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REGRESSION ESTIMATORS IN THEORY AND IN PRACTICE

Statistics Sweden, AM/UTV, Tomas Gards

ABSTRACT :

Regression estimators are often an effective way to use auxiliary information.
There are several registers and censuses at Statistics Sweden that could be
used as sources of auxiliary information.

The regression estimator is in theory very efficient for estimates of levels.
For the SRS-design you get

f’mg =7+ f&(Z— 2) with the variance V(f’,eg) = V(f’)[l - Piz] ;

where z is the auxiliary variable in the frame. The variance-efficiency is then
[1 - pf,z] compared with the usual SRS-estimator.

The main problem discussed in this paper, is that estimators of change (such
as ratios or differences between regression estimators of levels) do not
uniformly have the good properties as described above in the case of levels.

Other problems discussed in this paper are, what happens with the regression
estimates in practice when you have non-sampling errors as non-response,

overcount and so on?
Or what happens when the estimate of the coefficients of regression are

unstable?
Will the theoretical properties remain in practice?

This paper will deal with these problems along with practical examples from
a survey at Statistics Sweden.
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REGRESSION ESTIMATORS IN THEORY AND IN PRACTICE

Statistics Sweden, AM/UTV, Tomas Gards
1. INTRODUCTION

Regression estimators are in theory and often in practice very efficient when
there is good auxiliary information available.

More and more auxiliary information are becoming available at Statistics
Sweden, for example the traditional registers for statistical purposes,
censuses made at Statistics Sweden and external registers not for statistical
purposes but never the less useful.

The ordinary sample designs at Statistics Sweden are stratified (one-stage)
SRS with the usual expansion estimators. The efficiency of these estimates
can often be greatly improved with help of auxiliary information through
regression estimators.

This study will be in two blocks, regression estimators in theory and in
practice. Both estimators of levels and of changes will be considered.
The theoretical situation is briefly when there are no disturbances as non-
response, frame problems and so on from nonsampling errors and the
variance properties are known.

The practical situation is when the survey is actually done with usual
disturbances from nonsampling errors:

---- A design not fit for regression estimates.

---- The stability of the estmates of the coefficients of regression. This can
be considered as the classical problem of regression estimates.

----  Non-response, frame problems and so on.

So, the question is, what happens with the regression estimates (practical
situation) versus the theoretical case according to properties as expectation
value right (EVR), variance and variance efficiency compared to the ordinary
expansion estimators ?

In the case with regression estimators of changes with the efficiency
compared to the usual ratio estimator the picture is more unclear than the
case with estimators of levels. These are uniformly very efficient for
regression estimators. This is not the case for estimators of change and also
the formulas with regression estimators are very messy here.
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The efficiency properties of the estimators of changes versus the ordinary
ratio estimators will be dealt with in this paper.

Practical examples will be given from a survey of retail business at Statistics
Sweden that will illustrate both the power and the problems with regression
estimates. Both estimates of levels and changes will be illustrated as well as
the usual estimates.

The following persons have contributed to this paper:

Kajsa Lindell (AM/UTV) has looked over the English. Esbjorn Ohlsson and
Patrik Ohagen (ES/SES) have given advise concerning section 4.1.1,
Correlation matrix.

2. PRELIMINARIES

The design will be stratified (one-stage) SRS (STSRS) with complete panels
over time and the population under study will be non-dynamic. A non-
dynamic population has no in- or outflow of objects over time and this will
also be valid for the strata populations. It will often be enough to study
various properties for the SRS design.

Population- and sample notations will be as below.

Q(n,)

Design for all time periods under study.

x' variable under study, time period t.
7' auxiliary variable, time period t.

( x'=x,x? =y,z1 =m,z =z)

t time period under study
h stratum

Q(N h) Population with N, objects, stratum h.
s(nh) Sample with n, objects, stratum h.
The formula notations are as follows for the design STSRS.
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A. ORDINARY EXPANSION ESTIMATOR FOR LEVELS/TOTALS.

; N, ¢ : :
Y=Y=t%y, withthe variance

B My s

Ny

Shu-5)

. 11 .
ViY)=Y N> ———|S?  where S?=22
(7)-3m{ L- s -E

B. SEPARATE REGRESSION ESTIMATOR FOR LEVELS/TOTALS.

Ny
fmg = z[ﬁl +bhyz(Zh A )],Zh = zzhi with the variance
ieQ

h

V( f',eg ) = z V(f}, )[1 - piyz] where the estimator of the

h

y

Z (yhi Y )(zhi - Zh)

coefficient of regression is b, =-%—-
z (Zhi Z, )2

N, _ _

Z(yhi - Yh)(zhi - Zn)
and the coefficient of correlationis p,, =—= =t = ,

A _ [ _

P77 fe -2
ieQ ieQ

C. ORDINARY COMBINED RATIO ESTIMATOR FOR CHANGES.

R= —Y; with the variance V(IAQ) = }IT[V(I?) + RZV()A() - 2RC0V(?,}A{)] =

e

=R* V(Y) + V(X) - ZCOV(Y’ X)} where R = Y/X and the

Y? X? YX

A A 1
covariance is Cov(Y X ) = 2 N} (i - ——~)S,,YS,L,cp,,yJr
h n, N,
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D. REGRESSION COMBINED RATIO ESTIMATOR FOR
CHANGES.

with the variance

vk, )=—]V(Z,)+ BVR,)-2RCon(Y,, %, )] =

where the covariance is

V( ?reg ) V(Xreg ) 2COV( i}reg ’ Xreg )
X

(phxmphym + phyzphxz - phyzphxmphyn )

A A 1 1
col? & V=S N}|—-—1s 8 p, |1- .
V( reg reg) ; h[nh N;,J hy hxphyx[ phyx

E. DOUBLE RATIO ESTIMATORS.

The case with the double ratio estimators will only be dealt with briefly, but
the formulas will be given in section 4.1.3 .

X/
M

~

Y

reg

Ordinary estimator:

A

~

Regression estimator: Qree = 57—

Here four arbitrary auxiliary variables are possible.

The formulas for the design SRS follows from the design STSRS given
here.

Proofs here and onwards will be given in APPENDIX.
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3. REGRESSION ESTIMATORS OF LEVELS

3.1 THEORY

The separate regression estimator for levels with the design STSRS is

)7,38 = Z[I& +bhyz(Zh - Zh)] with the variance V(}A’,eg)z ZV(}A’,,)[I —pﬁyz]
h

h
as mentioned earlier.

Without further loss of generality the SRS design can be studied,

~

Y, = f’+byz(Z—2) with the variance V(f,eg) = V(f’)[l—piz] :

reg

~

The expected value of ?reg conditioning on b, , E(Ymglbﬂ) =Y , is expected

value right. The unconditioned expected value of I?,eg have a bias of order

1/n. The bias of the sampling error V(f’;eg> is of order J—L- f
n

A

Y, =Y +[3yz(Z - Z) the variance V(I?n,g) is exact ( B, is the true coefficient

reg
of regression) .
Then for large samples E( }A’;eg)z Y and with the variance

V(Yreg) = V(Y)[l - piz] N
The efficiency of the regression estimator will be compared versus the
ordinary expansion estimator. With the SRS design you get

A~ V(?reg)
Eff(%,,) = VT -

variable), which makes the regression estimator very efficient if the
coefficient of correlation, p, , is large and it is always true that

V(? ) < V(f’ ) . The efficiency is illustrated below.

reg

1- piz (y is the variable under study and z the auxiliary

Eﬁ(ﬁeg :_VET =1-p},

p 0 020 0.50 0.70 0.80 0.90 0.99
Eff 1 096 0.75 0.51 0.36 0.19 0.02
,/Eﬂ 1 098 087 071 0.60 044 0.14
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As can be seen a correlation of at least 0.70 makes the regression estimator
very efficient compared with ordinary estimator.

So, what then happens in practice ?
3.2 PRACTICE

In practice, as always when a survey is actually done, there are a lot of
disturbances on the theoretical properties from non-sampling errors as for
example non-response, overcount and so on.

With a regression estimator there are to begin with in the theoretical
properties slight biases in the estimator, its variance and the variance
estimator; which biases are small with a proper large sample design. One
practical problem is then a non-fit design.

The main problem is when the estimates of the coefficients of regression are
unstable. As the formulas are conditioned on these estimates, they must be
stable enough to make the formulas approximately right. This is the hard core
if the regression estimates are sufficient or not.

That is, in practice disturbances occur on the theoretical properties that leads
to biases and reduction of efficiency in the estimates. Non-sampling errors
can also lead to stochastic errors with likewise efficiency reduction.

Below the following points are described when a regression estimator is used
in practice :

3.2.1 Non-fit design.

3.2.2 Unstable estimates of coefficients of regression.

3.2.3 Overcount and undercount objects with respect to the
auxiliary information.

3.2.4 Non-response.

Hold the following formulas in mind, the regression estimator of levels for
the SRS design :

A

Y, = Y +b, (Z - 2) with the variance estimator v(?reg) = v(f )[1 - f)iz] .

T

y is the variable under study and z is the auxiliary variable.
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3.2.1 NON-FIT DESIGN

The regression estimator is a large sample formula, that is for sufficiently
large samples the estimates and their variance estimates are approximately
expectation value right. Since the bias of the sampling errors is of order

%/Z , a sample of at least 100 objects is needed both for the SRS design

and the STSRS design . In practice many domains contains less than 100
objects in the sample, especially in enterprise statistics. It is mostly in
enterprise statistics that there are good auxiliary information available.

With too few objects in the sample the regression estimator does not work
but mostly with sample sizes over 50 objects it does as will be illustrated in
the practical examples in section 5.

With few objects in the sample and a STSRS design some of the strata will
contain very few objects according to optimal sample allocation. With non-
response and perhaps some overcount objects the regression estimates in
these strata will be merely nonsense. What causes this will be discussed
below.

3.2.2 ESTIMATES OF COEFFICIENTS OF REGRESSION

The classical problem of regression estimates are the stableness of the
estimates of coefficients of regression.

An extreme case is for example with a sample of two objects. This always
leads to an estimate of the coefficient of correlation equal to one (a straight
line can always go through two points), with an estimated variance equal to
zero. As mentioned above this can occur in small sample strata in the STSRS
design.

What is used here, is the separate regression estimator with an estimate of the

coefficient of regression, b, , , in each stratum. This is the most efficient

regression estimator for a proper design.

Also large sample estimators, but more robust for lesser sample sizes, are the
combined regression estimator (a combined estimate of the coefficient of
regression weighted from individual strata coefficients) and the separate ratio
estimator for levels (the combined ratio estimator for levels is of course even
more robust).

Still another alternative in time-series surveys is to estimate the coefficient of
regression in the separate regression estimator by a model. The model can for
example be that the coefficients of regression are stable over time, but that
they in each time period are unstable estimates. Time series information can
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then by a model-dependent estimate produce stable coefficients. If the model
is eligible this is a good solution for "small" large sample designs and if not
the other estimators mentioned earlier,which use auxiliary information, are
suitable.

3.2.3 OVERCOUNT AND UNDERCOUNT OBJECTS WITH
RESPECT TO THE AUXILIARY INFORMATION

Objects within the frame that do not belong to the population are called
overcount objects. When estimating a total these objects will have a zero
value. For the ordinary expansion estimator this will lead to a larger variance.
The auxiliary information exists for all objects in the frame. In practice this
means that that an overcunt object can have a non-zero auxiliary variable
value. Also, the objects in the frame which belong to the population can miss
auxiliary information which means a zero value of the auxiliary variable.

All this leads to reduction in efficiency of the regression estimator by the
resulting smaller coefficient of correlation and hence the variance.

3.2.4 NON-RESPONSE

Non-response is more critical for the regression estimates than the ordinary
estimates since the non-response can "ruin" the estimates of the coefficients
of regression and correlation. As previously mentioned small strata samples
with non response can lead to mere nonsense.

That is, the ordinary expansion estimates are more robust for non response
errors than the regression estimates. Also, imputation methods become more
complex for the regression estimates because of the more complex estimator.
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3.3 CONCLUSION ON PRACTICAL PROBLEMS

a. Conclusion on practical survey problems, which always occur more or
less, is that more complex estimators are more sensitive to disturbances from
non-sampling errors.

b. To use a more complex estimator the practical problems shall be relatively
small and the more complex estimator shall produce significantly more
efficient estimates.

c. Often, but not always, it is possible to use regression estimates for levels in
the surveys of Statistics Sweden.

d. The use of regression estimators and other estimators that uses auxiliary
information is surprisingly low just now at Statistics Sweden.

e. If the practical problems with the non-sampling errors are too large to use
complex estimators who uses auxiliary information, it is possible to use the
more robust (to non-sampling errors) ordinary expansion estimators. The
auxiliary information can then be used for alternative stratification, non-
response treatment, modelling and so forth.

But;

with few non-sampling errors, a proper large sample-design and a good
auxiliary variable the regression estimator of level is very efficient compared
to the ordinary expansion estimator!
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4. REGRESSION ESTIMATORS OF CHANGES

Regression estimators of changes, such as ratios or differences between
regression estimators of levels, don’t uniformly have the good theoretical
properties as for regression estimators of levels. Also, the formulas here are
messy and not so easy to penetrate. This will be dealt with here.

In the surveys of Statistics Sweden there are always both estimates of levels
and changes. For short time surveys (monthly, quarterly for example) the
estimates of changes are the most important. In yearly surveys it is the

opposite. Often the estimates of changes are calculated as a by-product of a
design suited for the estimators of levels.

4.1 THEORY

The regression estimator of change with the STSRS design is
Y

‘reg Z[Y; + bhyz (Zh - Zh )]

Rre =2 = : ~ ~
"%, ;[Xh+me(Mh—Mh)]

with the variance

V(R,)==5[v(3,,)+ VIR, )-2RCoM(3,, R, )] =

- XZ reg
. R2 V(f}ft‘g ) V(Xreg ) 2C0v(f>reg 4 XAreg )
= A YX =

Y? x?

g L){s:yu—pzﬂgs;<1-pzm)_

_ 2Shythphyx 1- (pkyzphrz + phxmphym - phyzphxmphzm)
Y)( phy}c .
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The properties of this variance is shown better, and without loss of
generality, for the SRS design:

n N Y? X

5 S (1-p2 2(1_ o2
V(Rreg)ERZ(l_l){ (- Pyz)+sx(1_2pm)_

2550 [, _(PuPrtPinPin =P uPuPn) || _ i
YX Py

~|&n
>l

I
i

1 1\S
= Rz(z—ﬁ)?—i 2(1-p,) =P = P2 #2900 + 2P Py 2P P P | =

1 o1ys2] P . P
= Rz(_——)—_y 201-p,, )-p —p2, +2 e :
n N Y2 ( pyx) pyz pxm pyzp)rm{pyZ pxm pZ}n

e

The ordinary estimator of change, R=7 / X , has in the above fashion the
variance

S2
Rlw e

Then, what happens with the efficiency of the regression estimator of change
compared with the ordinary estimator of change ?

Pym , P
. 2 4p2 -2 e
V(Rre ) {pyz pxm pyszm{pyz pxm pm}}

Eff(ng):Wﬂ— 2Ai=p.)

v(R)

i

y and x are variables of study for time periods 1 and O, respectively.
z and m are auxiliary variables for time periods 1 and 0, respectively.

Another thing is that the coefficients of correlation can’t vary freely since
they are pairwise dependent.
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4.1.1 CORRELATION MATRIX

The definition of a covariance matrix gives a clue how the correlation
combinations can vary when the coefficients of correlation are pairwise
dependent.

Feller 1I (see reference 4), pages 82-83: " the covariance matrix of any
nondegenerate probability distribution is positive definit" .

Marsden & Tromba (see reference 10), pages 211-212: "n x n symmetric
matrix B. Consider the n square submatrices along the diagonal.

Xy - - - Xy

ni

Then B is positive definite (that is, the quadratic function associated with B is
positive definite) if and only if the determinants of these diagonal
submatrices are all greater than zero" .

Then the covariance matrix must be greater than zero,
¥'Cx>0=x"px>0 andif x=(1,........ ,1) then Detp>0 .
p in our case is

L py Pr Pym

Py 1 Py Pum
p:

pzx pzy 1

Prc Pmy Pme 1
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According to above (Detp > 0 and all diagonal subdeterminants > 0 ) you get
the following criteria for how the pairwise dependent correlations can vary :

[ @) 1>0.

i 2 . . . .
(ll) pix <1(pyz <1’pim < l’pim < l’piz <1’pfm <1) :

P +Py TP% 2P, PP <1
ﬁ (i) P+ P P = 2P P P < 1

Py PP =2 P P o <1
piz +p32tm +p§m _szszmpz}n <1

(P2 +p2 +p2 +p% +p +P2,) -
~2(p PP + PP ynPrm T PyePonPom +PrcPimPon) +
12(0 PP cPon + P sP P inPom +P P P rProm)
~(p2p% +p%p%, +pLp%,) <1 .

(iv)

—

The criteria for permitted correlation combinations are as the variance
formula for the regression ratio estimator of change quite messy, but never
the less useful.

4.1.2 EFFICIENCY OF REGRESSION RATIO ESTIMATOR

The efficiency formula for the regression ratio estimator (with two arbitrary
auxiliary variables and SRS design) compared to the ordinary ratio estimator,
is from section 4.1 :

Py P o = 2P 1P {pﬂ wPa pm}
=1_] pyz pxm

) Ve
2(1-p,.)

v(R)

B
and the correlation criterias above in section 4.1.1 tells us how the pairwise

dependent correlation combinations can vary.

Let’s first study a more simple case when the auxiliary variables m and z are
the same for both studied time periods, thatism =z .
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As previous mentioned the regression estimator for levels is very efficient
compared to the ordinary expansion estimator according to (with SRS
design) from section 3.1 :

|

~=1-p2 .
)

The purpose here is to see when and if the regression estimator of change is
efficient compared to the ordinary estimator of change. As seen from above
the picture here is unclear and there is not the uniformly powerful result as
for the estimator of levels.

4.1.2.1 ONE AUXILIARY VARIABLE FOR BOTH TIME PERIODS

The more simpler case when the auxiliary information are the same for both
studied time periods, z = m, is the usual case for the short-time surveys
(successive investigation periods less than a year) at Statistics Sweden.

The efficiency formula is here (from the efficiency formula with two
auxiliary variables at beginning of this section) :

V(I’i’regI = m) 1 (pyz - pxz )2

Eﬁ(ﬁreglz=m)=w= 2lisp)

1 pyx pyz
The correlation matrix is here p=p, 1 p,
pzy p 23 1

and the criteria for allowed correlation combinations are according to section
4.1.1:

(1) 1>0.

(ll) pyx <1 (pyz <1;pxz <1) .

(i) Pl +py +P% —20,P,P, <1.

Here are some examples of the efficiency of the regression estimator of
change versus the ordinary estimator of change when the auxiliary
information is the same, z = m, for both studied time periods.
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A. TABLES1-3:

V(I’éregl Z= m) { (pyx - pxz)2

Eﬁ‘(ﬁ’regl = m) = W = —m where y, x and z are
yx

variable of study time period 1, variable of study time period 0 and auxiliary
variable (for both time periods), respectively.
Shaded area in the tables are non-allowed p —matrix according to the

correlation criterias (— = V(ﬁm JZ= m) <0 ) .

TABLE A1: p, =09

Py
Pr 0.20 0.40 0.50 0.60 0.70 0.80 0.90

0.20 1 080 055 020
0.40 0.80 1 0.95 0.80 0.5
0.50 0.55 095 1 0.95 0.80
0.60 0.20 0.80 095 1 0.95 0. X5 |
0.70 77'1 0.55 0.80 095 1 0.95 0.80
0.80 . A6 10.55 0.80 0.95 1 0.95
0.90 <7 20-055]0.80 095 1

TABLEA.2: p, =0.7

Py

P 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.20 1 093 0.85 0.73 0.58 0.40 }Xl

0.40 093 1 0.98 0.93 0.85 0.73 0.58
0.50 0.85 098 1 0.98 0.93 0.85 0.73
0.60 0.73 0.93 098 1 0.98 0.93 0.85
0.70 0.58 0.85 0.93 0.98 1 0.98 0.93
0.80 0.40 0.73 0.85 0.93 098 1 0.98
0.90 0.58 0.73 0.85 0.93 098 1
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TABLE A.3:p,, =0.5

pyz

Py 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.20 1 0.96 091 0.84 0.75 0.64 0.51
0.40 0.96 1 0.99 0.96 0.91 0.84 0.75
0.50 091 099 1 0.99 0.96 091 0.84
0.60 0.84 0.96 0.99 1 0.99 0.96 0.91
0.70 0.75 0.91 0.96 0.99 1 0.99 0.96
0.80 0.64 0.84 0.91 0.96 0.99 1 0.99
0.90 0.51 0.75 0.84 0.91 0.96 0.99 1

As can be seen the regression estimator of change is not very efficient in this
case compared with the ordinary ratio estimator, although

V(IA?,egI z= m) < V(IAQ) .

Even if some extreme correlation combinations, for example
(pyx’pyz’pxz) =(0.7,0.8,0.2) , lead to good efficiency for the regression

estimator, these combinations are rare and not very likely to appear in
practice. For most short-time surveys, the situation p , =p_ exists and leads

to Eﬁ(ﬁregl Z= m) =1 . If the ratio estimator for levels are used for both time

periods with the same auxiliary information z you get

Y A
W 22 ¥ . .\ V(R)
R =-%—=—=R and the efficiency Eﬁ”(R')= — =1 ,which means that
X X VIR
=Z
Z

the auxiliary information used two times cancels out completely, and this is
what happens in lesser scale in the efficiency tables here. By the way, if

b,=Y/Z then ¥ =I7+—§-(Z—Z):—12,—Z .

The conclusions for the ratio regression estimator with the same auxiliary
information used at both time periods (z = m), are that it is slightly more
efficient for most correlation combinations, very efficient for a few extreme
combinations but on the whole the auxiliary information cancels out when
used twice. ( In practice the efficiency often are approximately one since
P,, =P, are common.)

This leads us to the more general case when the auxiliary information is not
the same between the two time periods, z # m . If the above case, z =m, is
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the situation similar to short-time surveys, the more general case, z # m, is
more similar to the situation for yearly surveys.

4.1.2.2 TWO AUXILIARY VARIABLES

The efficiency formula to be studied here from the beginning of the section is

_ Pym Py
v(k,,) {piﬁpi” 2p”p"”{pyyz+pm p”"H
(

- h
v(R) 2(1-p,,) where

Ef(R,,) =

y is variable of study time period 1, x is variable of study time period O,
z 1s auxiliary variable time period 1 and m is auxiliary variable time period 0.
The correlation criteria for allowed p -matrix are according to section 4.1.1 .

As can be seen, the principal difference between the case z=m and z # m is
the factor F,

F= {pﬁ +-pi-pm} , which is equal to one when z=m .

¥z p xm

If F>1then Ef(R, ) > Ef(R, 1z=m) , that is

R, is less efficient than R

regl z=m

formulas are the same. Similarly if F<1 then Eff(R,,) < Eff(R Tz=m)

that isR, . 1s more efficient than R

regl z=m *

since the denominator in both efficiency

Let us study correlation combinations where the factor F is less than one,
since the efficiency picture of Eff(ﬁ Iz= m) is known and less efficient in

reg
this case. Even if only positive correlations are studied in the tables, there are
no restrictions on negative correlations besides the correlation criteria for the
permitted correlation matrix. In practice though, positive coefficients of
correlation will dominate.

Here are some examples of the Eff(f?,eg) (with factor F less than one) for

different correlation combinations when it is supposed that p , =p,, =p,, -

This assumption of equality of the cross correlations is for simplicity of the
tables and hopefully not to unrealistic in practice.
But first, let”s study values of the factor F for different correlation

combinations.
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TABLEB.1:p, =p_=p, =0.4

.
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[p% +p%, —20,.p,.F]

2(1-p,,)

Py
P im 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.20 . /%2])6/0}/04/
0.40 27 ¥17,1.1071.04 VF21
0.50 . 1.07[0.97 0.90 0.84
0.60 07]10.93_0.84 0.77 0.71
0.70 097 0.84 0.74\0.67 0.62
0.80 . 101090 0.77 0.67 0.60\0.54
0.90 04 _Y0410.84 0.71 0.62 0.54 0.49

TABLEB.2: p . =p_=p, =0.2

Pye

VF<1

Do 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.20 1, A)/M%,e{/ps//@j VF2>I
0.40 39[0.80.0.70 0.64 059 0.55 0.52
0.50 /% 0.70 0.60 _0.54 049 0.45 0.42
0.60 1)4]0.64 0.54 0.47_0.42 039 0.36
0.70 % 0.59 0.49 042 0.37_034 031
0.80 054055 0.45 0.39 0.34 0.30_0.27
0.90 1/9{ 0.52 042 036 031 0.27 0.25
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These tables show us where the factor F is less than one, for which we shall
study the efficiency of the regression ratio estimator with two auxiliary
variables compared with the ordinary ratio estimator. From above we have,

if F <1 then Eff(ﬁ,eg) < Eﬁ(f?,egl z= m) and if F 21 the opposite.
C.TABLES1-6:

(Rl Py =P = Pon) [P *P% =20, F]
v(R,) 21-p,)

~ Vv
Eﬁ‘(R,egI Pym =P =P F<1)=

where F = {pym [—1—+—1—— 1} . Y, X, z, m are the variables of study time

period 1 and O and the auxiliary variables time period 1 and 0, respectively.
Shaded area in the tables are non-allowed p - matrix according to section

4.1.1.
(-=V(R,Ip,, =p. =p..)<0).

TABLEC.1: p,=09,p,=p, =p,, =0.4

pyz
0.20 0.40 0.50 0.60 0.70 0.80 0.90

0.20

0.40

0.50 2 0.701 015
0.60 0.75 0.28 /04 -5
0.70 0.70 _0.281 ~ --

0.80 018 /- A DS /
0.90 ey d

TABLEC.2: p,=09,p, =p,=p,, =02

Py
P 020 040 0.50 0.60 0.70 0.80 0.90
0.20
0.40 068 035~~~ _~-
0.50 035 [~ A L =«
060 |F21]| < « : -
0.70 o T LN A
0.80 L L AL >
0.90 L L 7
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TABLEC3: p,=0.7p,=p,=p,, =04

Py
P 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.20
0.40
0.50 F21 [0.90 0.72 0.49
0.60 __J092 076 057 0.33
0.70 0.90 0.76 0.58 0.37
0.80 072 0.57 0.37 0.15 <
0.90 049 0330 z

TABLEC4: p, =07, =p,=p,, =02

Py
P 0.20 040 0.50 0.60 0.70 0.80 0.90
0.20 .
0.40 0.89 0.78 0.65 0.47 0.25Y0,
0.50 0.78 0.67 0.52 0.34[012 /--
060 |F=1 [0.65 052 0.36 0.17/f ;
0.70 047 034 0.17 - S
0.80 02503 A~ /- -
0.90 | 0ot~/ ‘-
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TABLE C.5:p, =0.5,p,, =p,=p, =0.4

Py

P 0.20 040 0.50 0.60 0.70 0.80 0.90

0.20

0.40

0.50 F>1 094 0.83 0.70

0.60 0.95 0.86 0.74 0.60

0.70 0.94 0.86 -0.75 0.62 0.48

0.80 0.83 0.74 0.62>0.49 0.33

0.90 0.70 0.60 0.48 0.33~0.17
N

TABLEC.6:p,=05,p,=p,=p,, =02

pyz

P 0.20 040 0.50 0.60 0.70 0.80 0.90

0.20

0.40 0.94_0.87 0.79 0.68 0.55 0.40

0.50 0.87 0.80_0.71 0.60 0.47 0.32

0.60 F>1{079 0.71 0.62 0.50 0.37 0.22

0.70 0.68 0.60 0.50 N0.38 0.25 0.09

0.80 0.55 0.47 0.37 0.25>0.10[7-

0.90 0.40 032 0.22 0.09[ -

Conclusions on the efficiency of the regression estimator of change with
different auxiliary information for two consecutive time periods compared
with the ordinary ratio estimator will be given below, and also supplementary
conclusions on the regression estimator with the same auxiliary information
for the two time periods.
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EFFICIENCY FORMULAS ACCORDING TO PREVIOUS:

v(R,,)

2 2 _
General case: Eﬁ( Amg) = V(fe) —1- [pyz +Pom — 2P P F ]

2(1-p,,)

where F = {pﬂ+£"z——pm} .

¥z p xm

Studied cases:

A Viénl m = =P 2 im_z . me
Eff(RregIPym=sz=Pz,,. ﬂFSI): ( 4 p’;/(ﬁ% P )=1_[pyz+z(l_pp39 ]
yx

where F={pym[—1—+‘—)1——pmj} and
pyz xm

A 2
Eff(R, 1z=m)= ViR 1z=m) 1 ————(p” ) <

<1

A.TfF<1 then EF(R,, )< EF(R, Tz=m)<1.
If F=1then Eff(R,, ) = Eff(R, Tz =m)<1.
T F>1 then Eff(R,,)> EF(R, Tz=m)<1.
It is provided in the inequalities and equality above that in
Eff(f%,egl z= m) Py =P - The p—matrix is more bounded in the case

z=mthanin z#m .

That is, for the case F 21 I%,eg is less or equal efficient than ﬁ,egl «=m » Which

means that the conclusions for R are equal or worse for the general case

regl z=m

ﬁre . - The main conclusion for the z = m case is that R is slightly more

regl z=m

efficient than R, but on the whole that the same auxiliary information used
twice cancels out and Eff(f?,egl z= m) =1.

The interesting area where it is possible to find great efficiency for ﬁ,e o 18
then when F <1 .
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B.If F <1 then Eff(ﬁmg) <1 . The conclusions for this case are :

-- The higher p,, the smaller is the allowed p — matrix area. For very high

correlation between the variables of study, x and y, for example 0.9 or more
the allowed p —matrix is almost nought. Here there is no use to deal with the

regression estimator.

-- If p,, are more moderate, say 0.5 - 0.7, the picture looks better for

efficiency gains for the regression estimator.
For low cross correlations (between time periods; p ym>Pxz>Pon ) » high

auxiliary variable correlations (p,,p,,) and moderate or low variables of
study correlation (p,,) the higher is the efficiency gain for the regression
estimator compared to the ordinary ratio estimator.

-- The situation studied here are similar to yearly surveys, consecutive years
or longer intervals. Efficiency gains for the regression estimator ought to be
possible between two consecutive years, say p,, = 0.7 or lower,

p,, and p . = 0.6 or higher and the cross correlations

Pym:Pr and p,, =~ 0.4 or lower.

The best situation for efficiency gains for the regression esrtimator ought to

be for intermittent surveys, for example a yearly survey done each third year.
Then p,, will be lower, say 0.5 with high auxiliary correlations 0.6 or more

and low cross correlations, say 0.2 .

-- The main conclusion is that, if F <1, p is moderate, the auxiliary
correlations are high and the cross correlations between the time periods are
moderate or low; there are great efficiency gains for the regression estimator.
The conclusion for F >1 is slightly better or worse efficiency compared to
the ordinary estimator of change.

If F <1 there might be efficiency gains, sometimes great, for the regression
estimator.

If F 21 there is no use for the regression estimator.
4.1.3 DOUBLE RATIO ESTIMATOR

An even more complex case is for the double ratio estimator, which includes
four regression estimators of levels and with four arbitrary auxiliary
variables. The variance of this regression estimator explodes with correlation
terms and regression estimator should be compared to the ordinary double
ratio estimator. The efficiency formula will be given here, but this case will
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not be further studied here although some conclusions maybe can be drawn
from the former studied cases.

1. DOUBLE REGRESSION RATIO ESTIMATOR :

5 [2 [7+5,(2,-2)|/|2+2,,(2,- 2,)]
" Xf/Muy [X+b,, (M~ 1,)|/[ M+, (M, - 11|

Y/Z

with parameter Q = X/—M and variance
V(Qreg ) = QZ[CVZ (?reg /Zreg ) + CV2 (Xreg /Mreg ) - 2CV2 (?reg/ZAreg ’ Xreg /Mreg )] =

—_ Q2 V(?’eg ) + V(Zreg ) 2C0v(i}reg 2 2reg) +
B YZ

Y? Z*

{V(Xreg) V(Mreg) 2C0v(}2reg’Mreg)}
+ + -
x? M? XM

~ A ~ ~

2{ co?, %) colZ,.m,) covl?,.M,,) Cov(Z,eg,X,eg)H
—_ + —_—

YXx M ™ zX

S
= [Model assumption: All population coefficients of variation equal ; S == :I =

e Y

o 1 1)53 2 Py, . P
o Lo L\ lo(1op )=p? —p? +2 Pry (P o L,
0 (n e (1-p,)-p% —p% +2p, .. o p b

Yz

pxmz pmml
+{2(l—pm)—pim, = P2y +2P s Prum, {p—+——pm,pm2 J}-

xmy xmy

p my ple pz pmz;
_Z{Iipyx—pyzlpxm,{py +'p_#—‘p11pm1}:|+|:plm_pZZzpmmz{pmz +p —pZZP’”I }:I_
¥ xmy “ "

p Pz, P, , Px,
—[Pm-Pﬂ,PW{ =+ —=—p, P, H-[ou-pazpm {——+———-phml H .
Py Prom, Puy  Pum
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2. DOUBLE ORDINARY RATIO ESTIMATOR :

>

N>

/

Q = 3 with the parameter Q =

Y/Z

and variance

=

v(0)= 0 cv2(¥/2)+ cv¥(&/ 1) -20v(7/ 2,2/ )| =

:Q2HV(?) v(2) 2Cov(f’,2)}+ {v(;z) V(1) zcov(;z,m}_

+ - + -
Y? A YZ X2 M? XM

=~

ZM YM ZX

=

_2{cov( ,;2)+c0v(z,zr4) Cov(?, M) c0v(z,;2)H

= {Model assumption: All population coefficients of variation equal ; :g_— =

(11N _
0 (;—]—V-j - [2(1-p,. )+ 2(1-p.) = 2(p, + P ~ Py P20 )| =

=~

%!

QZG—%);-%[Z{(I—pyz)+(1—pm)—(pyx D =P =P}
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3. THE EFFICIENCY FORMULA is then

A V(Q,e ) 1
Eﬁ( Te, ) = "g =1-— 7 X
TV0) T 2(1-p,)+(1-p) - (P +Pom — Py 20|
X pizl +p§lz —2py11p712 pyzZ + pzzl _pzllz +
p)’zl pzz2
H Py T Promy 2P s, Ponm, {—p oy Doy ~Pomm, H—
L pxm1 pmm2
[ P Pa Por,  Pr, ]
- 2pyzlpxml . + _pz,ml - 2pzz2pmm2 + _p22m2 +
B p ¥21 p xmy pzzz pmmz |
+H 2P, P, {—p”"z g e P, (|| 2P2,Pm, Pon | Pey —pzzml} -
| pyz] pmm2 pzzz pxml ]

The correlation matrix is here

Ipy Py Py Pyy Py Pymy Pym,
Py 1 Pu Pm Py Pz Py Pom,
Py Pe 1 P Puy Pay Pam  Pam
Py Pme Pme 1 Puy Puy, Pum  Pom,
Poy Pae Pax Pem 1 Py Pomy  Pom,
Pay Puz Poux Pum Puy 1 Pom Popm,
Py Pmz Pmx Pmm Pmzy Pmz, 1 P
Prmy Pmz Pmyx Pmgm Pmyzy Pz Pagm 1

and the allowed p —matrix criteria for the pairwise dependent correlations

can be calculated according to section 4.1.1, but we will stop the theory
chapter here and continue with the practice.
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4.2 PRACTICE

Some general estimation problems was described under section 3.2,
Practice/Levels. The following points where treated:

-- Non fit-design.
-- Unstable estimates of coefficients of regression.

-- Overcount and undercount objects with respect to the auxiliary
information.

-- Non-response.

These practical problems with respect to regression estimators for levels was
considered more problematical than for the ordinary blown-up estimator,
since the regression estimator with variance is a large sample formula and
hence much more complex.

If these practical problems are severe for the regression estimator of levels,
they are even more problematical for regression estimators of change, which
are even more complex large sample formulas.

The conclusion that the ordinary estimator of levels is more robust with
regard to these practical problems, will hold, but not to the same degree for
the ordinary estimator of changes; since it also is a large sample formula.

Below the following points will be discussed:
4.2.1 Problems of estimation for complex estimators.
4.2.2 Considerations on estimates of levels and changes for the same design.

4.2.3 How much efficiency gains shall it be to to deal with much more
complicated formulas?

4.2.1 PROBLEMS OF ESTIMATION FOR COMPLEX ESTIMATORS

A general problem in the estimation procedure of complex estimators and
their variances is that after practical modifications the estimator and the
variance get different properties, for example a non-response treatment
model, and it is easy to make mistakes with straightforward calculations
without much afterthought.
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One possible mistake is that the same parameters in different places in the
variance are estimated for different subsamples which leads to the variance
estimator not being coherent with the variance, which in turn can lead to that
the variance estimate is less than zero in extreme cases.

Another possible mistake is that one looks at the original plan of design and
estimators and ignores the practical modifications made, for example a non-
response treatment model, which leads to non expectation value right
variance estimates with respect to the modeling dealing with practical
problems.

There are solutions to these problems. Below will be given an example of the
estimation problems of an complex estimator and their solutions.

EXAMPLE OF PROBLEMS OF ESTIMATION FOR COMPLEX
ESTIMATORS :

We illustrate the problem mentioned above for the regression ratio estimator
of change for the case with the same auxiliary information (z = m) at the two
consecutive time periods.This is a special case of the formulas given in
chapter 4.1 when z # m. We consider as before a complete panel design for a
non-dynamic population and the design STSRS, which we illustrate for the
SRS design which is enough to show the points.

Planned design (for consecutive time periods 1 and 2) :

Q(N) X ; variable of study, time period 1.
y ; variable of study, time period 2.
z ; auxiliary variable for both periods.

A. ESTIMATES FOR THE PLANNED DESIGN WITHOUT
MODELING FOR PRACTICAL PROBLEMS

Regression estimator of level at time period 1;

N A A N Y N . .
X, =X+bxz(Z—Z)=-—2xi+bﬂ(zzi—72ziJ and for time period 2;
n

i€s, ieQy i€s,

7 =7 )=N3 > 2, - 23 i
reg = 4t byz (Z - Z) e ;Z y; + byz 2 Z,— —n—zzi where the estimators of
ies, i€Qy i€sy

the coefficients of regression are
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> (% -z -3) > (5, -5)z~2)
bxz — i€s, . and byz = ies, - )
Z(ZI_Z)Z Z(Zi_z)z
The variances for the estimators above are
N _ 2
11 Z('xi —X)
O V= N2 )21 _n2 ] o2 _ i€y
v(%,)=N (n N)Sx[l pL]s 81 =" B and
N —_—
1 1 2()’;‘ - Y)2
V(i}reg> =N 2(——‘5)%2 [1—(3;] ; S =i—en”—-N——— and their estimators are
n —
i(xi _x)2
v 2 __1___1_ 2[1 _ A2 2 _ les,
V(Xg>_N(n st [1-pL]: 7 == and

The estimators of the coefficients of correlation are

n

ix—x z—z }’,

sz = n and pyz
z —z z —z
IEJ ex

~ ~

The regression estimator of change isthen R =Y, / )A(n,g with the

variance

v(R,,)= ;2 [v(%,,)+ RV(X,,)-2RCoM(Y,,, X,,)] which is estimated by

AR, ) == [WT,)+ B R, ) -2k, cor(7,, %, )]

The covariance is equal to Cov(Y X,eg) N? (—rll——%l—)SySIPyx |:l -

yx

pﬂpn}



ceee 32 —ee-

reg

Proof’: Cov(f ,)2'"8 1b= [:3J= Cov( ) b Cov( ) b, Cov()A(, Z)+bxzbyz Cov(Z, 2) =

v(2)

—Nz(l—%)[S -b.S,-b,S, +b.b S2] [1fb B] Con X,eg)above.

n 27 yz¥z
The estimator of this covariance then follows by

cov(ﬁeg,)?mg)ENz(%—%)[ —b,s,—b,s, +bxzbyzsz]

w{iRpon A5
yx

p,, is based on the n sample objects as p,, and p,, .

This is the estimation procedure without practical problems.
So far no problems!

What happens then with the estimation procedure after practical problems?

We just consider non-response problems and assume the non-response
treatment straight adjustment ("mean value imputation") with accordingly
practical modeling.

First, the design after response objects has changed from the original
complete panel design to an overlapping design and second, how does the
estimation procedure look like with this practical modeling? This will be
described below.



Planned design:

Design after

non-response:

S ¥

Q(N)

for time periods 1 and 2.
x; var. of study, per. 1.
y ; var. of study, per. 2.
Z ; aux. var., both periods.

Non-response

V%

Q(N)

s(n,l ): n, response

objects in the sample
at time period t.

s(g)= s(n,l )ﬂs(n,2 ) .

s(n,l )

(n.)

B. ESTIMATES FOR THE PLANNED DESIGN WITH
MODELING FOR PRACTICAL PROBLEMS

Regression estimator of level at time period 1;

N n
T

iy

N
N
b i —— Z;
XZ[,EZQN n, ie%)

N

)Y

) N &
zyﬁbyz 4= ;Zi
i ) i€Qy r ies "’z)

and for time period 2;

where the estimators of the
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The variances for the estimators above are

N

1 1 Z(Xi _)_()2
¢ J=n2 2 e2[1-n2 ] 2 = i€
v(%,)=N (n,, stx[l p2]; 83 S and
N j—
11 Z()’i - Y)2
V( Areg)E NZ[ “N]SE[I_P;] P Sy 253”7\[—1— and their estimators are
nrz —

;gx ~2e-2) ,-e;,,qu" -5)z -2)

and f)yz =

"'y

\/.n(zq)()’i—y_)z Z(Z,"'Z)2

ies(nq)

The regression estimator of change is then R . = Y, . / X, . With the

variance

V( A,eg ) = }%[V(ﬁeg) +R V( A,eg ) - 2RCov(f’,eg, )A(,eg )] which is estimated by

A

R )= B )+ R, )28 oor(7, %, )]

The covariance is equal to
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X2 YL

Proof cOv( ,eg,f(,eglz}=[§)= Col ¥, X)~b,Con?,2) - b,,Co X, 2) + b b, Co(2,2) =

) Nz( ; - XlfJ[Syx - bszYz b)"ZSXZ + bxzbyzslz] [f 5 = B ] - COV( ?reg’ Xreg) above.

The estimator of this covariance then follows by

cov(f’,eg,)? )ENZ[ g —i)[syx b,s,—b,s, +b.b s]

re, Xz yz xZTyrUz
8 nn N * y
1 2

¥

: ) A A
_ Nz( g _NJ 5.5.p [1 _E?;Z_pﬁ:} where p, and p, are estimated as previous and

This is the estimation procedure with practical problems.
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Below this estimation procedure will be discussed and possible mistakes that
can be made are pointed out.

Mistakes that can be done with straight forward estimation, particulary the
estimation of the variances, for complex estimators are listed below. The
mistakes mentioned has been done by the author in his survey practice.

-- Ignorance of the overlapping panel design after non-response.
-- Reduction of the variance formulas not finished.

-- The same parameters (for example population-variances and coefficients
of correlation) in different places in the estimates of the variance formulas
can be estimated by different subsamples and ruin the consistency with
the variances; for example negative variance estimates.

SOLUTION: Look at the conditioned variance after non-response (or other
non-measurement error models) and try to get the best variance estimator
with the consistency of the variance properties retained.

With variance consistency we mean v(é I allowed p - matrix) 20
and E(»(6))=v(6) .

We look at the example again.

A.IGNORANCE OF THE OVERLAPPING PANEL DESIGN AFTER
NON-RESPONSE

A

Cov(Y

reg?

)A(reg I original complete paneldesign) =N? (l - —Ilv)S S0 [l - M}
n p

y¥x
»

and

Cov(f’ X, I panel design after non - response) =N Z(L— %f]sysxpﬂ ':1 —M{I .

reg?““reg
n”l n’z yx

Without afterthought the term 1/n may be replaced by 1/g or something else,
that either makes the covariance after non-response too large or too small.
The solution, above, comes from the conditioned theoretical solution of the
covariance after the non-response-treatment-model and the overlapping panel
design.
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B. REDUCTION OF THE FORMULAS NOT FINISHED

A calculation of the covariance Cov(Y X Inonresponse) leads to

reg? ““reg

Cov(Y,,g,X,eg Inonresponse)=N2[n . ——I—J{S -b.S, -b,S, +b.b 5} =
1
=N?| & SSp.. 1-PoPs U o4 is estimated by
n.n, 2 .

reg? ¥z

nn

1 R ~ ~
=N}t~ $,5.0 1—————pyf‘pxz :
n"lnrz N pyx

Say, that we have not finished the reduction of the formula above and now
try to estimate it straightforward. Then

cov(Y X Inonresponse) ( ————J{s -b,s,-b,s, +b.b s }-

s, = 5,5, is based on the sample s(g), and hence here s, s; and p,, .

s,, = 5,5,0,, is based on the sample s( ) and hence here 52, s7 and p, .

S, =$.5,p,, is based on the sample s( ) and hence here 52, s” and p, .

b, =P, 5,/s, is based on the sample s(n, ), and hence here sy, s;and P, .
b, =p,, s./s, is based on the sample s(n, ), and hence here s2, s, >and p,, .
Should Sz be based on sample s(n, ), s(nrz) or s(n) (the auxiliary variable z

is available for all objects in the frame) ?

This gives us two estimators sy2 based on samples s(g) and s(n, ) . The same
is valid for s; with samples s(g) and s(n, ) . We also have two estimators s?
based on samples S(“r,) and s(n,z) ; and possibly a third based on s(n) . For

each of the coefficients of correlation there is only one choise;
P,, is based on sample s (g), p,, on s(n, ) and p_, on s(n, ) .

This will clearly not be a consistent estimator of the covariance above, where
all population-parameters are based on the whole population Q(N) . If we
look at the reduced formulas the estimation problem will be easier. The best
estimate for each population parameter will be;

sy2 and p , based on the sample s(n, ), s? and p_ based on s(n, ) and
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p , based on s(g) (the problem of estimating Sf separatly has disappeared

with the formula reduction). This will probably be the best solution, but we

will penetrate similar estimation problems further below.

C. THE SAME PARAMETERS (for example population-variances and
coefficients of correlation) IN DIFFERENT PLACES IN A

VARIANCE FORMULA CAN BE ESTIMATED BY DIFFERENT

SUBSAMPLES AND RUIN THE CONSISTENCY BETWEEN
THE VARIANCE AND THE VARIANCE ESTIMATOR;
for example negative variance estimates

The variance after nonresponse is according to previous

V(ﬁw o | nonresponse) = %—[V(I}

2 reg

~

)+ RV(R,)-2RCo(R,, %,,,)|=

reg?““reg

1 1 1 1 1
:FI:NZ[Z—WJS)?[I_piz]-*—RZNZ Z—-ﬁjsz[l—piz]—

| -
—2RN? [——g—-— - —ﬁ)Snyp . [1 _PrPa and is estimated by
nr' an Cov(y,x) pyx -

v(f{,eg I nonresponse) = 212 [v(?,eg) + IAifegv()A(,eg) - 21A€reg cov( A,eg,}?ng )] =

reg

. {Nz(i‘%}i[l—ﬁ;]%zwz —L--]},-]sf[l—ﬁi]-

If we for every population parameter takes the best estimator we have

syz[s(nr2 )],sf[s(nrl )],f)yx[s(g)],ﬁyz[s(n,2 )],f)ﬂ‘[s(nrl )] and bxz[s(nrx )] in )A(,eg .
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1. To maintain an allowed estimated correlation structure, since the
correlations are pairwise dependent (see section 4.1.1, Correlation matrix),
the estimates of the correlations must be based on the same subsample, in our
case s(g), which leads to lesser than the best estimates for p,, and p,, . The

correlation matrix in the population is always allowed an based on Q(N) and

the same is valid for the estimated correlation matrix based on s(n), original
design without non-response.

What shall we then chose; an guaranteed allowed estimated correlation
matrix based on s(g) or the best possible estimates for each correlation but
with a small risk of getting a non-allowed estimated correlation matrix?

Previous in section 3.2.2 we stated that "The classical problem of regression
estimates are the stableness of the estimates of coefficients of regression”
and this is the same for the coefficients of regression. This makes it easy for
the author to chose the second alternative, the best possible estimate for each
correlation but with a small risk of getting a non-allowed estimated
correlation matrix!

With a fit design (see section 3.2.1 Non-fit design) and not too large non-
response the problem ought to be small, but the risk still exists for negative
variance-estimates due to a non-allowed estimated correlation matrix.

A practical point of view is also that the estimators

A

v()A( ) and v(?’eg) enters v(R ) without corrections.

reg reg

2. All population variances must in the variance-formula be estimated by the
same subsample, respectivly, to guarantee consistency with the variance

V(f"ng) . The best choise for

s; is the sample s(nrz) and for s’ the sample s(nr’ )

3. If the population covariance S, = Cov(y, x) is estimated as s,, = cov(y,x)
by s(g) we get s, =p,,[s(g)]s,[5(2)]s.[s(¢)] and hereby breaks the rule that

each population parameter always shall be based on the same sample, and the
best possible.

The solution s,, =p,,[s( g)]sy[s(n,2 )]sx[s(n,1 )] is possible since p,, is a non-

dimentional measure and independent of the rest.
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4. A further question is what happens with the efficiency formulas after non-
response?

We start with the efficiency formula for the original design (and without the
assumption on equal population coefficient of variation for the variables of

study, x and y) :

V(R 1original design) = — N2 ~L ) s2[1-p2 |+ R252[1-p?]-2RS 5,p, [ 1~ PP |
X2 n N ¥ yz ¥ ¥y

reg

»
=L U e resz-2Rs 5,0, ]-[520% + RS2 2R, 5,0, |} =
- X2 n N y x y xpyx ypyz x y xpyszz

~v(R)-= N (Li)(s p,—S.p.) andsince V(R,,)>0 and V(R)20
n

A

it follows that V( ) < V(IAQ‘) , which means that Eff (IA?,eg T original design) = VWE)— <1.

reg

The same calculations after non-response leads to

V(ﬁ,eg I nonresponse) = —g—j—{(-ﬂ—l——iszz[l - Piz]"‘ R’ [%—%)Sf[l —Piz] -

n N i
g PP || _
—ZR(n n —N}Sysxpyx':l_; }"'
nn pyx n
N? 1 1 I 1 g 1
=—|—-—=|S’+R| —-—[$?-2R -—155p, |-
x? {Knr2 NJ ¢ [n,] N [n,lnr2 N |’ xpyle

1 1 1 1 g 1
| ——=|$%% +R| ——— |s%p% —2R —&———|s § =
Hnrz N] Py (”r, N] P nn, N 7Py

_N_z {Sfp; + Rszpiz _ 2RgSnypyszz:|_(iy/p_yz - Rjﬁxz )2
N N
B

n, n, nn, )

s

>4
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2
I_;Ct C — S)’pyz - RSxpxz — S)?pil + Rszpiz . 2R'\/Z'\/;1_’2—S)’Sxpylpxz
"nrz \/Z nrz n nn .

h in
‘/Z: \/n—,z_ 2 g since E 2 \/E and ‘/Z 2 \/E (Thank you! Monica Rennermalm ) .

Q(N)

Jeo

s(n, ) s(n, )

It is then clear that C > B and that C < A, which meansthat A> B .

Since A> B, V(R )20 and V(R)20 it is clear that V(R,, ) < V(R) ;

~

V(R,)

reg

which means that Ejj‘(ﬁ’,eg I nonresponse) = TY <1.
VIR

For the design and estimators in our example the regression estimator is
always equal or more efficient than the ordinary estimator, both for the
original design and after non-response.

The estimated efficiency has not strictly this properties since by stochastic
reasons X, # Xand R, # R , that is
Eff (IAireg I original design ) and I:Jff(f?,eg 1 nonresponse) can be larger than

one.

5. The empirical results in chapter 5 have the same regression estimator of
change as in the example and corresponding ordinary estimator for the design
STSRS and we shall here see estimated efficiences and ratios

)A(mg / X and IAQ,eg / R . Also corresponding results for estimators of levels will

be presented here.
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4.2.2 CONSIDERATIONS ON ESTIMATES OF LEVELS AND
OF CHANGES FOR THE SAME DESIGN

For the sake of simplicity, we assume here as before a non-dynamic
population.

For estimates of change it is best with a complete panel design on assumption
that all correlations between variables of study are positive, which they
almost always are in practice.

For estimates of levels that do not use auxiliary information from different
time periods, besides information in the current frame, it is irrelevant of the
degree of overlap in the panel design or independent samples.

If estimates of levels are added to give an estimate of a total for several time
periods, it is best with independent samples between the different time
periods, since

X +7 has the variance V(X’-I- ?) = V()A() + \7(17)+2Cov(f(, ?) which is

clearly greater than V()? )+ V(?) , which is the variance for the case with

independent samples between time periods.

For estimators of changes, R= I?/ X, the variance

v(R)= }IT[V(Y) + RV(X) - 2RCou(F, R)| s smallest when Cov(7,) is the
greatest possible, which it is with a complete panel design :

Cov(? X1 overlapping panel design and n =n' ) =N’ (;gz_ —%)Snyp , and

Cov(y,x)

max|g] Cov(?,)?): NZ(%—%)SySXpW wheng=n.

See picture below.

Q(N)

s(n) s(n')
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That is,
-- For estimates of change, R=Y / X, a complete panel design is best.

-- For estimates of levels, Xand 7, itis independent of the degree of overlap
in panel designs or independent designs between time periods as far as no
auxiliary information are used between time periods, besides current frame
information.

-- For estimates Y + X it is best with independent sample designs between
time periods.

So, a complete panel design will be best in most cases.

The next question is, how shall the sample be allocated with a panel STSRS
design for different estimates of levels and changes?

The optimal sample allocation results for the ordinary estimator of levels
with the design STSRS is (see Cochran, reference 3) according to Neyman
1934 (given here without the costfunction) :

D>
™M
e

=
|
z|-

N’

2

X= EX 2 th with the variance V(X) ZV( e

h nh les(n,,) h h nh
N, o\ N,
. z(xhi_Xh) } thi
where 52, = <2 and X, = <o)
N, -1 N,
2 X A pX 2
Planned precision for a 95 % confidence interval : p = X =( 2 ) .

X
Minimize n = Znh for given variance V(X) (pz ) V:

h

2
N.S
DY -

n =—~2__ “_ and n, =
” V+Y NS * Y N,S,
h

These results can be generalized to all estimators © that have a variance
of the form

V)= - Jal ]

h
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Since the only variables to be optimized are the n,:s and all other terms are

constants the proof follows from the X - case to all © - cases above by
substitution of

fh[ ( )] instead of S, V(@) instead of V(X’ ) and © instead of X.

This means that all estimators in this paper can be given an optimal sample
allocation since we always have a complete panel design (STSRS) in a
non-dynamic population.

Take for example;
A. THE ORDINARY LEVEL ESTIMATOR

%= %, with the variance V(%)= ZNZL———Jf,,[ v(%)]

n,

where fh[ ( )] s> .

B. THE ORDINARY COMBINED RATIO ESTIMATOR

A

Y,

Y% (R)= ZNZ[;;———)J‘,,[V )

h

=
I
D> | <>

h

where f,|V(R)]= %[S,fy +RS. ~2RS, S,p,.] -

C. THE SEPARATE REGRESSION ESTIMATOR

%1y = 2 [1, +5,,(2, - 2,)] with the variance V(&,,) = ¥, NZ(— ——) V()]

h h

where fh[V reg ] Sfx[l—pixz] .
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D. THE COMBINED RATIO REGRESSION ESTIMATOR
(with different auxiliary variables m and 7 for the two time periods)
fa Y

v 2[2;+bhyz(zh_2h)]
reg h

X,eg = ;[}A(h . (Mh - Mh )] with the variance

reg =

V)= 3 V(R where VIR, =155 003 5312

n,

[phyzphxz + phxmphym - Phyzphxmphzm]
phyx

—2RS, S, Ph:y1—

Then, how shall the sample be allocated in a multipurpose survey?

The usual way in enterprise statistics is to use an auxiliary variable, number
of employees per enterprise or establishment, and to use this for an Neyman
sample allocation of levels (the usual design is STSRS and the estimators are
the ordinary for levels and changes) and to use this for all estimates in mostly
a multipurpose survey. Another good auxiliary variable is available, total
sales, but is curiously enough not used either for stratification or sample
allocation, although in the survey in chapter 5, with the empirical results, is
now used a combined ratio estimator for levels based on this auxiliary
variable.

The auxiliary information are usually one to two years old with reference to
the time period under study.

Sample allocation with old sample data is presently not used, but is an
alternative for allocation for more complex estimators and also with regards
to multipurpose aspects.

Auxiliary information in general can be used in several ways; optimal
stratification, optimal sample allocation, PPS-sampling, the information used
in the estimators (as for example regression estimators); but there is always a
limit when the auxiliary information is used up and no more efficiency is
possible to gain.

For example, with the same auxiliary information it is possible to use it for
optimal stratification and optimal sample allocation. If then the same
auxiliary information is used in the estimators, i.e. regression estimators,
there is not much gain for variance-reduction since most of the power in the
auxiliary information is already used up.
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With more than one auxiliary variable much more efficiency (variance-
reduction) in the estimates is possible to gain.

In a multipurpose survey an efficient deign must always be a compromise
between estimates of levels and changes, between different level estimates
and between different estimates of changes and also other aspects of
multipurpose (for example domains, timeseries-considerations and need of

analysis).

PRIORITY-QUESTIONS ABOUT AN EFFICIENT DESIGN FOR
MULTIPURPOSE-USE :

-- Priority between different survey-estimates; levels/changes and so forth?
-- Priority between survey-analysis and survey-estimates?
-- Shall sample allocation be with or without a cost-function?

-- Shall sample allocation be with considerations of non-response?

All depends on the most important goal for the survey and how much
money is available!

With this we leave these questions to the competent readers!

4.2.3 HOW MUCH EFFICIENCY GAINS SHALL IT BE IN ORDER
TO DEAL WITH MUCH MORE COMPLICATED FORMULAS?

a. Simpler formulas are often pedagogically clearer to show and explain to
users of statistics!

b. More complicated (complex estimators) and more efficient estimators
shall be significantly more efficient (than simpler estimators) since they
mostly are pedagogical unclearer (What happens in the survey-process?),
they take more data efforts and are more sensitive to nonsampling-errors
(mean-square-error considerations).

Let us see if the practical example with the empirical results in next chapter
shows significantly efficiency gain for the complicated formulas (regression
estimates) versus the simpler ordinary estimates.
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5. PRACTICAL EXAMPLES ON REGRESSION AND ORDINARY
ESTIMATORS FROM A SURVEY AT STATISTICS SWEDEN

The practical examples with empirical results of regression and ordinary
estimates are from a retail survey at Statistics Sweden, who at the time used
the ordinary estimators for levels and changes. At present the combined ratio
estimator is used for levels, and hereby the ordinary estimator of change (see
Bergdahl, reference 1).

This retail survey is done monthly and quarterly, with according time-periods
of study with STSRS and a complete panel design for an approximatly
non-dynamic population per calendar year. Stratification variables are
number of employees and business groups.The variable of study is turnover
in domestic trade. The auxiliary variable used in the regression estimates is
also turnover, but one year old information available from a turnover
taxation register for almost the whole frame. Enterprise-objects who miss
auxiliary information have zero as auxiliary variable value.

The periods of study for the regression versus the ordinary estimators was the
first and the second quarter of 1989.

The frame-population consisted of 85.000 enterprises with a sample of about
6500 enterprises. The auxiliary information was the same for both periods of
study. The non-response rate was alarmingly high, about 35 % .

This study with regression versus the ordinary estimators is described more
in detail in Carlsson & Garas, reference 2.

The design (STSRS and a complete panel ) and the estimators are shown
below.

Q(n,) Q(n,)

+— Nonresponse ’
s (nh ) ’ % @

=—

s{rh) s(r,)

x = variable of study, turnover in domestic trade, quarter 1 1989 (period 1).
y = variable of study, turnover in domestic trade, quarter 2 1989 (period 2).
z = auxiliary variable, turnover in domestic trade, both quarters.

r = response objects including known overcount.
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A. ORDINARY ESTIMATORS

Estimated total, time period 1 :

Z Z x,, With variance - estimator v(f( ) Y.N; (—1— - NLJS'Z‘X
S n,,,l h

h nhr, ie

n,,,l

(x ~%,)° x
Xni ~ Xp )hi
ien — iestn .. . . .
where 5; =—2—— ; ¥, =——— and similarily for time period 2 .
n,, —1 ny,

. with variance - estimator v( ) 2N2 — s,
h nhrz ies nh,z Nh

nhr2

Ry &
(e =3)°
; Yoi = Y zym‘
2 ies "hrz) e ies(n,,,l)
where Shy —-———1———— s Yy = .
nhrz nhrz

The estimator of change is then

ie:—lf- with variance - estimator v(i&)':‘%[v(f’)+ R ()A() 2Rcov(f’ )A()]

P

A A 1 .
where covlY, X N? —p,..5,.5, and
( ) z (nh,-l nhrz Nh ]phxy hy" hx

Sh & o
_Z(xhi_fh)(yhi_yh) .thi .zyhi
ﬁhxy - - ies(gy) = where .fh — ies(gy) and yh __ ies(g,) .
h B , ~ P .
J 2 (xhi_xh)z z'(y,u.——yh)2 h h
ies(gy) ies(g,)

All other sub-estimators as above and the implicite non-response treatement
model for all estimates and sub-estimates here is mean-value imputation or

corresponding.
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B. REGRESSION ESTIMATORS

Estimated total, time-period 1 :

}A(,eg = Z[X'h +bhxz(Z - Zh )] with variance - estimator v(
h

>
&
N—
n
>M
<
——
:‘N)
—
Jo—
}%D)
[

where Xh and v()z',,) according toX = 2 )2,, and v(f() = 2 v(f(,,) ;
h

h

n,,,l

N . ;(xhi - X, )(zhi "Zh)
u! ~ N 21 ies ”'"l)

_ _ 4V —
Z,= zzm v Ly = ;zhi » by, = o and

i€Q(N,) nhr‘ ies n,‘,‘) (Zhi _ Zh )2
ies{ny,
Npn hn Tan
;(xhi -3 2 — %) ;xm‘ ;Zhi
P = ieslm) where x, = i) and 7, = i<l .
n n,
hn 2 e _\2 nh,] nh,l
2 (x,“.——x) (Zhi‘“zh)
ies| "hn) ies\ny,

Estimated total, time-period 2 :

v = 2[}7; + bhyz(Zh -Z, )] with variance - estimator v();',,_,g) = v(l?,, )[1 ‘ﬁiyz]

reg
h

where f/h and v(f/,,) according to ¥ = z )A’,, and v( IA/) = Zv(f’h) ;
h

h

Tppy
N, . N ™ A ()yhi —= )(zhi _Zh)
Z,= 2.2, - 2 ;zm , by, =— - and
ieQ(N,) hry ies(ny,) (Zhi _ -Z-h )2
ies\ny,

By Mhry Thry

;(yhi - yh)(zhi - Zh) ;yh; ;zh,-
f) — ies n,,q) Whel‘e yh - ies n,,,z) and Zh - ies! n,,,z) .

hyz gy 2 Mhry 2 nhr2 nhr2
(yhi—yh) ;(Zhi—zh)
ies n,,,2) iesl "hvz)
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The estimator of change is then k,eg = I?,eg / X,eg with variance estimator

A

v(IAQ )EXI [v(? )+1§fegv( Areg)-ZIAi,egcov(Ymg,)z',eg)] where

reg

reg

Cov(i}reg’jzreg) = ZN: L—'_l—— P p _____hxzphyz
h

n hn n hry h hxy

according to ordinary estimators and all other sub-estimators according to
above.

The implicit non-response treatment model here for all estimates and sub-
estimates is mean value imputation or corresponding.

Since the estimators of correlation are not based on the same sample, but the
best for each correlation estimator, the possibility exists of a non-allowed
estimates correlation matrix, which can lead to negative variance estimates.

The formulas here are motivated in section 4.2.1, Problems of estimation for
complex estimators.

Now to the results!

In Table 5.2: Domains of Study some extreme results are marked with a
frame.

In Table 5.3: Sample Strata all non-allowed correlation combinations
are marked with a frame according to criterias in section 4.1.2.1 on page

16.
Also extreme reults here are marked with a frame.
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TABLE 5.1 : GRAND TOTAL

X reg Areg V( ?re 3 ) R reg
3 7 \F) R

0.91 058 097 051 107 072
080 058 086 051 1.07 083

(In line one is reg.est. = ord.est if n, =1 and in line two not adjusted.)
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TABLE 5.2:1 : DOMAINS OF STUDY

Numb. Str./domain Domain — — = = = =
X viXi Y v‘Yi R viRi

01 1 1000 -- -- -- -- -- --
02 6 1902 093 071 098 058 1.05 1.01
03 4 1903 088 084 082, 086 _0.93 1.07
04 5 1904 0.91 0.74 ! 196 0.62 {2.15] 1.15.
05 6 1905 0.68 098 107 0.65 [1.58 ]2.32]
06 5 1906 066 057 072 080 1.09 115
07 6 1907 1.07 063 1.07 060 100 0.75
08 5 1908 0.78 043 050 045 0.64 1.12
09 4 1909 098 094 099 093 1.01 099
10 6 1910 099 0.75 1.00 075 101 092
11 6 1911 093 092 095 089 1.02 096
12 5 1912 099 081 1.00 0.73 101 1.01
13 5 1913 086 0.52 087 052 101 0.80
14 6 1914 095 050 096 059 101 094
15 6 1915 082 0.06 088 0.07 1.07 0.12
16 6 1916 0.79 0.07 0.75 025 095 1.15
17 1 1917 -- -- -- - --

18 2 2000 099 076 098 053 0.99 035
19 6 2002 1.04 0.67 1.06 066 1.02 0.81
20 3 2005 088 064 095 068 1.08 093
21 4 2009 076 065 077 072 1.01 122
22 6 2010 0.69 052 074 047 1.07 1.00
23 6 2011 1.02 098 1.06 0.70 1.04 0098
24 2 2012 -- -- -- -- -- -
25 1 2013 -- -- -- -- -- --
26 3 2031 097 025 097 034 1.00 0.88
27 3 2032 1.05 0.67 1.05 067 1.00 075
28 4 2041 079 080 079 069 1.00 0.86
29 5 2042 085 048 086 056 1.01 090
30 5 2061 035 010 1.01 090 {28 4—1.531
31 5 2062 092 084 091 088 "0.99 105
32 4 2063 087 068 085 057 098 1.09
33 5 2071 044 080 047 078 1.07 223
34 4 2072 105 098 106 098 101 094
35 5 2073 085 037 086 055 1.01 1.05
36 4 2074 0.85 063 091 056 1.07 1.20
37 4 2075 1.14 074 1.17 074 1.03 083
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TABLE 5.2:2 : DOMAINS OF STUDY

X
Numb. Str./domain Domain ;g

38 5 2081 1.01 075 1.00 070 099 0.88
39 3 2082 1.16 079 1.09 078 094 0.70
40 4 2083 1.11 084 106 094 095 0.84
41 4 2084 090 045 085 043 094 0.89
42 5 2101 096 096 096 096 1.00 1.03
43 5 2102 104 085 101 074 097 0.89
44 5 3101 1.01 058 1.02 049 101 0.75
45 4 3201 046 0.16 045 0.13 098 045
46 5 3202 1.18 076 1.09 079 092 0.73
47 6 3203 099 087 099 076 1.00 1.00
48 5 3204 103 067 103 087 1.00 0.76
49 6 3205 096 034 093 035 097 0.64
50 5 3206 099 0.76 099 084 100 0.88
51 5 3207 056 099 058 099 104 1.87
52 4 3208 098 073 097 064 099 0.51
53 5 3209 096 034 095 040 099 0.64
54 6 3210 097 094 101 092 104 098
55 5 3401 1.02 084 1.02 086 1.00 0.77
56 6 3402 080 074 0.83 082 1.04 1.17
57 5 3901 160 092 158 086 099 0.61
58 5 4001 1.15 050 1.15 0.60 1.00 0.61
59 5 4101 098 048 089 052 091 081
60 5 4201 1.08 065 1.07 068 099 0.79
61 3 4202 104 092 105 083 101 0.78
62 5 4203 038 056 028 052 074 1.99
63 4 4204 0.66 046 062 057 094 0.71
64 1 9999 -- ~- -- - -- --

(290 Str./domains and 288 exclusive domains 1000 and 1917.)



TABLE 5.3:1: SAMPLE STRATA

Y R

_ N ~ A ~ reg reg reg

Number Sample-stratum . . P Px Py % 7 N ?) %
001 1902 1 180 17 15 047 0.64 0.70 0.68 0.76 0.77 0.72 1.14 1.53
002 1902 2 38 10 10 093 093 093 1.10 0.38 1.12 0.38 1.02 1.00
003 1902 2 80 18 17 0.83 0.01 -0.04 1.00 1.00 0.99 1.00 0.99 1.00
004 1902 3 9 5 4 059 080 0.80 0.82 0.59 0.98 0.60 1.20 1.15
005 1902 3 1 1 1 - - -—- --- -— -— - - -
006 1902 4 10 10 10 0.96 0.98 094 1... --- 1.... — I.... -
007 1903 1 36 12 11 | 1.00 0.55 0.51 | 0.72 0.84 0.67 0.86 0.93 1.25
008 1903 2 3 3 3 097 -0.60 -0.40 1. -— 1. - 1. -—-
009 1903 2 4 3 3 0.66 -0.57 -0.99 1.11 0.82 1.11 0.12 1.00 0.90
010 1903 3 3 3 3 -028 -0.05 097 1... - 1... - 1... -
011 1904 1 129 4 3 1.00 -0.16 0.43 0.41 0.99 22.05 0.91 53.68 r207.00
012 1904 2 19 12 12 091 077 0.82 0.85 0.64 0.79 0.58 0.92 1.00
013 1904 2 39 5 5 1.00 0.98 097 0.79 0.22 0.79 0.26 1.00 1.00
014 1904 3 5 5 5 1.00 1.00 0.99 1.... --- 1... --- I.... -
015 1904 4 3 3 3 1100 -020 -0.23 1. --- 1... --- 1.... ---

el rg ———




TABLE 5.3 : 2 : SAMPLE STRATA

o ss‘ ——-

N A A A reg Yre g Rre g v ( Rreg )
Number Sample-stratum " . P P Py % 7 2 IET
016 1905 1 316 16 15 | 097 -0.18 0.93 0.55 0.98 1.58 0.37 2.85 5.77
017 1905 2 90 18 17 097 0.65 0.72 1.12 0.76 1.11 0.70 0.98 1.00
018 1905 2 59 7 7 091 -0.15 -0.32 1.05 0.99 1.07 0.95 1.02 0.91
019 1905 3 19 13 12 036 074 0.71 0.98 0.67 0.94 0.71 0.96 1.00
020 1905 3 4 3 3 1.00 -0.80 -0.84 0.56 0.59 0.56 0.55 1.00 1.00
021 1905 4 2 2 2 l.... 1 l... 1. --- l.... - l.... -
022 1906 1 186 12 12 090 0.88 0.60 0.60 0.47 0.74 0.80 1.24 0.83
023 1906 2 50 13 13 093 032 044 1.00 0.95 1.00 0.90 1.00 0.98
024 1906 2 53 5 5 1.00 0.99 0.99 0.87 0.12 0.88 0.15 1.01 0.44
025 1906 3 19 16 16 0.88 0.74  0.87 0.97 0.67 0.96 0.50 0.99 0.98
026 1906 4 3 3 3 1.00 [-1.08 —1.08‘ 0.73 --- - f 1.12| 1.00
027 1907 1 1721 45 41 096 0.85 0.88 1.30 0.53 1.30 0.48 1.00 0.58
028 1907 2 356 32 31 098 0.77 0.77 1.05 0.64 1.03 0.64 0.98 0.82
029 1907 2 334 23 23 0.97 -0.13 -0.16 1.10 0.99 1.11 0.99 1.01 0.94
030 1907 3 38 15 15 097 046 0.39 1.00 0.89 1.00 0.92 1.00 0.92
031 1907 3 6 6 6 1.00 -018 -0.18 1. --- 1. - l.... --=
032 1907 4 13 13 13 099 0.63 0.56 1 --- 1.... - 1 -




TABLE 5.3 : 3: SAMPLE STRATA

Number Sample-stratum N . . FA’)-x P, P, Xifg g erg

X R
033 1908 1 247 10 9 083 084 0.83 0.58 0.54 0.50 0.56 0.85 1.50
034 1908 2 33 8 8 098 031 0.26 0.87 0.95 0.89 0.97 1.03 1.10
035 1908 2 27 3 3 {100 1.00 1.00 0.61 0.06 0.62 0.07 1.02 0.54
036 1908 3 5 5 5 098 035 051 l.... --- L. -=- L. ---
037 1908 4 2 2 1 e --- 1... - -- --- - ---
038 1909 1 134 5 5 1.00 0.20 0.27 1.13 0.98 1.17 0.96 1.04 0.93
039 1909 2 19 7 7 1.00 -041 -0.42 0.88 0.91 0.88 0.91 1.00 1.14
040 1909 2 19 7 7 069 020 -0.10 0.91 0.98 1.03 1.00 1.14 1.19
041 1909 3 4 4 4 1.00 097 0.96 1. - 1... - I... ---
042 1910 1 4110 70 64 093 0.59 0.60 0.94 0.81 0.93 0.80 0.78 0.96
043 1910 2 832 80 74 087 075 0.83 1.07 0.66 1.11 0.55 1.04 0.84
044 1910 2 857 13 12 077 0.16 -0.12 1.00 0.99 1.00 0.99 1.01 0.94
045 1910 3 138 44 41 081 0.70 049 0.99 0.72 0.98 0.87 0.99 0.98
046 1910 3 9 8 8 1.00 -0.15 -0.16 1.03 0.99 1.03 0.99 1.00 0.93
047 1910 4 34 34 33 096 096 0.96 --- 0.96 0.28 1.01 0.29

——— 95‘ -




TABLE 5.3 : 4 : SAMPLE STRATA

onmm [S‘ cem-

Number Sample-stratum N n P p p Xreg Vg 'eg)

D " n yx xz ¥z Xv ? V(?
048 1911 1 842 118 107 093 063 0.72 1.31 0.77 1.33 0.70 1.01 0.66
049 1911 2 244 28 28 098 079 0.79 1.02 0.61 1.02 0.62 1.01 0.77
050 1911 2 333 13 12 089 048 037 1.46 0.88 1.37 0.93 0.94 0.68
051 1911 3 35 28 28 1.00 -0.19 -0.15 0.59 0.98 0.66 0.99 1.11
052 1911 3 10 9 9 1.00 097 097 0.94 0.25 0.93 0.25 0.9 0.79
053 1911 4 20 19 18 100 041 037 1.06 0.91 1.04 0.93 0.98 0.88
054 1912 1 716 50 48 058 043 0.6l 0.90 0.90 0.94 0.79 1.03 1.11
055 1912 2 131 66 66 090 087 081 0.99 0.50 0.99 0.59 1.00 0.98
056 1912 2 206 8 8§ 092 057 051 0.82 0.86 0.90 0.49
057 1912 3 14 8 8 074 083 0.67 1.04 0.56 1.03 0.74 1.00 0.96
058 1912 3 4 4 4 096 056 039 ... ... L...
059 1913 1 478 27 24 098 084 087 0.55 0.49 1.00 0.41
060 1913 2 101 21 20 096 085 081 0.67 0.53 0.69 0.59 1.03 1.23
061 1913 2 84 8 7 100 099 0.99 0.67 0.17 0.53 0.17 0.79 0.37
062 1913 3 10 9 9 100 095 097 0.9 0.32 0.99 0.23 1.00 0.99
063 1913 4 1 1 1




TABLE 5.3 : 5: SAMPLE STRATA

e 85 -

v
Number Sample-stratum N \ P P Py Xieg reg ( jg) reg
’ | X ¥ W7)

064 1914 1 1841 46 42 093 055 0.53 1.11 0.84 1.06 0.85 0.95 1.00
065 1914 2 379 65 64 0.81 086 0.66 0.97 0.52 0.96 0.76 0.99 0.95
066 1914 2 336 18 17 1.00 077 0.76 0.64 0.50 0.65 1.14 1.87
067 1914 3 61 39 39 0.89 080 0.63 1.09 0.59 1.09 0.78 0.99 0.93
068 1914 3 4 4 4 098 064 0.78 I.... --- I.... - I.... ---
069 1914 4 6 5 5 100 1.00 1.00 0.82 0.04 0.81 0.05 1.00 1.00
070 1915 1 292 4 4 098 -036 -045 1.03 0.93 1.04 0.89 1.01 0.89
071 1915 2 80 4 5 100 1.00 1.00 0.37 0.05 0.47 0.06 1.27 0.25
072 1915 2 76 7 6 090 096 0.80 2.36 0.29 3.20 0.60 1.35 0.29
073 1915 3 20 9 8 098 099 099 1.52 0.10 1.33 0.12 0.88 0.29
074 1915 3 3 2 2 .. L. 1. 0.92 0. 0.69 0. 0.75 0.
075 1915 4 8 8 8 098 099 099 L.... --- 1. - 1... -
076 1916 1 194 4 4 100 100 1.00 0.26 0.02 0.25 0.06 0.96 3.65
077 1916 2 33 13 12 098 044 043 1.21 0.90 1.19 0.90 _0.98 1.00
078 1916 2 76 5 6 017 0.60 -0.29 2.62 0.80 0.59 0.96 , 0.32
079 1916 3 3 2 2 ... 1. 1. 3.81 0. 3.81 0.... 1.00 0.
080 1916 3 5 5 5 100 097 097 l... --- 1. --- 1. -
081 1916 4 7 7 6 096 -0.07 -0.24 l... --- 1.01 0.97 1.01 1.00




TABLE 5.3 : 6 : SAMPLE STRATA

== 69 ——-

n ~ X y reg) reg)

Number Sample-sratum N . P Pn P —=£ =5 = =

' : : X 7 WP v R
082 2001 2 6 4 4 095 065 085 [048] 076 053 0.6l 0.57
083 2001 4 3 3 3 l 0.99 1.00 0098 | I.... --- 1.... -—- 1... ---
084 2002 1 5253 55 54 098 0.76 0.80 1.12 0.65 1.16 0.60 1.03 0.68
085 2002 2 1295 65 64 095 075 0.74 1.01 0.66 1.02 0.68 1.01 0.95
086 2002 2 1708 15 13 0.92 -0.37 -0.33 0.95 0.93 0.96 0.95 1.02 1.00
087 2002 3 88 12 12 098 0.59 0.61 1.06 0.81 1.06 0.79 1.00 0.99
088 2002 3 3 3 3 1.00 -0.94 -0.94 1.... - 1.... --- -
089 2002 4 3 3 3 1.00 1.00 1.00 1.... -—- 1... -—- -
090 2005 1 875 39 35 094 0.69 0.69 0.91 0.72 0.93 0.72 1.02 1.11
091 2005 2 23 4 4 098 096 1.00 0.68 0.28 0.78 0.09 1.16 1.00
092 2005 2 90 10 10 046 0.05 0.73 1.02 1.00 1.62 0.69 1.59 0.72
093 2009 1 555 30 30 0.89 0.80 0.80 0.81 0.60 0.80 0.60 1.00 1.00
094 2009 2 20 5 5 0.74 -0.15 -0.08 0.94 0.49 0.96 1.00 1.03 1.00
095 2009 2 153 7 7 098 0.08 0.14 0.94 1.00 0.87 0.99 0.92 1.22
096 2009 3 1 1 1 -—- - - --- --- - - ——-




TABLE 5:3 : 7: SAMPLE STRATA

P>

4 R

Number Sample-stratum N n, i 0 . Ax 5 reg reg reg

' 2 P Pe P X 7 R
097 2010 1 1673 34 35 097 067 066 0.73 0.74 077 075 105 1.00
098 2010 2 363 19 19 093 065 073 0.87 0.76 084 069 096 112
099 2010 2 757 16 17 [100 085 091] [0001] 047 013 041 [T1.61] [198200]
100 2010 3 102 25 20 090 049 035 T.01 0.87 102 094 101 095
101 2010 3 5 s 5 100 -041 -041 .. .. ..
102 2010 4 4 14 14 099 -0.05 -0.05 — 100
103 2011 1 1577 213 198 005 -002 053 1.00 1.00 102 085 1.03 102 |
104 2011 2 8 10 9 090 080 076 1.66 0.60 167 065 100 053
105 2011 2 547 8 § 099 074 081 1.38 0.67 146 059 106 050
106 2011 3 5 5 5 100 027 027 I I.. I.. o
107 2011 3 1 1 1
108 2011 4 9 7 6 098 079 067 0.97 0.61 097 074 100 077
100 2012 1 1 0 I
110 2012 4 1 1 1 e -
111 2013 4 1 ! R




TABLE 5.3 : 8 : SAMPLE STRATA

———- 19 ———

Number Sample-stratum N ) p p Xreg ?reg i ) R )

n r yx xz ¥z X ? V(i} V(Rj
112 2031 1 629 22 22 098 098 095 0.80 0.22 0.81 0.31 1.01 1.22
113 2031 2 60 9 8 098 083 0.82 1.52 0.55 1.43 0.57 0.94 0.44
114 2031 2 61 12 12 0.83 -0.18 -0.17 0.95 0.98 0.95 0.98 1.00 1.05
115 2032 1 347 56 53 098 0.73 0.74 1.10 0.68 1.11 0.67 1.01 0.75
116 2032 2 13 13 13 0.97 098 0.97 I.... --- I.... - l.... ---
117 2032 2 28 8 6 096 0.81 0.78 0.79 0.59 0.72 0.63 0.91 0.88
118 2041 1 752 14 12 | 099 059 0.74 | 2.01} 0.81 0.67 1.08 0.36
119 2041 2 15 3 4 1.0(_)_ 099 0.99 0.71 0.11 0.79 0.11 1.11 0.18
120 2041 2 169 9 9 097 032 0.34 0.92 0.95 0.92 0.94 0.99 1.07
121 2041 4 1 1 1 - —- - - - —- — - —
122 2042 1 437 46 43 093 0.83 0.77 1.10 0.56 1.07 0.64 0.98 0.77
123 2042 2 67 20 19 094 0.81 0381 0.82 0.58 0.78 0.58 0.95 1.01
124 2042 2 53 12 10 083 0.10 046 1.00 0.99 1.21 0.89 1.20 1.00
125 2042 3 3 2 2 1.... 1. 1... 0.90 0. 0.92 0.. 1.02 0.
126 2042 4 1 1 1 - --- - —-- - -—-




TABLE 5.3 : 9 : SAMPLE STRATA

Number Sample-stratum N n n p p 0 X’eg ?’eg R’eg v( Areg)

n r2 »x xz p)‘z )"( ? k —V(ET
127 2061 1 2460 38 37 [096 1.00 044 | 1.01 0.10 0.95 0.90 9.43 | | V=135
128 2061 2 212 17 17 095 028 027 1.02 0.96 1.02 0.96 1.00 0.98
129 2061 2 308 24 22 024 052 0.04 1.21 0.85 1.01 1.00 0.83 0.62
130 2061 3 16 8 8 087 092 075 0.99 0.40 1.00 0.66 1.00 0.87
131 2061 4 9 9 9 096 080 0.90 ... [To51
132 2062 1 587 29 28 098 0.57 0.0 1.10 0.82 1.07 0.87 0.97 0.89 ;
133 2062 2 65 9 9 095 046 040 1.00 0.89 1.00 0.92 1.00 0.99 '
134 2062 2 64 10 10 0.69 -039 -0.43 0.64 0.92 0.70 0.90 1.10 1.73 D
135 2062 3 7 6 5 11.00 -0.15_ 0.01 ] 1.02 0.99 1.01 1.00 0.99 0.98 ;
136 2062 4 1 1 1 '
137 2063 1 985 36 35 093 060 0.57 0.94 0.80 0.93 0.82 0.99 1.03
138 2063 2 55 8 8§ 079 080 0.99 0.80 0.61 0.71 0.16 0.89 0.98
139 2063 2 91 9 9 046 029 0.06 0.96 1.17 1.00 0.84 0.71
140 2063 3 1 1 1




TABLE 5.3 : 10 : SAMPLE STRATA

- g9 mene

Number Sample-stratum N p p p X e T)* ?reg 3 i?,eg
h r yx Xz ¥z X v }2 Y v( A) R

141 2071 1 890 45 45 072 057 055 1.13 0.82 1.11 0.83 0.98 0.86
142 2071 2 149 26 25 097 0.63 0.76 0.96 0.78 0.91 0.66 1.03 0.66
143 2071 2 162 6 6 089 -0.65 -0.58 1.15 0.76 1.15 0.81 1.00 0.87
144 2071 3 4 3 3 [100 018 0.13 | 1.03 0.98 1.02 0.99 0.99 0.32
145 2071 4 1 1 1 7 e e -
146 2072 1 404 24 24 097 0.14 0.02 1.13 0.99 1.02 1.00 0.90 1.00
147 2072 2 114 14 12 1.00 -0.21 -0.22 1.04 0.98 1.06 0.98 1.02 0.95
148 2072 2 63 6 6 098 -042 -0.37 1.23 0.91 1.23 0.93 1.00 0.81
149 2072 3 8 6 6 095 -0.03 0.06 1.00 1.00 1.01 1.00 1.01 0.97
150 2073 1 839 46 45 090 0.81 0.69 0.88 0.59 0.88 0.72 1.00 1.09
151 2073 2 60 26 25 096 0.96 0.90 0.79 0.30 0.83 0.43 1.05 0.95
152 2073 2 168 14 13 090 0.38 040 m 0.93 [ 0.92 1.02 0.56
153 2073 3 3 2 2 1L 1. 1. 1.12 0. 1.12 0. 1.00 0.
154 2073 4 1 1 1
155 2074 1 498 24 23 076 048 0.61 1.05 0.88 1.33 0.79 1.27 1.02
156 2074 2 32 5 5 098 099 0.99 0.64 0.16 0.64 0.12 1.00 1.56
157 2074 2 127 6 6 096 026 038 1.01 0.97 1.02 0.93 1.01 0.86
158 2074 4 1 1 1




TABLE 5.3:11: SAMPLE STRATA

———- k9 ———

A A X Y R
Number Sample-stratum N n, . I reg reg i reg
X Y v(Y R
159 2075 1 1096 32 32 089 053 0.60 1.25 0.85 1.34 0.80 1.07 0.76
160 2075 2 56 8 8 100 082 0.78 0.83 0.58 0.84 0.63 1.01 0.95
161 2075 2 184 6 6 094 070 072 0.71 0.70 0.92 0.53
162 2075 3 5 5 5 091 -020 -0.29 1.... 1., 1...
163 2081 1 1162 111 106 094 0.69 0.76 1.02 0.72 1.01 0.65 0.99 0.85
164 2081 2 60 31 30 094 049 046 0.99 0.87 0.98 0.89 1.00 0.97
165 2081 2 76 2 2 1. l.. 1. 1.36 0.... 1.44 0.... 1.06 0....
166 2081 3 5 4 4 096 010 038 0.98 0.99 0.93 0.92 0.95 0.24
167 2081 4 2 2 2 1. 1. 1. L.... 1... 1...
168 2082 1 300 26 23 098 0.65 0.65 1.14 0.76 1.12 0.76 0.98 0.72
169 2082 2 19 4 4 099 048 050 1.08 0.88 1.08 0.87 1.00 0.92
170 2082 2 47 4 4 -0.17 096 -0.39 1.64 0.30 0.75 0.92 0.46 0.33
171 2083 1 1175 55 51 075 045 037 1.08 0.89 1.05 0.93 0.97 0.91
172 2083 2 58 12 12 065 083 031 1.32 0.56 1.11 0.95 0.84 0.59
173 2083 2 312 13 12 069 070 007 0.96 0.71 1.06 1.00 1.10 0.84
174 2083 3 2 2 2 l.. l.. 1. 1.




TABLE 5.3 : 12 : SAMPLE STRATA

N b S l N A~ A n X"eg '?re Rreg
er Sample-stratum n, N . . ~ : .

umber Sample-stratu . . Py P P, % v R

175 2084 1 502 39 38 0.97 090 091 0.81 0.44 0.77 0.41 0.95 0.98
176 2084 2 35 11 11 098 0.93 0.86 1.12 0.36 1.12 0.51 1.00 0.89
177 2084 2 100 7 7 0.92 -0.05 -041 0.95 1.00 0.68 0.91 0.71 0.42
178 2084 3 2 2 2 -1.... 1. 1... 1... --- 1... -—- 1... ——
179 2101 1 3836 36 38 0.59 0.31 0.17 0.92 0.95 0.95 0.99 1.04 1.09
180 2101 2 837 33 33 0.84 -0.01 -0.11 1.00 1.00 0.95 0.99 0.95 0.99
181 2101 2 413 26 24 0.81 0.31 045 0.86 0.95 0.74 0.89 0.87 1.07
182 2101 3 62 10 10 083 0.69 0.82 1.11 0.72 1.18 0.57 1.07 0.74
183 2101 4 14 12 12 1.00 0.86 0.87 0.91 0.51 0.92 0.49 1.00 1.06
184 2102 1 726 21 24 0.60 0.53 0.66 1.01 0.85 0.96 0.75 0.95 0.89
185 2102 2 332 27 28 065 022 046 1.10 0.97 1.08 0.89 0.98 0.87
186 2102 2 91 4 4 048 094 0.60 2.03 0.33 1.54 0.80 0.76 0.40
187 2102 3 73 20 20 056 063 0.87 0.95 0.77 0.92 0.49 0.98 1.00
188 2102 4 10 10 10 1.00 -0.29 -0.30 1. - 1... - 1...

wnn= 99 -




TABLE 5.3 : 13 : SAMPLE STRATA

Number Sample-stratum N n p p p X f/'eg : ﬁ'eg

n n yx xz ¥z }2 ? V( ") I’é
189 3101 1 2400 57 56 090 0.66 0.3 1.17 0.75 1.13 0.85 0.97 0.80
190 3101 2 302 44 41 096 086 094 0.86 0.52 0.89 0.33 1.03 0.72
191 3101 2 140 12 10 099 029 030 1.03 0.96 0.97 0.95 0.94 0.95
192 3101 3 32 31 31 0.87 0.09 0.00 1.00 1.00 1.00 1.00 1.00 1.00
193 3101 4 14 14 14 099 -043 -041
194 3201 1 888 17 16  0.90 --- - --- - - - --- -
195 3201 2 60 36 35 083 038 043 0.98 0.92 0.98 0.90 1.00 1.00
196 3201 2 13 10 10 1.00 -0.11 -0.10 0.78 0.99 0.79 0.99 1.00 1.15
197 3201 3 9 9 9 081 -0.77 -0.63 1. - I... - 1. -
198 3201 1 2166 25 25 095 0.70 0.69 1.26 0.72 1.25 0.73 1.00 0.79
199 3202 2 187 29 29 088 -0.12 -0.16 0.98 0.99 0.97 0.99 0.99 1.01
200 3202 2 58 9 9 093 085 0.69 1.19 0.53 1.14 0.72 0.96 0.68
201 3202 3 36 25 25 071 054 031 1.41 0.84 1.14 0.95 0.80 0.49
202 3202 4 5 5 5 08 094 098 1. --- l.... - 1.

- 99 ———




TABLE 5.3 : 14 : SAMPLE STRATA

Number Sample-strat N n D P P X”g ?'e k'eg

umber Sampie-stratum " n Py P Py, X’ ? IAQ

203 3203 1 1695 26 27 097 045 054 1.01 0.89 0.96 0.84 0.95 0.84

204 3203 2 284 17 17 0.68 049 0.73 0.87 0.87 0.87 0.68 1.00 1.15

205 3203 2 143 8 8 093 0.35 0.39 0.91 0.94 0.90 0.92 0.99 1.09

206 3203 3 69 28 28 096 049 0.54 1.19 0.87 1.23 0.84 1.03 0.79

207 3203 3 4 4 4 074 0.83 0.44 l.... --- I.... -—- I.... ---

208 3203 4 17 16 16 097 091 0385 0.96 0.42 0.96 0.53 1.00 1.00

209 3204 1 1657 37 35 0.01 0.76 0.14 1.01 0.65 1.00 0.99 1.00 0.81 ;\
210 3204 2 256 18 17 0.78 0.78 0.54 1.10 0.63 1.12 0.84 1.02 0.80 N
211 3204 2 87 12 11 099 0.80 0.75 1.30 0.60 1.23 0.66 0.94 0.61 §
212 3204 3 44 12 12 095 047 045 0.96 0.88 0.97 0.89 1.00 1.07

213 3204 4 13 13 13 097 0.89 0.83 I... 1. I... -

214 3205 1 2250 37 31 095 0.84 0.80 0.98 0.54 0.92 0.59 0.93 0.74

215 3205 2 262 56 53 0.99 098 0.98 0.94 0.20 0.91 0.21 0.97 0.41

216 3205 2 236 18 17 1097 040 0.62 1.20 0.92 1.38 0.78 1.15 0.36

217 3205 3 22 21 21 099 099 0.99 0.95 0.15 0.95 0.16 1.00 1.05

218 3205 3 1 1 1 - --- --- - --- --- -

219 3205 4 4 4 4 095 098 091 1. I... I.... -




TABLE 5.3 :15 : SAMPLE STRATA

LT 89 P

Number Sample-stratum N 0 0 0 Xres ?’”g k"‘g
umper mpie-Siratu - - 2 = = =

p h n p) p p X Y R
220 3206 1 167 25 25 093 072 0.70 1.08 0.69 1.07 0.71 1.00 0.93
221 3206 2 34 14 15 097 061 044 0.93 0.80 0.93 0.90 1.00 0.81
222 3206 2 6 4 4 100 0.11 0.11 0.94 0.99 0.95 0.99 1.00 1.00
223 3206 3 4 3 3 100 -0.73 -0.73 0.81 0.68 0.81 0.68 1.00 1.00
224 3206 4 3 3 3 088 089 0.56 1... 1... 1...
225 3207 1 473 27 27 099 -0.12 -0.13 [-0.04 \ 0.99 0.02 0.99 0.60
226 3207 2 48 25 24 093 -0.04 -0.03 1.01 1.00 1.01 1.00 1.00 1.00
227 3207 2 17 4 4 100 -0.76 -0.76 0.65 1.93 0.65 1.00 1.00
228 3207 3 9 8 8 083 064 0.69 1.02 0.77 1.02 0.72 1.00 1.00
229 3207 4 3 3 3 030 096 0.03 ... 1. ...
230 3208 1 56 4 4 099 023 030 0.79 0.97 0.70 0.95 0.88 1.67
231 3208 2 31 5 5 099 088 092 0.93 0.48 0.92 0.40 0.99 0.77
232 3208 3 10 5 5 100 099 098 0.87 0.13 0.85 0.20 0.98 1.00
233 3208 4 8 8 8 0.63 0.13 047 1.... ... L....
234 3209 1 1294 35 34 0.65 0.07 -0.00 1.01 1.00 1.00 1.00 0.99 0.99
235 3209 2 147 18 17 100 096 0.95 0.80 0.29 0.81 0.31 1.01 0.46
236 3209 2 83 8 7 100 096 0.96 1.17 0.30 1.01 0.28 0.86 0.25
237 3209 3 21 20 20 0.82 064 045 1.00 0.77 1.00 0.89 1.00 1.00
238 3209 4 3 2 2 L. -l.. -l.. 1.03 0.... 1.15 0.... 1.12 0....



TABLE 5.3 : 16 : SAMPLE STRATA

Number Sample-stratum

N

239
240
241
242
243
244

3210
3210
3210
3210
3210
3210

B W WNNM

603
90
404

19

42
35
17

41
33
15

1.17
1.00
1.04
1.02
1.04

0.84
0.95
0.93
0.96
1.00

245
246
247
248
249

3401
3401
3401
3401
3401

A WD

559
164

30
14

12
19

11
14

12
19

10
14

1.00
1.00
1.06
...

0.74
1.00

1.00

250
251
252
253
254
255

3402
3402
3402
3402
3402
3402

E-NUSERUL R (DR 0 B

579
172
34
24

10
18

17
2
1

11
18

17
2
1

1.02
0.99

0.91

1.00

| 285] [25.00]

1.01

0.88

- 69 -———



TABLE 5.3:17 : SAMPLE STRATA

———— 0‘ ———

A X, Y e reg

Number Sample-stratum N " . P P Py % 7 2

256 3901 1 3738 84 82 094 -0.03 -0.02 1.01 1.00 1.01 1.00 1.00 0.99
257 3901 2 322 39 39 071 032 0.56 1.13 0.95 1.17 0.83 1.04 0.91
258 3901 2 55 6 5 030 030 045 [ 38| 095 0.89 1.29 1.00
259 3901 3 66 40 39 032 057 062 .15 0.82 1.20 0.79 1.04 0.86
260 3901 4 14 13 13 098 085 087 6.46 0.52 0.49 0.97 1.00
261 4001 1 2428 38 35 090 090 075 1.36 0.44 1.28 0.66 0.94 0.48
262 4001 2 172 18 18 094 079 081 1.34 0.61 1.40 0.59 1.04 0.71
263 4001 2 282 20 20 088 058 0.67 1.07 0.82 1.09 0.75 1.02 0.89
264 4001 3 28 11 10 095 087 0.89 0.86 0.49 0.90 0.46 1.05 0.83
265 4001 4 5 4 4 083 -0.54 -0.72 1.02 0.84 1.03 0.69 1.01 0.95
266 4101 1 631 18 16 094 091 095 1.00 0.41 0.95 0.30 0.96 0.68
267 4101 2 30 4 4 068 050 0.08 0.98 0.86 1.00 1.00 1.02 0.92
268 4101 2 81 6 5 [093 012 -0.79 | 1.02 0.99 [008] o6l 0.91
269 4101 3 1 1 1
270 4101 4 2 2 2 la. l.. 1. L.... ... ...
271 4201 1 325 14 14 099 076 074 1.11 0.66 1.09 0.68 0.99 0.82
272 4201 2 63 7 7 097 098 0.99 1.17 0.19 1.14 0.17 0.98 0.71
273 4201 2 10 5 5 1.00 -0.96 -0.96 0.74 0.30 0.74 0.29 0.99 1.00
274 4201 3 10 5 5 1.00 055 0.2 1.18 0.83 1.16 0.86 0.99 1.00
275 4201 4 4 4 4 100 100 1.00 1. L... 1.



TABLE 5.3 : 18 : SAMPLE STRATA

—-——- [[ ———

Number S le-stratum N f) p f) Xreg f,’eg V(?reg)
umber Sample-str . . . xz vz = < n
P ' RS X 7 WP

276 4202 2 2059 34 31 097 040 0.56 1.05 0.92 1.06 0.83 1.01 0.82
277 4202 2 73 17 17 099 0.21 0.18 1.03 0.98 1.03 0.98 1.00 1.00
278 4202 2 17 4 4 1.00 0.80 0.82 0.62 0.59 0.60 0.57 0.98 1.00
279 4203 1 569 11 10 0.88 0.83 0.85 0.83 0.56 0.69 0.52 0.82 0.93
280 4203 2 37 12 13 0.85 0.81 049 1.30 0.59 1.20 0.87 0.93 0.62
281 4203 2 47 7 7 094 -0.60 -0.65 1.02 0.80 1.02 0.76 1.00 0.98
282 4203 3 9 9 9 099 096 097 1.... --- l.... --- l.... ---
283 4203 4 3 3 3 099[318 323] [T37] 1.02
284 4204 1 301 23 23 097 0.86 0.78 1.14 0.51 1.12 0.63 0.97 0.57
285 4204 2 32 9 9 095 090 0.78 0.70 0.45 0.74 0.62 1.05 1.32
286 4204 2 29 6 6 0.71 065 099 0.91 0.76 0.59 0.12 0.65 0.16
287 4204 4 1 1 1 e e
288 9999 9 1 1 1 1.00 [484[-4.67
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COMMENTS ON THE TABLES:

The results here clearly shows on all sorts of problems with designs with
small samples. In some cases there are errors due to file error.

The tables also clearly shows great efficiency gains for the regression
estimators versus the ordinary estimators with a proper large sample design.
This is especially true for estimators of levels. For the estimators of change
the efficiency gains are less but significant.

6. CONCLUSIONS OF REGRESSION ESTIMATORS IN THEORY
AND IN PRACTICE

6.1 ESTIMATORS OF LEVELS

With a proper large sample design the regression estimators are always more
efficient than the ordinary estimators and with a good auxiliary variable very
much so, that is the theoretical properties holds.

With small sample designs this is not true and then the ordinary estimators
are more robust. In this case the auxiliary variable can be used in different

ways but not in the estimator.

6.2 ESTIMATORS OF CHANGE

With a proper large sample design the regression estimators are mostly more
efficient than the ordinary estimators, that is the theoretical properties holds.
The efficiency gains here are much less than in the case of estimators of
levels.

With small sample designs peculiar things can happen and then the more
robust ordinary estimator (combined ratio estimator) is to be prefered. But
also this estimator is large sample dependent! In this case as above the
auxiliary variables can not be used in the estimator but used in different other

ways.

So, with a proper large sample design the regression estimators for both
levels and change are to be prefered to the ordinary estimators.

With a small sample design the ordinary estimators are to be prefered both
for estimators of levels and changes. The auxiliary variables can then be
used in oyher ways.
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APPENDIX ON PROOFS

What are needed too proofe the variances and variance-estimators of all the
estimators in this paper, besides basic definitions of variances and
covariances, are :

(Complete panel-design, stratified SRS (STSRS) and a non-dynamic
population.)

1. Taylor expansion methods to approximate non-linear estimators with
linear estimators, whose variances and variance-estimators can be found by
conventinal methods and hereby have approximate variances.

See for example Wolter, reference (12), chapter 6; Taylor Series Methods.
Taylor expansion formulas can also be found in standard textbooks on
Mathematical Calculus.

2. Often the proof of the SRS-case will do to have the STSRS-case.

3. Separate regression estimators for levels and their variances.

See Cochran, reference (3), chapter 7; Regression Estimators :

Theorem 7.3 on page 194 gives the SRS-case and by applying this to each
stratum we have the STSRS-case in (7.57) on page 202.

The variance-estimators in this paper differs slightly from the ones proposed
by Cochran, (7.29)-(7.30) (SRS-case) on page 195 and (7.58) (STSRS-case)
on page 202.

With Cochran’s divisor n - 2 (n, —2) replaced by n - 1 (n, —1) this papers
variance-estimator is achieved for the separate regression estimator of levels.

4. All regression estimators here are, as customary, conditioned on the
estimators of of the regression coefficients.
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5. Although we have a complete panel-design we have after non-response,
with a straight adjustment model ("mean-value imputation"), a conditioned
sample after non-response which means an overlapping panel-design.

More precisely we need Cov(f’, )2) = ZN,f & L S S P by
h n, Ny, A -

where s(g,) = s(nhl )ﬂs(nhZ ) and we then have the covariance-estimator

cov( Y, }2’) = Z Nf[ Eh L)shxshyf)m where s(g, ) = s(nh,l )ﬂs(nh'2 ) and

n,n N,
h It,1 /1,2 kb

r = responding, given time-period.

The covariance and covariance-estimator above can be found as a special
case in reference (9), (3.14) on page 10-11.

In reference (5a), there is a proof of the covariance above in the SRS-case on
page 20-21. In Sats 1 (in 5a) and in Theorem 1 (in 5b) the covariance above

in the SRS-case is given with the restriction §* =82 = S .
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