =x(y;D)x/x(x;D)x with 

asymptotic variance V[p.(y;x;D)J « V[x([y-u<x;y)-x]-lD)J/x(x-lD)2 . Theorem 3.1 tells 
again that PARTtps is asymptotically optimal. # 
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4.2 A Limit Theorem 

THEOREM 4.1: Consider, for k= 1,2,3,..., PAR7Tps(nk;A,k) sampling from the popula­
tion Uk=(l,2,...,Nk), on which the variable yk =(ykl, y^, ..., y ^ ) is defined, with 
total x(yk ). Let t(yk )x be in accordance with (3.7). Then, under conditions (CI) - (C3) 
below, (4.5) holds for Ok defined in accordance with (4.2). 

[î(yk)x~T(yk)]/ok converges in distribution to N(0,1), ask->oo. (4.5) 

Remark 4.3: Loose interpretations of (C2) and (C3) run as follows. In order that normal 
approximation of the distribution of ^(y,^ shall be good, a larger nk is required (i) the closer 
to 1 some target inclusion probabilities lie, (ii) the more "dispersed" the sampling situation is, 
where "dispersed" relates to the of spread of {yid/Ä-ki; i=l,2,...,N}. # 

Proof of Theorem 4.1: If we show that conditions (CI) - (C3) imply fulfillment of conditions 
(Bl) - (B5) in Theorem 3.1 in Rosén (1995), the result follows from that theorem. First note 
that (Bl) and (B2) in fact are the same as (CI) and (C3). To verify (B3), note that (3.6) yields; 

(4.6) 

Condition (B3) concerns the asymptotic behavior of the quantity; 

(4.7) 

From (4.7) it is readily seen that (C2) implies (B3). The verifications of (B4) and (B5) which 
are straightforward, are left to the reader. # 

4.3 Operational formulation of the Pareto πps sampling-estimation scheme 
Below we list the steps in practical application of the PARrcps sampling - estimation procedure. 
Justifications are given by the results presented so far. 

The Pareto πps sampling-estimation procedure 
1. A sampling frame U= (1,2,...,N) with sizes s = (sl5 s2,..., sN), s;> 0, is at hand, 

and a sample size n is specified. 

EN 
._ S j , i = l , 2 , . . . , N . 

It is presumed that Xi < 1, i = 1,2,..., N. If not, introduce a take all stratum or 
modify the size measures. 

3. Realize independent standard uniform random variables Ui,U2, ...,UN, thereby 
realizing the ranking variables 
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The sample consists of the n units with labels (Ji,J2,..., J„) that are determined by 
Qj ,Qj ,...,Qj being the n smallest values among the realized QI,Q2,...,QN-

Variable values y and X for sampled units are denoted (Yv, Av), v= 1,2, ...,n. 

(4.8) 

5. The variance of î(y)k is estimated by; 

(4.9) 

6. An approximately 95% confidence interval for t(y) is; 

(4.10) 

Remark 4.4: Below we state a version of (4.9), which has computational merits; 

(4.11) 

where 

(4.12) 

Remark 4.5: As indicated in Remark 4.2, point and variance estimators for other population 
characteristics than totals can be obtained by appropriate modifications of Steps 4-6. # 

Remark 4.6: The general structure in the above formulation of the Pareto Ttps sampling - esti­
mation procedure applies to all OSFSTtps schemes. Differences between specific schemes con­
cern only the definition of the ranking variables Q (in Step 3), and the a - values in (3.12), 
which in turn affect the variance estimator (3.11), which for Pareto reps takes the form (4.9). # 

Remark 4.7: From (4.9) it is seen that variance estimates for Pareto Tips always are non-nega­
tive. More generally, it is seen from (3.11) that this holds for any OSFSrcps procedure. # 

Remark 4.8: Ohlsson (1995) emphasizes the following attractive feature of Poisson jrps. If the 
frame contains over - coverage (out - of- scope units), a "quasi Poisson Ttps" sample from the 
(imaginary) list of in- scope units can be selected by the following procedure. Units which turn 
out to be out - of - scope are excluded from the sample and replaced by units with smallest 
ranking variable values among so far "un - used" units, until a size n sample of in - scope units 
is obtained. In this process one looses the full control of the inclusion probabilities, though, 
since the size sum over the in - scope list is not known. However, if the aim is to estimate a 
ratio |i(y;x) = x(y)h(x), this does not matter, since the unknown size sum in nominator and 
denominator will cancel. (If the aim is to estimate a total over the in-scope units, the size sum 
should be estimated.) This type of "over-coverage adjustment" can be employed for any 
OSFSitps scheme, i.a. for Pareto Trps. # 

Remark 4.9: Another attractive aspect of Poisson Tips which also is emphasizes in Ohlsson 
(1995) as follows. If the Ui:s in the ranking variables Uj/Xi are permanent random numbers, a 
new Poisson Ttps sample from an updated version of the frame is positively coordinated (= has 
big overlap) with the previous sample. Negative coordination (also for simultaneous samples), 
is obtained if Ui is exchanged for 1 -Ui. From (3.3) is seen that any OSFSnps scheme has these 
coordination properties and, hence, also Pareto Ttps. # 
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Remark 4.10: The above Pareto sampling - estimation procedure is formulated for the ideal 
case when all sampled units respond. However, in virtually all practical surveys non-response 
occurs. How to cope with non - response situations depends, of course, on what non - response 
model is judged to be realistic in the particular situation. Below we suggest an adjustment 
technique for Pareto Ttps, under the non-response model that the population can be partitioned 
into disjoint groups Gi, ...,Gg,..., which are (fairly) homogeneous with respects to X-values as 
well as response propensities. Then, use the following adjustment procedure (which will be 
better motivated elsewhere). 

Within each group Gg, re-calculate X-values byX[ =X{ • Hg/ng, where ng and n'g denote 
the numbers of sampled respectively responding units in group Gg. Then carry out Steps 4 
and 5 within each group Gg, using the X':s and n = n^, which leads to estimates of group 
totals with variance estimates. Finally, add group total estimates and variance estimates for 
group totals, to obtain an estimate of the population total with a variance estimate. Note 
that it suffices to re-calculate X:s for sampled units. (4.13) 

5 Evaluation of πps schemes 
5.1 Introduction 
Even if Pareto reps has the attractive property of being asymptotically uniformly optimal 
among OSFSTtps schemes, it cannot be recommended right away. Below we list some addi­
tional issues that should be addressed. 

• Asymptotic optimality among OSFSitps schemes does not say anything about how well 
Pareto ups compares with Tips schemes in general. There may be better schemes outside the 
OSFSTtps class. For a global evaluation (i.e. over all Ttps schemes), one would like to com­
pare Pareto Tips with the best Tips scheme outside OSFSTtps. This is a somewhat intricate 
wish, though, because there is no Tips scheme which is unanimously regarded as "best so 
far". However, as already stated, we read Särndal et. al. (1992) so that they suggest that 

Sunter Ttps is a candidate for the title. The most widely used Ttps scheme in practice, sys­
tematic Tips, is of course also of interest. 

• The asymptotic optimality of Pareto Ttps was justified by using Approximation Result 3.1. 
As the name states, this result involves approximations; regarding unbiasedness of the point 
and variance estimators, the theoretical estimator variance formula, normal distribution of 
estimators. Although the approximation errors are asymptotically negligible, adequate 

practical application of an OSFSTtps scheme requires that the approximations are "good 
enough" in the particular finite situation. Unfortunately, it is unfeasible to exhibit theoreti­
cal error bounds, from which it can be read off if the approximations are good enough in a 
particular situation. What can be done, though, to get an idea of the approximation errors is 
to carry out simulation studies. 

• In addition to knowing that Pareto Ttps is (asymptotically) optimal among OSFSTtps 

schemes, one wants a quantitative idea of its superiority over other OSFSTtps schemes. 

• The optimality property of Pareto Ttps relates only to (ii) in (1.6). The scheme should also 
be judged relative to (i) and (iii). 

5.2 Theoretical considerations for OSFS πps schemes 
Being (asymptotically) uniformly optimal, Pareto Ttps plays a distinguished role. Therefore we 
use the performance measure variance increase (VI) relative to Pareto Tips. The parameters n, 
X and y are presumed to be the same for compared schemes. 
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(5.1) 

Computation of exact VI - values is unfeasible, and we will resort to approximate ones; 

(5.2) 

In the first round we confine the comparisons to OSFSTtps schemes, using (5.2) with approxi­
mate estimator variances by formula (3.9). Then the asymptotic optimality of Pareto Ttps 
entails that AVI - values are non - negative. By (3.18) and (4.2), AVI for OSFSTtps(n; X; H) is, 
with M(\;X) andR(x;À;H) according to (3.19) and (3.20); 

(5.3) 

Even if (5.3) gives an explicit expressions for AVI it is difficult to look through it, to see how 
it depends on y, X and H. To make things a bit more transparent, we specialize to AVI for Pois­
son Tips. By combining (3.14) and (4.2) we get the following expression for Poisson Ttps AVI, 
after some straightforward algebra which is left to the reader; 

(5.4) 

Formula (5.4) is still quite difficult to look through, though, and we specialize it further by 
considering a particular type of sampling situation. 

For a > 0, let the study variable values be y; =ia, i= 1,2, ...,N, and let the target inclusion prob­
abilities be proportional to i, i= 1,2,...,N. Then, after straightforward (but cumbersome) calcu­
lations one arrives at the following asymptotic (as N—»°°) expression; 

(5.5) 

Two special cases of (5.5) are listed below; 

(5.6) 

(5.7) 

Remark 5.1: We do not know the maximal AVI for Poisson Ttps (or for any other OSFSTtps 
scheme). By letting a - <> in (5.6), it is seen that maximal AVI(POI) is at least 8/3 = 267%. # 

Even if (5.6) and (5.7) relate to situations which are a bit extreme, we will use them to draw 
tentative conclusions on how AVI depends on the sampling situation. 

The ideal Ttps sampling situation is when y - and s -values are exactly proportional. Then the 
population y - total is estimated without error. In this ideal situation, the values of (y, s) lie 
along a line through the origin. In practice this situation never occurs, though, the (y,s)-values 
scatter more or less around a trend. The trend may be proportional (= linear through the ori­
gin) or non - proportional. Type of trend as well as degree of scatter may vary considerably 
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between practical sampling situations. If "powerful" auxiliary information is available, one 
may be in a situation with proportional trend and little scatter. In cases where only "weak" 
auxiliary information is at hand, non - proportionality as well as degree of scatter may be high. 

A fact which reinforces variation in scatter and trend is that most surveys are multi-purpose 
(i.e. involve many study variables, and commonly also many domains). However, only one 
size measure can be used when selecting the sample. Therefore, in practical 7tps contexts one 
meets situations with good rcps properties (as regards trend and scatter) for some of the study 
variables, but considerably less good for others. The usual way to cope with this dilemma is to 
chose the size measure with regard to the variable that is judged to be most important. 

Against this background we look at formula (5.6). For a= 1 we are in a perfect rcps situation 
with proportional trend and no scatter. The corresponding AVI -value in (5.6) is a bit difficult 
to interpret, though, because it is a degenerate value of type 0/0. For a< 1 we are in situations 
with increasing concave trend (y grows relatively slower than s) and for a > 1 in situations 
with increasing convex trend (y grows relatively faster than s). In situations with a flat or 
decreasing trend, rcps sampling is in fact non - favorable compared with simple random sam­
pling. As is readily checked, AVI in (5.6) increases with a. A tentative conjecture is therefore 
that Pareto jrps is more superior, the more convex the trend is. However, as will be seen later 
on, this picture is disturbed when scatter comes in, and we formulate the following looser ver­
sion of the conjecture; 

The degree of superiority for Pareto Tips depends on the form of the (y,s)-trend. (5.8) 
Next we turn to (5.7), which shows that AVI depends on the sampling fraction. It is readily 
checked that AVI in (5.7) increases from 0 to 55% when the sampling fraction increases from 
0 to 1/2, which provides background for the following conjecture; 

Pareto Ttps is more superior, the higher the sampling fraction is. (5.9) 

A requirement on a good Tips scheme is that it works efficiently also in situations with high 
sampling rates, for the following reason. Even if high over - all sampling rates are unusual, 
high "partial" sampling rates occur, in particular when rcps sampling is used in conjunction 
with the following type of stratification. The population is stratified by study domains and Tips 
samples are selected from the strata. Some strata may be comparatively small, which in com­
bination with the fact that the precision of a stratum estimate depends mainly on stratum 
sample size (not on stratum sampling rate) may lead to high sampling rates in some strata. 

5.3 Numerical comparisons 
5.3.1 Generation of sampling situations 
Here we employ a more concrete way to indicate how AVI depends on the sampling situation, 
by presenting numerical AVI - values for specific situations. As always in this type of context, 
one meets the problem that there is an "ocean" of situations of potential interest, while the 
space for the paper is limited. We have to restrict, and then we let (5.8) and (5.9) be guiding. 

We shall consider situations generated by the following sampling situation model for the 
relation between the study variable y and the size measure s; 

(5.10) 

The value of the parameter c does not affect the comparisons, we include it just to indicate the 
scope of the model. The vital parameters are N, Ö and a, and they will be varied. Variation of 
o and a can be interpreted as follows. Increase of o leads to increased scatter. When a moves 
away from 1, the trend moves away from proportionality, it is concave for a< 1 and convex for 
a> 1. To make the generated situations reproducible, we inform that the Z:s were generated by 
the SAS6.10 function NORMAL(seed) with first seed (for i= 1) = 555. 
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One may think that model (5.10) with a = 1 is uninteresting, since the situation can then be 
brought closer to the ideal raps situation by letting sa play the role of size measure. However, 
we mean that a=1 is of interest, for at least two reasons, (i) Often, the sampler has only vague 
knowledge of the (y, s) - trend. He / she may judge it wrongly, and believe in proportionality 
while "truth" is non - proportional (a=1). (ii) The fit between y and s was a secondary concern 
in the sample selection, s was chosen with regard to a more important study variable than y. 

Numerical AVI - values have been derived by two approaches; (a) Using the asymptotic for­
mulas for OSFSrcps estimator variances, (b) Monte Carlo simulations. Approach (a) leads to 
easy computations, but does not tell how well the asymptotic formulas approximate the true 
estimator variances. Approach (b) leads to considerably greater computation efforts but it 
gives, at least some, insight into the approximation goodness problem. Comparisons with Sun-
ter Ttps are made by both approaches. An algorithm for computation of second order Sunter 
inclusion probabilities is available. Having those, standard formulas yield estimator variances 
and variance estimates. Since Sunter Ttps lies outside OSFSTtps, its AVI - values may be 
negative, implying that it performs better than Pareto Tips. The performance of Sunter confi­
dence intervals is studied by simulations. For systematic Ttps we resort to simulations. 

Before presenting numerical results, we formulate the tentative conclusions we shall draw 
from them. We do not lay claim to give a complete picture of how AVI - values vary with the 
sampling situation. (To the best of our understanding, this is a very complex problem.) 

Conclusions concerning the measurable Tips schemes; OSFSTtps, Sunter Tips and systematic 
Ttps with random frame order (rfo). 

When tips is better than SRS, i.e. when the (y,s)-trend is fairly strongly increasing. 

The OSFSTtps schemes and systematic Ttps(rfo) all perform better than Sunter Ttps, and 
the more better the higher the sampling rate is. The advantage over Sunter Ttps is greater, 
the more beneficial Ttps sampling is relative to simple random sampling. (5.11) 

Pareto, exponential and Poisson Ttps compare as follows. 
Under proportional (y,s) -trend: All three schemes have very similar performances. 
There is an edge for Pareto Tips, but it is of little to no practical importance. (5.12) 

Under non -proportional (y, s) - trend: Pareto Tips performs better than exponential 
Tips, which in turn performs better than Poisson Tips. The differences are small when 
sampling rates are small, but may be pronounced for high sampling rates. (5.13) 

Pareto Tips compares with systematic Ttps(rfo) in very much the same way as with the 
OSFSTtps schemes. When the (y,s)-trend is fairly proportional, the two schemes have 
similar performances, with a slight edge for Pareto Trps. When the (y,s)-trend is non-
proportional, Pareto Trps performs better than systematic Ttps(rfo). Differences are small, 
though, for small sampling rates, but may be pronounced for high sampling rates. (5.14) 

When Tips is worse than SRS, i.e. when the (y,s)-trend is flat or decreasing. 

The bad performance of Tips sampling is more accentuated for the OSFSTtps schemes 
and systematic Ttps(rfo) than for Sunter Trps, which performs better than the other. 
There is an edge for Pareto Ttps among "non - Sunter" schemes. (5.15) 

Conclusions concerning systematic nps with frame ordered by size (sfo). 

Systematic Ttps(sfo) has considerably better point estimation precision than the other 
Tips schemes when the (y,s)-trend is distinctly non-proportional. However, under fairly 
proportional (y,s)- trend, systematic Ttps(sfo) and Pareto Ttps compare in an erratic way, 
they take turns to be better than the other. (5.16) 
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5.3.2 Comparisons of O S F S πps and Sunter πps, based on asymptotic formulas 
In the following we present numerical AVI - values for exponential, Poisson and Sunter Ttps 
and also for simple random sampling, SRS. SRS is not included in the study as a "competitor", 
though, only to show the relative efficiency of Trps - sampling versus SRS. For the OSFSrcps 
schemes the asymptotic formulas were used to compute (approximate) estimator variances, 
while the exact standard formulas were used for Sunter Ttps and SRS. We now turn to the 
numerical results which provide background for the claims in (5.11)-(5.16). 

We start by illustrating (5.11) and (5.12), by considering situations with a= 1 in (5.10), i.e. 
situations with proportional trend. 

The AVI - values in Table 1 comply with (5.11) and (5.12). One may wonder, though, if the 
fairly small population size (N= 100) affects the AVI - values in some particular direction. A 
"magnified" situation with roughly the same degree of scatter (at least for large y - values) is 
obtained by increasing N by a factor 4 and a by a factor 2. The corresponding AVI - values are 
shown in Table 2, which again comply with (5.11) and (5.12). They also indicate that popula­
tion size is not a crucial factor. Therefore, in the rest of this section we confine to N= 100. 

Next we vary the degree of scatter. In Table 3 the scatter is increased (compared with Table 1) 
to o = 4, and in Table 4 it is decreased to o = 0.5. The figures in these tables again illustrate 
(5.11) and (5.12), in particular the latter part of (5.11). 
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Next we consider variation of the (y,s)-trend. First we look at growingly convex situations by 
considering a = 1.2, 1.5 and 2. It should be noted that a = 2 yields a rather extreme situation, 
though. In the first round we use o = 2. The AVI-values are shown in Tables 5-7. They illust­
rate the claim in (5.13). Also (5.11) is illustrated. Even if a negative Sunter AVI - value turns 
up at one place (for a =2), we still mean that (5.11) gives the over-all picture. 

In Tables 5-7, o is kept fixed when a is increased, which leads to relatively decreased (y, s) -
scatter for units with large variable values. One may wonder if the effects that can be observed 
in Tables 5 - 7 are to be ascribed to change of trend or to lowered relative scatter. We believe 
that the trend factor is most important. To illustrate this, Table 8 presents AVI - values for the 
situation in Table 6 with doubled o, i.e. with a=4. 

Next we consider concave situations, i.e. situations with a< 1. In order that the relative scatter 
should not increase, and also to avoid negative y - values, we decrease a when a is decreased. 
The findings in Table 9 illustrate (5.13) as well as (5.11). 
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In Table 9, a = 0.7. If a is further decreased, we enter the region where Ttps sampling no longer 
is advantageous over SRS. For a = 0.5, the (y, s) - trend is quite flat, and for a = 0 it is entirely 
flat. Corresponding AVI-values, which illustrate (5.15), are shown in Tables 10 and 11. 

5.3.3 Findings from simulations 
This section reports on results from simulations with two aims: (i) To give some insight into 
the goodness of the approximations that are set to work in practical application of OSFSTtps 
schemes, (ii) Comparisons with systematic Ttps. 

We employed a standard simulation approach. A sampling situation was generated by the 
model (5.10), yielding a known x(y). Repeated independent reps samples with prescribed 
sample sizes were drawn by Pareto, exponential, Poisson Sunter and systematic Ttps. 3 000 
repetitions were used throughout. For each sample we computed the total-estimate t , by (3.7) 
for the OSFS schemes and by the HT-estimator for the other schemes, variance estimate V(x), 
by (3.11) by for the OSFS schemes and by (1.3) for Sunter reps. Moreover, approximate 95% 
confidence intervals T ± 1.96 • -\JV(î) for x(y) were computed for OSFS and Sunter Ttps, and it 
was checked if they covered x(y) or not. The following summary statistics were derived; the 
empirical mean, m(x), and empirical variance, S2(x), for the estimates x, the empirical mean 

of the variance estimates, m(V(x)) and empirical cover rates for confidence intervals. 

On approximation goodness 
The crucial questions are: When is the bias in the estimator (3.7) reasonably small? When is 
the bias in the variance estimator (3.11) reasonably small? When is a normal approximation 
confidence interval good enough? In addition we have a question of more theoretical interest: 
How well do asymptotic variances by (3.9) approximate the true ones? 

Results for the OSFS Ttps and Sunter schemes are shown in Tables 12-14, which treat situations 
with quite different trend forms. Since relative discrepancies are simpler to grasp than absolute 
ones, we present the results in terms ofrelative bias for the point estimator, m(x)/x(x)-1, and 
relative bias for the variance estimator, m[ V(x) ]/S2(x)-1. Sunter's scheme is not included in 
the bias study, since its point and variance estimator are unbiased. 
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From Tables 12-14, and also from Tables 15 and 16, is seen that all three OSFS nps proce­
dures have exceedingly small bias for the point estimator. Hence, that part of the approxima­
tion issue seems to cause no problem. 

The picture is not equally perfect as regards variance estimators and confidence levels. For the 
latter the approximation goodness depends jointly on the goodness of the normal distribution 
approximation and the approximations behind the variance estimators. Since sample sizes are 
fairly small, the sampling situations in Tables 13 and 14 are quite dispersed (in the sense of 
Remark 4.3) and a number of target inclusion probabilities lie fairly close to 1 when f > 0.3, 
the magnitudes of the approximation errors in Tables 13 and 14 are not too surprising. Larger 
sample sizes are required for really good approximation. 

Tables 15 and 16 treat "enlarged" versions (N is increased) of the situations in Tables 13 and 
14. They show that the approximations improve when sample sizes are increased. A lesson 
from Tables 12-16 is, as in most normal approximation contexts: There is no simple rule of 
type "n > 20" which guarantees good normal approximation, a proper rule must be more 
complicated. The results indicate that dispersion (in the sense of Remark 4.3) is a crucial 
factor. When it is small (as in Table 12), confidence intervals have decent levels already for 
sample sizes 10-20, while larger sample sizes are required in more dispersed situations. 
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Another conclusion from Tables 12-16 runs as follows. Even if Sunter's procedure, as regards 
approximations, employs only the normal distribution approximation, while the OSFS proce­
dures are based on considerably more sophisticated approximation arguments, OSFS confi­
dence intervals seem to perform as well as Sunter confidence intervals. This holds at least as 
long as Sunter rcps is "genuine" rcps. In the considered situations Sunter jrps is very close to 
SRS for f=0.4 and f=0.5 (which also is reflected by the AVI-values in Tables 1,6 and 9. 

It is also of interest to see how well the asymptotic variances in (3.9) comply with the empiri­
cal ones. Tables 17-19 present relative biases in the asymptotic variances in (3.9), defined as: 
[variance by asymptotic formula (3.9)]/[empirical variance] - 1 . 

Our conclusion from Tables 17 -19 is that the asymptotic variance formula (3.9) work with 
surprisingly good approximation also for fairly small n - and N - values. Hence, the AVI - values 
in Tables 1-11, in fact lie quite close to the corresponding VI-values in (5.1). 
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Comparisons with systematic πps 
Comparisons are made between Pareto, Sunter and systematic ftps, with random frame order 
(rfo) as well as size ordered frame (sfo) by empirical AVI - values = (S2(t) for "alternative" 
scheme)/(asymptotic variance for Pareto ftps) - 1 . Results are presented in Tables 20-26, which 
are ordered by decreasing a - values. For systematic ftps(rfo) the picture is fairly clear, namely 
as formulated in (5.14) and (5.15). 

For systematic ftps(sfo) the findings, which are summarized in (5.16), are a bit surprising. 
When the (y, s) - trend deviates pronuoncedly from proportional (a = 2, 1.5, 0.7, 0.5 and 0), 
systematic ftps(sfo) has dramatically better estimation precision than the measurable ftps 
schemes. However, when the (y,s)-trend is fairly proportional (a= 1.2, and 1), which is the 
kind of trend one is aiming for in practice, the picture becomes fuzzy, big positive and nega­
tive AVI-values mix in an irregular way. 
It is difficult to draw clear - cut practical conclusions, perhaps they should run as follows. If 
one believes that the (y,s)-trend lies well away from proportional, systematic ftps(sfo) is to be 
preferred to OSFSftps and systematic ftps(rfo). However, even more preferable is probably to 
do as follows, if possible. If a is distinctly greater than 1, transform the size measure to achieve 
a more proportional (y,s)- trend. If a is considerably less than 1, avoid any kind of ftps scheme 
since SRS is better, or transform the size measure to achieve a more proportional (y, s) - trend. 
When the (y, s) - trend is fairly proportional, systematic ftps(sfo) may lead to substantially bet­
ter estimation precision than Pareto ftps, but the opposite may also occur. It seems difficult to 
tell which alternative is at hand in a specific situation. 
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5.4 General conclusions 
When considering computation aspects in the sequel, we pay regard to programming but not to 
computer time, the cost of which is negligible nowadays (at least for sample surveys). The 
weight to be assigned to programming work depends, of course, on the number of times the 
survey will be conveyed, the fewer the more important to keep programming down. 

A. Comparison of OSFS πps and Sunter πps 
We compare the OSFSTtps schemes and Sunter raps, and we follow points (i)-(iii) in (1.6). 

Simplicity of sample selection: As stated in Remark 4.6, the description of Pareto Tips in Sec­
tion 4.3 holds in its general structure for all OSFSTtps schemes. As is seen from Steps 1 - 3 in 
that description, programming of sample selection for an OSFSTtps scheme is very simple. Pro­
gramming for Sunter's scheme is also simple, a bit less than for OSFSTtps, though, because of 
the need to modify the size measures. 

Estimation precision: Sunter's point estimator is unbiased. Tables 12-16 indicate that the 
OSFSTtps schemes all have very small point estimator bias. Hence, point estimator bias can be 
disregarded, the crucial aspect is estimator variances. 
As stated in (5.11), the OSFS schemes perform better, often considerably better, than Sunter 
Ttps in situation where Ttps sampling is more efficient than SRS. Also (5.15) has relevance in 
the comparison. Tables 10 and 11 tell that Sunter Ttps performs better than OSFSTtps in situa­
tions where Ttps sampling is disadvantageous to SRS. The conclusion we draw from that is, 
however, not that OSFSTtps should be avoided in favor of Sunter Ttps in such situations, but 
that any kind of Ttps sampling should be avoided (or, if possible, that the size measure should 
be transformed so as to obtain a more proportional (y,s)-trend. 
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Variance estimation properties: Pertinent aspects are listed in a)-c) below. 
a) Sunter Trps yields unbiased variance estimates, which are non-negative for the variance 
estimator (1.3). The OSFSTcps schemes have consistent, non -negative variance estimates 
which are very mildly biased. 

b) Even if the OSFSrcps procedures are based on more elaborate approximation arguments 
than Sunter Trps, their normal approximation confidence intervals seem to have as good 
level properties as for Sunter Trps, at least when Sunter Trps is not close to SRS (thereby 
being fairly uninteresting). 

c) Variance estimation for the OSFSrcps schemes is very simple to program, it has 
"complexity order" = computation of an ordinary sample variance (see (4.9) and Remark 
4.4). The only data from the sample selection needed at the estimation stage are the normed 
size - values. Variance estimation for Sunter Tips requires more involved programming. 
Second order inclusion probabilities should be derived at the sample selection stage, by a 
somewhat intricate algorithm, and be saved to the estimation phase. The variance estima­
tion formulas themselves are also a bit intricate. 

Summing up, we mean that the OSFSTrps schemes lead to fully acceptable variance estimates, 
which are considerably simpler to compute than those for Sunter Tips. 

Comparison relating to Remarks 4.8 and 4.9: There is no Sunter Trps analogue to the "over -
coverage adjustment" indicated in Remark 4.8. Due to the "list-sequential" ingredients in the 
sample selection for Sunter Ttps as well as for OSFSrcps, all these schemes admit sample coor­
dination as indicated in Remark 4.9. 

Combined conclusions: The OSFSnps schemes are on no vital point inferior to Sunter reps and 
in many respects better, notably as regards the most crucial aspect, estimation precision. Hence 
OSFSrrps schemes should be preferred to Sunter Trps. 

B. Comparison of OSFS πps schemes 
Here we consider Pareto, exponential and Poisson Ttps. As regards simplicity of sample selec­
tion, simplicity of variance estimation and level properties for confidence intervals, they are 
regarded as essentially equivalent. Hence, the crucial aspect is estimation precision. In many 
situations the schemes perform very similarly, but there are situations where estimation pre­
cisions do differ substantially (see Tables 6-11). Then Pareto Trps, being the optimal one, per­
forms better than the other two, and it should therefore be preferred among OSFSrcps schemes. 
Use of Pareto Trps can be seen as an "insurance without premium", it never performs worse 
than other OSFSTtps schemes, and in some situations it performs considerably better. 

C. Comparisons of Pareto πps and systematic πps 
Comparisons with systematic πps generally: Sample selection is simple for systematic Trps, 
under random as well as size frame order, (rfo) resp. (sfo). The same holds for Pareto nps. 
Over - coverage adjustment and sample coordination as indicated in Remarks 4.8 and 4.9 can 
be made for Pareto nps but, to our knowledge, no analogues exist for systematic Ttps. 

Comparison with systematic πps(rfo): For systematic Ttps(rfo), the Hartley - Rao variance 
estimator mostly works with good approximation, even if not entirely asymptotically correct. 
If the Hartley-Rao estimator is regarded to yield acceptable variance estimates, Pareto Trps and 
systematic Trps(rfo) are fairly equivalent with respect to (iii) in (1.6). Programming of variance 
estimation is a bit simpler, though, for Pareto Trps. 
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With regard to (ii), the main conclusion is formulated in (5.14). It states that Pareto Tips never 
performs (noteworthy) worse than systematic Trps(rfo), and sometimes considerably better. 
Hence, Pareto Trps should be preferred. 

Comparison with systematic nps(sfo): Systematic Ttps(sfo) has its specific weakness with 
respect to (iii) in (1.6), it does not admit objective assessment of sampling errors. 

As regards (ii), point estimator precision, the picture is a bit confusing. In situations that devi­
ate pronouncedly (maybe one should say extremely) from proportional (y,s)-trend, systematic 
Tcps(sfo) leads to dramatically better estimation precision than Pareto Trps, and also than the 
other Ttps schemes. It is somewhat unclear what to recommend, though; Use of systematic 
Trps(sfo) or transformation of the sizes. In situations with fairly proportional (y, s) - trend, the 
ranking between systematic Trps(sfo) and Pareto Trps seems to be erratic, the schemes take turns 
to be better than the other. We leave the problem there, by concluding that the choice between 
Pareto Trps and systematic Trps(sfo) becomes a matter of judgment/beliefs on behalf of the 
sampler. 

D. Over-all conclusion 

With the A, B and C as background our tentative overall conclusions run as follows; 

• Pareto Trps should be preferred among Tips schemes that admit objective assessment of 
estimation precision. 

• Systematic Tips with frame ordered by the sizes sometimes leads to distinctly better 
point estimation precision than Pareto Ttps, but the opposite also occurs. It is difficult 
to tell if a particular sampling situation is advantageous for systematic Trps(sfo) or not. 
In any case, when Trps(sfo) is used, control of variance estimation is lost. Choice between 
Pareto Trps and systematic Ttps(sfo) becomes a matter of judgment/beliefs for the sampler. 
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