A Generalized Perks Formula for Old-Age Mortality

Sten Martinelle

R&D Report Statistics Sweden Research - Methods - Development U/STM - 38

INLEDNING

TILL

R & D report : research, methods, development, U/STM / Statistics Sweden. – Stockholm : Statistiska centralbyrån, 1987. – Nr 29-41.

Föregångare:

Promemorior från U/STM / Statistiska centralbyrån. – Stockholm : Statistiska centralbyrån, 1986. – Nr 25-28.

Efterföljare:

R & D report : research, methods, development / Statistics Sweden. – Stockholm : Statistiska centralbyrån, 1988-2004. – Nr. 1988:1-2004:2.

Research and development : methodology reports from Statistics Sweden. – Stockholm : Statistiska centralbyrån. – 2006-. – Nr 2006:1-.

R & D Report, U/STM 1987:38. A generalized perks formula for old-age mortality / Sten Martinelle. Digitaliserad av Statistiska centralbyrån (SCB) 2016.

A Generalized Perks Formula for Old-Age Mortality

Sten Martinelle

R&D Report Statistics Sweden Research - Methods - Development U/STM - 38

Från trycket	Oktober 1987
Producent	Statistiska centralbyrån, Enheten för statistiska metoder
Ansvarig utgivare	Staffan Wahlström
Förfrågningar	Sten Martinelle, tel. 08 7834377

© 1987, Statistiska centralbyrån ISSN 0283-8680 Printed in Sweden Garnisonstryckeriet, Stockholm 1987

1987-08-17

A Generalized Perks Formula for Old-Age Mortality

By Sten Martinelle

Contents	page
1. Introduction	3
2. A model of the frangible man	5
3. Fitting the model to the data	8
3.1 The data	8
3.2 Some additional assumptions	9
3.3 Least-squares estimation of the paramete	rs 11
3.4 The parameter estimates	13
3.5 The fit of the model	15
4. Application to the Swedish life table	17
5. References	20
Appendix	
A Derivations	22
B The data	24
C Plotted risks; observed and	
predicted values	40

Abstract

A heterogenous cohort with intensity functions of individuals following the Makeham law is considered. It is shown that if the frailty variable obeys a generalized form of the gamma distribution then the total force of mortality can be seen as a generalization of Perks formula. The model is applied to mortality of centenarians in Sweden and other countries.

Keywords

Old-age mortality, centenarians, heterogeneity, frailty, gamma distribution, Perks formula

1. Introduction

Adult mortality, measured by the force of mortality

$$\mu(x) = - \frac{d1(x)}{dx} / 1(x)$$
 (1.1)

where l(x) is the number of survivors of a cohort at age x, is well approximated in broad age intervals by the Gompertz-Makeham formula

$$\mu(\mathbf{x}) = \mathbf{A} + \mathbf{B}\mathbf{e}^{\mathbf{k}\mathbf{x}}$$
 (A $\stackrel{>}{-}$ 0, B and k > 0) (1.2)

It is well known that the exponential increase is slowed down at higher ages. Perks (1932) found that the logistic curve

$$\mu(x) = \frac{A + Be^{kx}}{1 + De^{kx}} \quad (A \stackrel{>}{-} 0, B, D \text{ and } k > 0) \quad (1.3)$$

gave a much better fit to adult and old age mortality. For a review of these theories see Spiegelman (1968, Chapt. 6).

In the discussion of Perks paper Trachtenberg advances the idea of a heterogeneous population: Individuals follow the Gompertz law (A = 0 in (1.2)) but with varying parameters B and k. Beard (1959) showed that if B (which measures inability to withstand destruction, called "frailty" by Vaupel et al.(1979)) in such a heterogenous cohort is gamma distributed at birth, then the totalforce of mortality is given by Perks formula.

Perks formula implies that $\mu(\mathbf{x})$ approaches a constant limit value in high ages. Vincent (1951), Depoid (1973), Thatcher (1981) and Barrett (1985) have studied the mortality of centenarians. Although Barrett finds a decline in estimated male mortality after age 104, there seems to be no evidence for a plateau in the mortality rates for the centenarians. The decline observed by Barrett is based on only 23 men aged 105 and no decline is found in the female rates. Horiuchi and Coale (1983) analyse the age dependence of female mortality in several modern industrialized countries using the age-specific rate of mortality change with age, i.e. the derivative $k(x) = dln(\mu(x))/dx$. The age interval is 50-95 years. They find that the function k(x) has a peak about age 75 and its peak is close to 0.12. This pattern supports the Perks model and "estimated k(x)values derived by fitting the Perks model to the logarithms of agespecific death rates agree quite well with the smoothed sequence of observed k(x) values, except for some departures at both ends." In the higher ages the observed k(x) values do not approach zero as predicted by the Perks model.

Using a micro simulation model Qvist (1987) models the mortality in coronary heart disease, the dominant cause of mortality at high ages. As a "frailty" index he uses the level of atherosclerosis leisons. The distribution of the frailty index is based on an investigation by Rissanen (1972) concerning patients who have suffered violent deaths. The approach is interesting for at least two reasons: (1) The heterogeneity assumption is medically well established and (2) The distribution of the frailty index is markedly skewed.

In modelling the total mortality at old ages we think the heterogeneity assumption is essential. Variation in genetic constitution and life style account for differences between individual mortality rates. We think, however, that the assumptions leading to Perks formula should be somewhat modified since the plateau predicted by the formula does not seem to exist. Therefore we change the assumption on the frailty distribution in the neighbourhood of zero. We move the distribution to the right. Instead of the gamma distribution itself we use a generalized or shifted gamma distribution (Hahn and Shapiro (1967), p 89).

4

2. A model of the frangible man

We will model the total force of mortality in a cohort of men or women. To each individual corresponds a positive value of a frailty variable z and the value is supposed to be the same during the total lifetime. The survival and intensity function for an individual of frailty z is denoted l(x|z) and $\mu(x|z)$ respectively. The frequency function of the frailty variabel at age x is denoted f(z|x) and for simplicity of notation we put g(z) = f(z|x=0), i.e. g(z) is the frequency function at birth. The frailty distribution at birth seems to be of little relevance for old-age mortality and we shall soon see that the time of birth is just a practical starting point. We can now state the following theorem on the total force of mortality $\mu(x)$.

Theorem ("The theorem of the frangible man")

If the intensity functions of individuals follow the Makeham law:

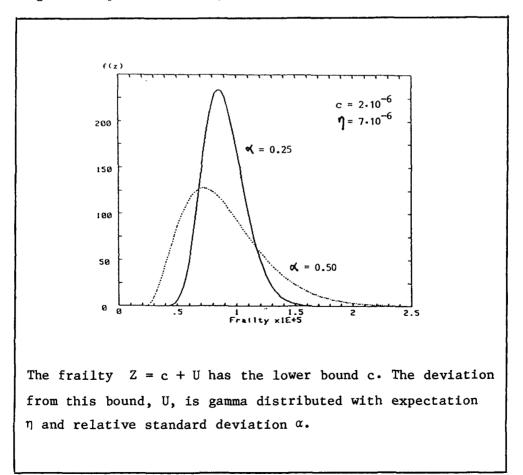
$$\mu(\mathbf{x} | \mathbf{z}) = \mathbf{A} + \mathbf{z} \mathbf{e}^{\mathbf{k} \mathbf{x}} \quad (\mathbf{A} \stackrel{>}{=} 0, \mathbf{k} \stackrel{>}{=} 0)$$
 (2.1)

and the frailty variable has a generalized (i.e. shifted) gamma distribution, with density

$$g(z) = \begin{cases} \frac{b^{a}(z-c)^{a-1}}{(a)}e^{-b(z-c)} & \text{for } z > c \\ 0 & \text{for } z \leq c \end{cases}$$
(2.2)
0 for $z \leq c$

with parameters a,b och c, then the total force of mortality $\mu(\mathbf{x})$ can be written:

$$\mu(x) = \frac{A + Be^{kx}}{1 + De^{kx}} + c e^{kx}$$
(2.3)


where B = (A + ak)/(kb-1) och D = 1/(kb-1).

The proof is given in appendix A (A1).

The proof also shows that the frailty variable has a generalized gamma distribution at each age x; cf (Al.5). In describing the old-age mortality, we actually only need the frailty distribution assumption at age 85, say. If we assume that the frailty variable at that age has a generalized gamma distribution and that $\mu(x|z)$ for x > 85 follows the Makeham law (2.1), then the formula (2.3) is still applicable.

The equation (2.3) shows the close connection to the Perks formula. The additional term is due to our assumption about the "frangible man" - the frailty variable cannot take on values too close to zero. As a consequence $\mu(x) \rightarrow +\infty$ as $x \rightarrow +\infty$, which we think is a plausible property of the total force of mortality $\mu(x)$.

Fig 1. Examples of frailty distributions



What the equation (2.3) does not show is the close connection to the form of the frailty distribution. Assuming A = 0, which at high ages seems a reasonable approximation, equation (2.3) can be written (Appendix, A2):

$$\mu(\mathbf{x}) = \left\{ c + \frac{\eta}{1 + \eta \alpha^2 \int_{x_0}^{x_e k t} dt} \right\} e^{kx}$$
(2.4)

where η is the mean of U = Z - c, the deviation of the frailty variable from the lower bound z = c, and α is the relative standard deviation of U. The measure α is directly related to the skewness of the distribution (Hahn and Shapiro(1967), p 124). See fig 1.

Fig 2. The effect of changing the ratio $c/(c+\eta)$ in (2.4)

From (2.4) follows immediately $\mu(x_0) = (c+\eta)e^{kx_0}$. Thus for given k and α , all curves with the sum $c + \eta = m$ pass through the same point $(x_0,\mu(x_0))$ as shown in fig 2 for $\alpha = 0.5$, k = 0.12,

m = 8×10^{-7} and $x_0 = 85$. The extreme cases $\eta = 0$ and c = 0 correspond to Gompertz and Perks law (with A = 0) respectively.

3. Fitting the model to the data

3.1 The data

Extensive data on old-age mortality for four countries (France, Sweden, Switzerland and The Netherlands) and several periods are given by Depoid(1973). To these data we have added mortality data for Sweden during later years (see appendix B). In this way we have disposed of mortality patterns as wide apart as Switzerland 1876-1914 and Sweden 1979-84.

One year risks of death (q_x) have been transformed to intensities, using the formula:

$$\mu(x+0.5) \approx -\ln(1-q_x)$$
 (x=85,86,...) (3.1)

For each country, period and sex we have such a set of estimated intensities. The number of observations in each set is about 20. Intensities based on less than 12 survivals have been excluded. By this choice we have avoided the cases $q_x = 0$ and $q_x = 1$.

The data are not purely period data. Thus, in the set of intensities for Sweden 1967-73 the cohort born 1877 is included, having their 90 years birthday during the first year of the period, and then followed during six years until the age of 96 in 1973. In this way the mortality rate of persons aged 90 is based on the generations born 1877-1882, while the rate of persons aged 91 is calculated from the mortality of the cohorts 1876-1881. As usual, age and cohort effects are not separable - a decrease in cohort mortality will show up as an increase in the age effect. But even cohort data are problematic - a period effect will be confounded with the age effect.

3.2 Some additional assumptions

Fitting the model (2.4) to our mortality data cannot unambiguously determine the four parameters. Unless additional information on the parameters is supplied, a whole variety of parameter values will give about as good a fit as possible. This is true also of the Perks model. Perks(1932) observes, fitting the curve to the mortality rates at ages 40-100 years, that the parameter k could be changed without essentially affecting the goodness of fit. As we start at age 85 ($x_0 = 85$), the data contain less information about the curvature of the mortality rates, which also means less information about the frailty distribution.

This lack of information is illustrated in fig 3. Using the least-squares method, we have fitted equation (2.4) to the mortality intensities of Swedish men 1979-84 for three different combinations of α and k. It is seen that the predicted intensities for the different combinations are almost identical at ages 85-105.

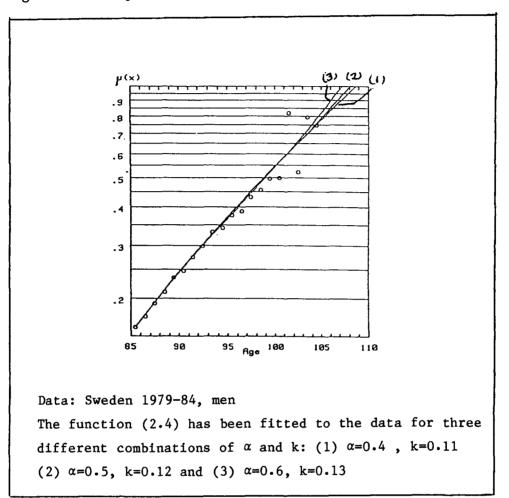


Fig 3. All the parameters cannot be estimated

The pairs of α and k used in fig 3 (and all pairs on the same line in the neighbourhood of k = 0.12) almost minimize the total sum of squares taken over all our data sets. To solve the problem of indeterminacy we have chosen α = 0.5 and k = 0.12 as "universal" constants to be used in the following. To this α -value corresponds a rather skew frailty distribution (fig 1) - and we think the distribution should be rather skew (Qvist(1987)) - and the k-value we think is in good agreement with the findings of Horiuchi and Coale(1983). But the exact choice must of course be somewhat arbitrary. Analysing all data sets by means of the same α and k simplifies the comparison of mortality patterns between countries and periods as we get a common basis for the parameters. Thus, the estimated intensity level at age x is directly related to the sum $m = c + \eta$ and, if comparing two data sets with m_1 and m_2 respectively and $m_1 > m_2$, then we have $\hat{\mu}_1(x_0) > \hat{\mu}_2(x_0)$. Moreover, the ratio c/m contains the information of the form of the curve (cf fig 2).

3.3 Least-squares estimation of the parameters

Given α (= 0.5) and k (= 0.12), the force of mortality (2.4) is a function of the two parameters c and η . To fit the model to observed intensities $\tilde{\mu}(\mathbf{x})$ (x=85.5,..), we will use the method of least-squares. Since the function $\mu(\mathbf{x})$ is nonlinear in η , we replace it with a linear approximation in a neighbourhood of a guessed value of η , denoted η_0 (Draper and Smith(1981), Chap.10). Then we get the following regression equation, linear in the two unknown parameters c and $\Delta\eta$ ($\Delta\eta = \eta - \eta_0$):

$$\widetilde{\mu}(x) = \{c + \eta_0 / (1 + \eta_0 I(x)) + \Delta \eta / (1 + \eta_0 I(x))^2 \} e^{kx} + \varepsilon \quad (3.3)$$

where $I(x) = \alpha^2 (e^{kx} - e^{85.5k}) / k$.

Assuming the number of deceased aged x binomially distributed with parameters n_x and q_x , then, if the model is true, the variance of the residual is approximately:

$$\operatorname{War}(\varepsilon | \mathbf{x}) \approx n_{\mathbf{x}}^{-1} q_{\mathbf{x}}^{\prime} / (1 - q_{\mathbf{x}}^{\prime})$$
(3.4)

The number of survivals at age x, denoted n_x , decreases rapidly with x - the number of survivals at age 100 is just a small fraction of the number at age 85. This fact means that the estimates $\tilde{\mu}(x)$ are of very different precision. Therefore, we use weighted least-squares with weights $w_x^2 = n_x(1-q_x)/q_x$, i.e. we estimate c and $\Delta\eta$ by minimizing the sum of squares:

$$Q = \Sigma w_{x}^{2} \{ \widetilde{\mu}(x) - (c + \eta_{0}/(1+\eta_{0}I(x)) + \Delta\eta/(1+\eta_{0}I(x))^{2})e^{kx} \}^{2}$$
(3.5)

x=85.5, 86.5, and $w_{x+.5} = w_x$. If $n_x < 12$ then $w_x = 0$. The sum of squares can also be written:

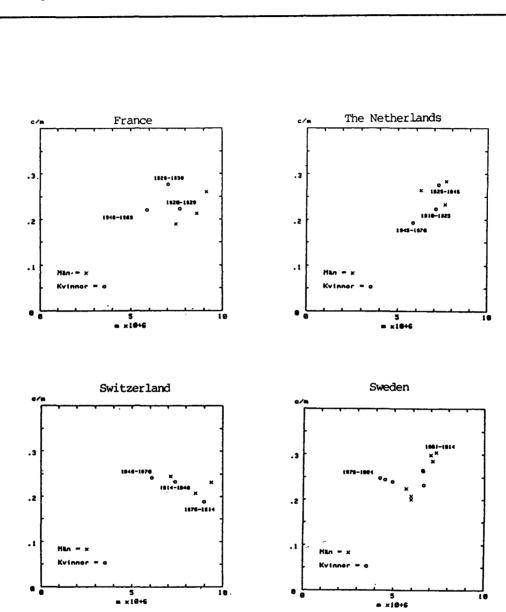
$$Q = \Sigma \{y_{x} - \beta_{1}g_{1}(x) - \beta_{2}g_{2}(x)\}^{2}$$
(3.6)

where $y_x = w_x \{ \tilde{\mu}(x) - \eta_0 e^{kx} / (1 + \eta_0 I(x)) \}$, $g_1(x) = w_x e^{kx}$,

$$g_2(x) = w_x e^{kx} / (1 + \eta_0 I(x))^2$$
, $\beta_1 = c \text{ och } \beta_2 = \Delta \eta$.

With this change of notation we are back to the ordinary linear regression model, so the coefficents β_1 and β_2 can be determined by a standard program for regression analysis. Note, however, that there is no constant term ($\beta_0 = 0$). From the estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ we then get $\hat{c} = \hat{\beta}_1$ and $\hat{\eta} = \eta_0 + \hat{\beta}_2$.

Substituting the estimate of η for η_0 , the procedure can be repeated an arbitrary number of times. If we choose the value of η_0 in the following way, then just the first step in this iteration procedure seems to be sufficient: (1) Put $m_0 = c_0 + \eta_0 = \tilde{\mu}(85.5)e^{-85.5k}$, which means that the intensity function containing c_0 and η_0 equals the estimated intensity at age x = 85.5 . (2) Put $\eta_0 = 0.75m_0$ and $c_0 = m_0 - \eta_0$.


The weights w have been computed from these initial values of c and $\eta.$

3.4 The parameter estimates

The parameter estimates are given in table 1 below. See also fig 4. The estimates are given as the sum $\tilde{m} = \tilde{c} + \tilde{\eta}$ and the ratio \tilde{c}/\tilde{m} and refer to the frailty distribution at age 85 (cf fig 1) with α =0.5.

Table 1. Estimates of expected frailty at age 85 ($m = c + \eta$) and the lower bound of the frailty distribution in percent of expected frailty (c/m). Twice the st.dev. is given for each estimate(2 σ).

			Me	n			Wom	en	
Country	Period	m	2σ	c/m	2σ	m	2σ	c/m	2σ
		(x1	.0 ⁶)	(%)	(х	:10 ⁶)	(%	()
France	1920-29	9.2	.10	26	3	7.8	•08	22	2
	1929-38	8.7	.10	20	3	7.1	.10	26	4
94	1948-69	7.6	•08	21	3	5.9	•02	23	1
The Netherl.	1910-25	7.8	.14	21	4	7.1	•14	22	5
"	1925-45	7.7	•14	27	- 5	7.1	•14	28	4
**	1925-45	6.4	•12	26	3	5.9	•10	20 19	2
	1945-70	0•4	•00	20	2	2.9	•04	19	Z
Switzerland	1876-14	9.5	•16	23	5	9.0	•18	19	5
88	1914-48	8.6	.10	21	3	7.5	•12	22	4
	1948-70	7.3	•10	23	4	6.2	•06	23	3
Sweden	1901-14	7.3	.16	30	8	6.6	•08	26	4
**	1914-30	7.1	.10	29	4	6.6	•08	23	3
**	1930-45	7.1	.10	29	4	6.6	•06	26	3
**	1945-67	6.7	•06	29	3	6.2	•06	23	2
••	1967-73	6.0	.04	20	2	4.9	•06	23	4
••	1973-79	5.9	.08	19	3	4.5	•04	23	3
••	1979-84	5.6	.10	23	4	4.1	•08	27	5
					•				-

Expected frailty at age 85 on the horizontal axis $(m = c + \eta)$ and the lower bound of the frailty distribution in percent of the expected frailty (c/m) on the vertical axis. The c-value is about 25% of the m-value. The sum m indicates the mortality level at age 85.5:

 $\hat{\mu}(85.5) = me^{85.5k}$ where k = 0.12. Example: For men in France during 1920-29 we have $m = 9.2 \times 10^{-6}$ and, therefore, $\hat{\mu}(85.5) = 0.2628$ or $\hat{q}_{85} \approx 1 - e^{-.2628} = 0.2311$.

The indicator of the mortality level, m, varies systematically between sexes, countries and periods. The ratio c/m seems on the other hand to fluctuate more arbitrarily around a constant mean of about 0.24. This is the reason why we express c as a proportion of m. But the total variation of the ratio c/m does not seem to be due to the random variation in the estimated intensities. Some systematic differences seem to exist.

3.5 The fit of the model

We have plotted estimated and predicted mortality rates (q_x) . See appendix C. No systematic pattern recurring in several data sets have been found. We have also tested the goodness of fit by a χ^2 -test. The calculated χ^2 -value is printed on the top of each figure.

The χ^2 -test is based on the sum of squared residuals: From the definition of the weights w_x it follows that the variance of y_x in (3.6) equals almost unity. Since y_x is a linear function of the intensities $\tilde{\mu}(x)$, which are approximately normally distributed and independeant for large n_x , the sum of squared residuals is approximately distributed as χ^2 with f = N-2 degrees of freedom, where N is the number of terms in the sum of squares (3.6).

The test values are found in table 2. In the case of a significant value (p<0.05), then the sum of squares has been split into two parts: One over the interval 85-94 years and the other over the ages above 94 years.

Men					Women				
Country	Period		χ²		df		χ²		df
		(1)	(2)	(1)+(2)		(1)	(2)	(1)+(2)	
France	1920-29	9.4	21.6	31.0	16	10.9	23.9	34.8	17
••	1929-38	10.8	25.3	36.1	16	14.3	60.3	74.6	17
••	1948-69	32.5	67.2	99.7	19	19.3	19.7	39.0	21
The Neth.	1910-25			14.2	16			26.2	16
	1925-45			19.8	16			21.3	17
**	1945-70			17.1	18			19.1	20
Switzerl.	1876-14			11.8	15			19.1	15
**	1914-48			8.1	16			20.2	16
**	1948-70			14.1	16			19.0	18
Sweden	1901–14			19.8	14			14.0	17
••	1914-30			15.0	16			18.3	17
**	1930-45			16.7	17			10.7	18
**	1945-67			15.0	17			19.6	19
**	1967-73			3.6	17			16.8	19
••	1973-79			16.0	18			13.4	19
	1979-84			18.7	18	21.2	15.5	36.7	20

Table 2. χ^2 -test of goodness of fit

(1) = The sum of squared residuals 85 - 94 years and (2) >95 years (1)+(2) is, if the model is correct, distributed as χ^2 with df degrees of freedom.

According to the χ^2 -test, the fit of the model is less good in the case of French data and the partial sums of the squared residuals show that the largest contribution to the test values comes from the extremely old. No distinct systematic pattern can be seen, however. One explanation to significant test values for France is the fact that the French data are based on larger populations and, therefore, the probability of detecting even small discrepancies is increased.

How should we explain the significant χ^2 -values? In the first place we have of course questioned the form of the intensity function. A visual inspection of observed and predicted death risks has not revealed, however, any significant pattern common to the data sets. Therefore, it seems more probable that the cause is to find somewhere else. In fact several of the reasons below may contribute to the significant χ^2 -values:

- False significances. In a sequance of 32 independeant tests on the 5% level 1.6 false significances are expected and the probability of the occurrence of two or more is almost 50%.
- The normal approximation is less good for intensities based on small groups. Therefore, the χ^2 -approximation is supposed to be less adequate at extremly high ages.
- The approximation of the residual variance is based on large groups and is less adequate at extremly high ages.
- The residuals are not independent due to cohort effects.
- The quality of the data.

4. Application to the Swedish life table

The Swedish life tables are based on observed risks of death up to the age 90 years. From the age 91 years the risks are estimated according to Wittsteins formula: $q_x = a^{-(M-x)^n}$, where M is an assumed maximal lifespan (105 years for men and 106 for women), a and n are constants determined from the data.

We have recomputed the table 1981 - 85 using the generalized Perks formula (table 3 a and b). The expected number of centenarians are more than doubled according to our calculation.

Age	Ris	ks of (0/00	death ¹⁾)		alive birth)	Life (yea	-
(x)	$\tilde{q}_{\mathbf{x}}$	$\widetilde{\mathtt{q}}_{\mathbf{x}}^{\ \mathtt{N}}$	$\widetilde{q}_{\mathbf{x}}^{W}$	1_x^N	$1_{\mathbf{x}}^{W}$	$e_{\mathbf{x}}^{\mathbf{N}}$	e ^W x
91	239	236	236	6100	6100	3.10	3.01
92	257	254	255	4662	4662	2 .9 0	2.78
93	282	272	277	3479	3471	2.71	2.56
94	291	292	301	2532	250 9	2.54	2.36
95	320	311	328	1794	1753	2.38	2.41
96	328	332	358	1235	1178	2.24	2.16
97	342	353	392	825	756	2.10	1.96
98	335	374	429	534	460	1.97	1.78
99	415	397	472	334	263	1.85	1.61
100	-	419	521	202	139	1.74	1.44
101	_	443	577	117	66	1.63	1.28
102	-	467	645	65	28	1.53	1.12
103		492	725	35	10	1.44	•97
104	-	518	829	18	3	1.35	•82
105	-	544	1000	9	-	1.27	•67
106	-	572	_	4	_	1.19	• 50
107	-	600	-	2	-	1.10	
108	-	629	-	1	-	1.00	
109	-	658	-	-	-	•84	~
110	· _	688	-	-	-	• 50	-

Table 3a. Comparison of methods of smoothing. Swedish men 1981 - 85.

1) Notation: \tilde{q}_x = observed risk of death= $D_x/(M_x + d_x)$, where D_x is the number of deceased during the period in the age interval x to x+1, d_x is the the number of deceased during the period in the same age interval but after the birthday and M_x is the mean population aged x. \tilde{q}_x^N = smoothed risk of death, new formula and

 $\tilde{q}_{x}^{W} =$ " " ", Wittsteins formula.

Age	Ris	ks of d (0/00)			alive birth)	Life (yea	-
(x)	$\widetilde{\mathtt{q}}_{\mathbf{x}}$	$q_{\mathbf{x}}^{N}$	$q_{\mathbf{x}}^{W}$	$1_{\mathbf{x}}^{\mathbf{N}}$	$1_{\mathbf{x}}^{W}$	$\mathbf{e}_{\mathbf{x}}^{\mathrm{N}}$	$e_{\mathbf{x}}^{W}$
91	194	192	194	16059	16059	3.69	3.47
92	209	208	214	12976	12936	3.44	3.18
93	230	225	236	10273	10166	3.22	2.91
94	242	243	260	7959	7768	3.01	2.66
95	257	262	287	6025	5746	2.81	2.41
96	293	281	318	4449	4095	2.63	2.19
97	298	301	351	3200	2795	2.46	1.97
98	315	321	389	2239	1813	2.31	1.77
99	323	342	432	1520	1107	2.16	1.58
100	-	364	481	1000	628	2.03	1.40
101	-	386	536	636	326	1.90	1.23
102	-	40 9	599	390	151	1.78	1.07
103	-	433	671	231	61	1.67	.92
104	-	457	756	131	20	1.57	•78
105	-	483	859	71	5	1.46	•64
106	_	508	1000	37	1	1.36	• 50
107	-	535	-	18	-	1.25	-
108	-	563	-	8	-	1.12	-
109	-	591	-	4	-	•91	-
110	-	620	-	2	-	• 50	-

Table 3b. Comparison of methods of smoothing.

Swedish women 1981 - 85.

1) Notation: $\tilde{q}_x = observed risk of death = D_x/(M_x + d_x)$, where D_x is the number of deceased during the period in the age interval x to x+1, d_x is the the number of deceased during the period in the same age interval but after the birthday and M_x is the mean population aged x. $\tilde{q}_x^N = smoothed$ risk of death, new formula

 $\tilde{q}_x = "$ " ", Wittsteins formula

5. References

Barett,J.C.(1985):The Mortality of Centenarians in England and Wales. Arch. Gerontol.Geriatr., 4, p 211-218 . Beard,R.E.(1959):Note on Some Mathematical Mortality Models,

Colloquia on Ageing, CIBA Foundation, Vol 5. Churchill, London

Beard,R.E.(1961): A Theory of Mortality Based on Actuarial, Biological and Medical Considerations. IUSSP 1961, New York , Vol 1, p 611-25.

Depoid,F. (1973):La mortalité des grands vieillards. Population 28, p 755-792

Draper,N.R. and Smith H. (1981):Applied Regression Analysis Sec.ed., Wiley.

- Hahn,G.J, and Shapiro,S.S.(1967):Statistical Models in Engineering. Wiley.
- Horiuchi,S. and Coale,A.J.(1983):Age Patterns of Mortality for Older Women: An Analysis Using the Age-Specific Rate of Mortality Change with Age. The 1983 Annual Meeting of the Population Association of America Pittsburgh, Pennsylvania. (stencil)
- Horiuchi,S.(1983):The Long-Term Impact of War on Mortality: Old-Age Mortality of the First War Survivors in the Federal Republic of Germany. Population Bulletin of the United Nations, No. 15, p 80-92
- Manton, G. et al. (1986): Alternative Models for the Heterogenity of Mortality Risks Among the Aged. JASA 81, p 635-644
- Perks,W. (1932): On Some Experiments in the Graduation of Mortality
 Statistics. Journal of the Institute of Actuaries.
 Vol LXIII, 1932, p 12-57.
- Qvist,J.(1987) : A Micro Simulation Model for Mortality. Statistics Sweden (stencil).

Redington, F.M.(1969): An Exploration into Patterns of Mortality. Journal of the Institute of Actuaries, Vol 95, Part II, No 401, p 243-317

Rissanen,V.(1972):Aortic and Coronary Atherosclerosis in a Finnish Autopsy Series of Violent Deaths. Annales Academiae Scientiarum Fenniace, Series A, V.Medica, 155.

Spiegelman, M. (1968): Introduction to Demography, Cambridge, MA., Harvard University Press.

Thatcher, A.R. (1981): Centenarians. Population Trends 25, p 11-14

Vaupel,J.W., Manton,K.G. and Stallard,E.(1979):The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality. Demography,Vol 16, No 3, p 439-454

Vincent, P.(1951): La mortalité des vieillards.

Population, No 2, p 181-204

Appendix A

Al. Proof of (2.3)

The relation between $\mu(x)$ and $\mu(x|z)$ is (Beard (1959, Appendix)):

$$\mu(\mathbf{x}) = \int_{0}^{\infty} \mu(\mathbf{x} | \mathbf{z}) f(\mathbf{z} | \mathbf{x}) d\mathbf{z}$$
(A1.1)

With the assumption (2.1) we get:

$$\mu(\mathbf{x}) = \mathbf{A} + \mathbf{e}^{\mathbf{k}\mathbf{x}} \int_{0}^{\infty} \mathbf{z} \ \mathbf{f}(\mathbf{z} \,|\, \mathbf{x}) d\mathbf{z} = \mathbf{A} + \mathbf{e}^{\mathbf{k}\mathbf{x}} \mathbf{E} \{ \mathbf{Z} \,|\, \mathbf{x} \}$$
(A1.2)

But f(x|z) = g(z)l(x|z)/l(x) where l(x|z) is determined by (2.1):

$$1(x|z) = e^{0} = e^{-Ax} e^{-z(e^{kx}-1)/k}$$
(A1.3)

Then $g(z)I(x|z) = H(x)(z-c)^{a-1}e^{-zb(x)}$ where H(x) does not contain z and

$$b(x) = b + (e^{kx} - 1)/k.$$
 (A1.4)

Further $1(x) = \int_{c}^{\infty} g(z)1(x|z)dz$ and therefore

$$f(z|x) = \frac{(z-c)^{a-1}e^{-zb(x)}}{\int_{c}^{\infty} (z-c)^{a-1}e^{-zb(x)}dz} = \frac{(z-c)^{a-1}e^{-b(x)(z-c)}}{\int_{c}^{\infty} (z-c)^{a-1}e^{-b(x)(z-c)}dz}$$
(A1.5)

which means a generalized gamma distribution with parameters a, b(x) and c.

But then, since Z-c is gamma distributed with parameters a and b(x), we have (Hahn and Shapiro (1967), p 124)

$$E\{Z|x\} = c + E\{Z-c|x\} = c + a/b(x)$$
 (A1.5)

Inserting this expression for $E\{Z | x\}$ in (A1.2) we get:

$$\mu(x) = A + e^{kx} \{ c + a/b(x) \}$$
(A1.6)

which, after rewriting, gives (2.3).

The proof is now completed.

A2. Derivation of (2.4)

Consider first the frailty distribution at $x = x_0$. Let Z be the frailty variable at that age. According to (Al.5) Z has a generalized gamma distribution with parameters a, $b(x_0)$ and c. Then U = Z - c is gamma distributed with parameters a and $b(x_0)$. The mean and relative standard deviation of U is denoted by η and α respectively, i.e.

$$\eta = a/b(x_0) \text{ and } \alpha^2 = 1/a$$
 (A2.1a,b)

From (A1.4) we get for $x > x_0$: $b(x) - b(x_0) = (e^{ks} - e^{kx_0})/k =$

$$= \int_{x_0}^{x} e^{kt} dt \text{ and thus } b(x) = b(x_0) + \int_{x_0}^{x} e^{kt} dt \cdot \frac{x_0}{x_0}$$

Inserting this expression for b(x) in (A1.6) and using (A2.1a,b) we get in the case of A = 0 the equation (2.4).

Appendix B

France 1920 - 1929

_		Men			Women	
Age						
×	D(x)1)	S(x)2)	q(x)	D(x)	S(x)	đ(x)
80	54310	348599	.1558	68808	522694	.1316
81	49162	293248	.1676	62889	447506	.1405
82	44937	244665	. 1837	59781	382626	.1562
83	39429	197717	.1994	53816	318354	.1690
84	33777	156875	.2153	48092	260979	.1843
85	28236	122524	.2305	41652	210693	. 1977
86	22989	92812	.2477	35646	166215	.2145
87	18466	68626	.2691	29735	128312	.2317
88	14098	49272	.2861	23902	96805	.2469
89	10565	34733	.3042	19003	71437	.2660
90	2955	24284	.3276	14839	52225	.2841
91	5544	16293	.3403	10893	36848	.2956
92	3922	10770	.3642	8246	25632	.3217
93	2677	6813	.3929	5779	17002	.3399
94	1661	4143	.4009	3852	10943	.3520
95	1066	2541	. 4195	2614	6950	.3761
96	625	1466	. 4263	1719	4315	.3984
97	365	855	. 4269	1074	2616	.4106
98	234	497	. 4708	618	1497	. 4128
99	152	287	.5296	405	874	.4634
100	91	140	.6500	217	470	.4617
101	35	54	.6481	144	259	.5560
102	9	17	.5294	71	113	.6283
103	7	8	.8750	30	40	.7500
104	3	3	1.0000	11	11	1.0000

Number of deceased who should have attained age x+1 during 1921-29
 Number of persons who attained age x during 1920-28

Source: Depoid, F. (1973): La mortalité des grands vieillards, Population 28, p 755-792

Swedish data 1967-73, 1973-79 and 1979-84 are collected from Population Changes (SOS), part 3, Statistics Sweden.

24

France 1929 - 1938

<u> </u>		Men			Women	
Age						
×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	54388	371221	.1465	69537	580480	. 1198
81	49951	312977	.1596	65033	504689	.1289
82	45132	256733	.1758	61368	429139	.1430
83	39384	209467	.1880	56116	361555	. 1552
84	34057	169085	.2014	50963	301297	. 1691
85	29054	132607	.2191	44810	245138	. 1828
86	23989	101670	.2360	38624	194881	. 1982
82	19150	75902	.2523	32756	151474	.2162
88	14795	55444	.2668	26371	114302	.2307
89	11374	40002	. 2843	21429	85286	.2513
90	8460	27882	.3034	16501	61730	.2673
91	6034	19006	.3175	12371	44061	.2808
92	4200	12500	.3360	9397	30740	.3057
93	2904	7945	.3655	6668	20507	.3252
94	1727	48 16	.3586	4588	13397	.3425
95	1143	2909	.3929	3022	8486	.3561
96	662	1668	.3969	1993	5200	.3833
97	426	917	. 4646	1299	3041	. 4272
98	212	448	. 4732	813	160 6	.5062
99	132	228	.5789	397	777	.5109
100	54	88	.6136	186	365	.5096
101	12	30	.4000	86	166	.5181
102	10	18	.5556	46	77	.5974
103	8	9	.8889	24	34	.7059
104	1	1	1.0000	8	8	1.0000

France 1948 - 1969

-		Men			Women	
Age					 C(.)	
×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
85	92961	482306	. 1927	155205	1002730	.1548
86	80421	383714	.2096	140784	829232	.1698
87	67045	297910	.2251	124192	670993	.1851
88	55177	226308	.2438	106574	532418	.2002
89	43672	167893	.2601	89461	414469	.2158
90	33307	120636	.2761	73645	313947	.2346
91	25199	84580	.2979	57988	231470	.2505
92	18195	57320	.3174	44788	166478	.2690
93	12358	37508	.3295	33281	116191	.2864
94	8420	24063	.3499	24071	79046	.3045
95	5486	14961	.3667	17025	52351	.3252
96	3342	9095	.3675	11571	33647	.3439
97	2075	5495	.3776	7629	20826	.3663
98	1290	3301	.3908	4686	12652	.3704
99	936	2015	. 46 45	3240	7955	. 4073
100	538	1069	.5033	1973	4491	. 4393
101	226	484	. 4669	1054	2363	.4460
102	113	243	.4650	573	1227	.4670
103	57	121	. 4711	298	611	, 4877
104	31	59	.5254	147	291	.5052
105	16	26	.6154	70	134	.5224
106	6	8	.7500	33	61	.5410
107	2	2	1.0000	17	26	.6538
108	0	Û	-	8	9	.8889
109	0	0	-	1	1	1.0000

26

•		Men			Women	
Age						
×	D(x)	S(x)	д (х)	$D(\times)$	5(x)	q(x)
80	9287	70407	. 1319	10387	85125	. 1220
81	8514	59950	.1420	9751	73516	. 1326
82	7714	50395	.1531	9077	62523	.1452
83	6972	41634	.1675	8179	52404	.1561
84	6145	33815	. 1817	7373	43410	. 1698
85	5303	27051	.1960	6495	35401	. 1835
86	4627	21320	.2170	5566	28370	. 1962
87	3814	16291	.2341	4847	22267	.2177
88	3091	12274	.2518	3947	17119	.2306
89	2431	8984	.2706	3138	12920	.2429
90	1827	6369	.2869	2547	9492	.2683
91	1324	4446	.2978	1877	6860	.2736
92	978	3069	.3187	1461	4867	.3002
93	663	2050	.3234	1074	3338	.3218
94	473	1337	.3538	749	2207	.3394
95	337	856	,3937	569	1438	.3957
96	189	486	. 3889	311	856	.3633
97	111	285	.3895	216	538	.4015
98	67	172	.3895	122	320	.3813
99	46	100	.4600	73	185	.3946
100	23	51	.4510	62	112	.5536
101	15	29	.5172	20	46	. 4348
102	9	13	.6923	9	22	.4091
103	2	4	.5000	9	11	.8182
104	2	2	1.0000	3	3	1.0000

The Netherlands 1910 - 1925

The Netherlands 1925 - 1945

0		Men			Women	
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	16758	128790	.1301	17633	146315	.1205
81	15509	109673	. 1414	16621	126249	.1317
82	14105	92136	.1531	15238	107491	.1418
83	12878	76862	.1675	14183	91021	.1558
84	11563	62982	.1836	12830	75580	.1698
85	10029	50864	. 1972	11648	62282	.1870
86	8758	40308	.2173	9979	50286	.1984
87	7198	31327	.2298	8754	40262	.2174
88	5950	23916	.2488	7393	31318	.2361
89	4717	17840	.2644	5939	23794	.2496
90	3795	13050	.2908	4849	17846	. 2717
91	2878	9151	.3145	3738	12910	.2895
92	2011	6212	.3237	2859	9166	.3119
93	1455	4164	.3494	2090	6236	.3352
94	1022	2697	.3789	1487	4141	.3591
95	645	1645	.3921	948	2649	.3579
96	410	1001	.4096	690	1679	. 4110
97	246	590	. 4169	426	1000	.4260
98	151	344	.4390	258	580	. 4448
99	80	189	. 4233	179	335	.5343
100	52	109	. 5229	78	161	. 4845
101	35	51	.6863	44	87	.5057
102	9	17	.5294	31	46	.6739
103	7	8	.8750	11	17	.6471
104	0	0	-	3	5	.6000
105	0	0	-	1	2	.5000
106	0	0	-	1	1	1.0000

The Netherlands 1945 - 1970

0		Men			Women	
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
85 86 89 90 91 92 93 94 95	21709 19438 16464 13978 11291 8856 6846 5224 3763 2641 1799	132099 106631 84134 65006 48826 35930 25860 18158 12274 8062 5139	.1643 .1823 .1957 .2150 .2313 .2465 .2647 .2877 .3066 .3276 .3501	24568 21976 19136 16134 13313 10906 8603 6755 4921 3549 2579	159853 130530 104529 82099 63361 47833 35196 25398 17706 12082 8063	.1537 .1684 .1831 .1965 .2101 .2280 .2444 .2660 .2779 .2937 .3199
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	1122 762 433 256 169 86 43 16 11 2 3 1 0 1 0	3167 1931 1099 631 352 173 81 35 19 7 5 2 1 1 1 0	.3501 .3543 .3946 .3940 .4057 .4801 .4971 .5309 .4571 .5789 .2857 .6000 .5000 .0000 1.0000	1737 1117 771 432 277 150 79 45 19 12 7 6 2 1 1	5179 3239 1983 1135 653 352 188 100 52 31 18 10 4 2 1	.3354 .3449 .3888 .3806 .4242 .4261 .4202 .4500 .3654 .3871 .3889 .6000 .5000 .5000

Switzerland 1876 - 1914

0		Men			Women	
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	11573	67933	.1704	12910	79964	.1614
81	10142	55715	.1820	11311	65725	.1721
82	8706	45059	.1932	9856	53352	. 1847
83	7360	35883	.2051	8429	42529	. 1982
84	6189	28185	.2196	7101	33326	.2131
85	5113	21708	.2355	5848	25758	.2270
86	4157	16427	.2531	4753	19479	.2440
87	3273	12055	.2715	3666	14392	.2547
88	2516	8678	.2899	2832	10452	.2710
89	1916	6072	.3155	2090	7422	.2816
90	1349	4099	.3291	1642	5180	.3170
91	931	2715	.3429	1137	3454	.3292
92	631	1753	.3600	256	2260	.3345
93	409	1117	.3662	518	1455	.3560
94	270	694	.3890	360	911	.3952
95	176	412	. 4272	209	536	.3899
96	117	238	. 4916	130	322	.4037
97	55	118	.4661	99	196	.5051
98	27	64	.4219	33	98	.3367
99	13	36	.3611	30	63	. 4762
100	10	23	. 4348	1.5	32	. 4688
101	6	12	.5000	9	15	.6000
102	0	6	. 0000	3	5	.6000
103	5	5	1.0000	0	2	.0000
104	0	0		1	2	.5000
105	0	0	-	0	1	.0000
106	0	0	_	1	1	1,0000

0	Men			Women		
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	13797	94451	.1461	17928	140467	. 1276
81	12582	78729	.1598	16563	119498	.1386
82	11053	64433	.1715	15290	99994	. 1529
83	9708	52239	.1858	13787	82281	.1676
84	8342	41490	.2011	12298	66529	. 1849
85	7001	32318	.2166	10011	52418	.1910
86	5730	24667	. 2323	8680	41108	.2112
87	4679	18500	.2529	7187	31450	.2285
88	3607	13507	.2670	5664	23432	.2417
89	2704	9667	.2797	4477	17165	.2608
90	2085	6810	.3062	3344	12311	.2716
91	1467	4608	.3184	2606	8646	.3014
92	1021	3065	.3331	1866	5840	.3195
93	721	1984	.3634	1273	3847	.3309
94	452	1224	.3693	845	2517	.3352
95	309	760	.4066	599	1598	.3748
96	179	427	. 4192	378	962	.3929
97	93	238	.3908	216	552	.3878
98	63	139	. 4532	134	333	.4024
99	36	76	. 4737	91	190	. 4789
100	19	37	.5135	42	97	.4330
101	7	19	.3684	33	54	.6111
102	5	12	.4167	10	20	.5000
103	5	7	.7143	5	10	.5000
104	0	2	.0000	3	4	.2500
105	2	2	1.0000	1	1	1.0000

Switzerland 1948 - 1970

0===		Men			Women	
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
85	9594	51823	.1851	14162	88268	.1604
86	8376	40963	.2045	12819	71921	. 1782
87	6912	31507	.2194	10970	57184	.1918
88	5647	23687	.2384	9286	44723	.2076
89	4508	17372	.2595	7760	34120	.2274
90	3346	12360	.2707	6100	25328	.2408
91	2540	8654	. 2935	4683	18432	.2541
92	1782	5858	.3042	3576	13101	.2730
93	1238	3869	.3200	2663	9047	.2944
94	846	2503	.3380	1924	6015	.3199
95	587	1565	.3751	1318	3877	.3400
96	356	934	.3812	852	2418	.3524
97	220	547	. 4022	535	1487	.3598
98	122	309	.3948	365	888	. 4110
99	84	174	. 4828	199	495	.4020
100	43	86	.5000	129	277	.4657
101	20	40	.5000	62	141	. 4397
102	11	18	.6111	31	25	. 4133
103	4	7	.5714	22	40	.5500
104	0	3	.0000	12	17	.7059
105	3	3	1.0000	2	4	.5000
106	0	0	-	1	2	.5000
107	0	0	-	0	1	.0000
108	0	0	-	1	1	1.0000

Age		Men			Women	
x	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	9196	77650	.1184	11040	101554	.1087
81	8613	67019	.1285	10564	88739	.1190
82	8208	57273	.1433	10082	26905	.1311
83	7639	48379	. 1579	9523	65866	.1446
84	6805	39641	. 1717	8691	54990	.1580
85	6016	31905	. 1886	7747	45366	.1708
86	5255	25208	.2085	6826	36803	.1855
87	4221	19289	.2188	6014	29226	.2058
88	3438	14295	.2405	4852	22199	.2186
89	2716	10343	,2626	3971	16611	.2391
90	2067	7271	.2843	3107	12222	.2542
91	1466	4894	.2996	2351	8683	.2708
92	1008	3139	.3211	1762	5933	.2970
93	643	1964	,3274	1261	3975	.3172
94	442	1240	.3565	852	2614	.3259
95	311	734	. 4237	596	1686	.3535
96	167	390	. 4282	418	1029	.4062
97	95	213	.4460	227	581	.3907
98	41	113	.3628	136	338	.4024
99	33	69	. 4783	76	191	.3979
100	21	31	.6774	48	112	. 4286
101	3	9	.3333	33	60	.5500
102	4	7	.5714	11	26	. 4231
103	1	3	.3333	10	16	.6250
104	1	2	.5000	1	5	.2000
105	1	1	1.0000	1	4	.2500
106	0	D	-	2	2	1.0000

Sweden 1914 - 1930

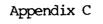
0.55		Men			Women	
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	12008	104329	.1151	14450	136788	.1056
81	11682	91664	. 1274	14434	121423	.1189
82	11142	79555	.1401	13819	106215	.1301
83	10202	67757	.1506	12913	91768	.1407
84	9748	57364	.1699	12252	78912	.1553
85	8690	47341	.1836	11401	66217	. 1722
86	2558	38069	. 1985	10025	54232	. 1849
87	6557	30146	.2175	8825	43732	.2018
88	5591	23455	.2384	7470	34710	.2152
89	4543	17731	.2562	6361	27154	.2343
90	3634	13033	.2788	5243	20608	. 2544
91	2752	9337	.2947	4086	15333	.2665
92	2080	6580	.3161	3232	11235	.2877
93	1469	4457	, 3296	2376	7890	.3011
94	1051	2916	.3604	1757	5392	.3259
95	668	1805	.3701	1286	3536	.3637
96	421	1091	.3859	845	2207	.3829
97	287	646	. 4443	511	1312	.3895
98	156	346	.4509	320	781	.4097
99	68	176	.3864	172	447	.3848
100	48	102	. 4706	110	246	. 4472
101	27	51	.5294	60	127	. 4724
102	10	20	.5000	36	66	.5455
103	2	9	.2222	17	26	.6538
104	2	4	.5000	7	10	.7000
105	2	2	1.0000	2	2	1.0000
106	0	0	-	1	1	1.0000

000	Men			Women		
Age ×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
80	13554	117280	.1156	15979	148609	.1075
81	12995	102443	.1269	15582	131156	.1188
82	12250	87797	.1395	14918	113868	.1310
83	11260	74244	.1517	14039	97141	.1445
84	10296	62077	.1659	12763	81731	.1562
85	9209	50818	.1812	11674	67944	. 1718
86	8136	40957	.1986	10392	55497	. 1873
87	2054	32236	.2188	9057	44495	.2036
88	5722	24906	.2297	7705	35149	.2192
89	4756	19017	.2501	6441	27250	.2364
90	3870	14130	.2739	5239	20659	.2536
91	3008	10058	.2991	4210	15142	.2780
92	2129	6909	.3081	3199	10764	.2972
93	1522	4711	.3231	2422	7588	.3192
94	1135	3139	.3616	1694	5126	.3305
95	765	2015	.3797	1199	3456	.3469
96	493	1260	.3913	853	2226	.3832
97	315	759	.4150	516	1380	.3739
98	197	434	. 4539	364	865	.4208
99	104	239	.4351	226	507	. 4458
100	74	138	.5362	137	292	.4692
101	32	65	. 4923	78	155	.5032
102	24	37	.6486	41	78	.5256
103	8	13	.6154	24	41	.5854
104	3	8	.3750	7	17	.4118
105	3 2	5	.6000	7	8	.8750
106	2	2	1.0000	1	1	1.0000

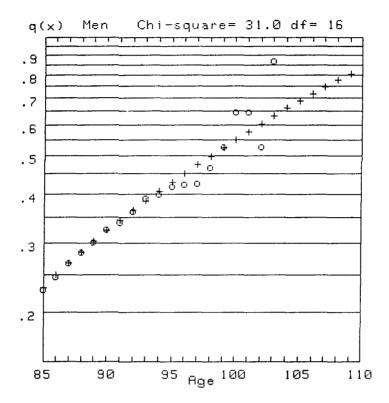
Sweden 1945 - 1967

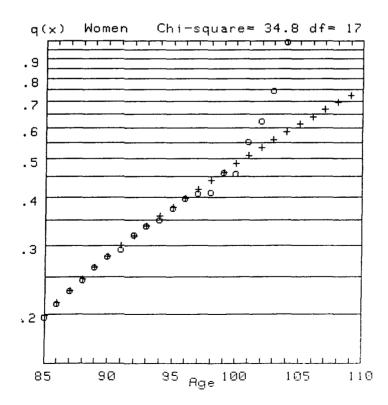
_		Men			Women	
Age						
×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
85	17593	101864	. 1727	20787	129218	.1609
86	15767	83070	,1898	19078	107416	. 1776
87	13702	66258	.2068	16853	87275	.1931
88	11579	51354	.2255	14280	69156	.2065
89	9441	38973	.2422	12145	53874	.2254
90	7473	28815	.2593	9858	40896	.2411
91	5899	20954	.2815	7886	30652	.2573
92	4441	14773	.3006	6252	22373	.2794
93	3257	10124	.3217	4729	15784	.2996
94	2341	6742	.3472	3403	10890	.3125
95	1606	4306	.3730	2494	7326	.3404
96	1024	2636	.3885	1724	4761	.3621
97	650	1581	. 4111	1130	2989	.3781
98	374	916	. 4083	692	1826	.3790
99	236	534	. 4419	446	1109	.4022
100	126	292	. 4315	286	654	. 4373
101	77	160	.4813	153	360	.4250
102	41	77	.5325	95	198	. 4798
103	23	34	.6765	48	98	. 4898
104	7	10	.7000	29	46	.6304
105	2	3	.6667	7	18	.3889
106	1	1	1.0000	4	10	.4000
107	0	0	-	4	5	.8000
108	0	0	-	0	1	.0000
109	0	0	-	1	1	1.0000

Sweden 1967 - 1973

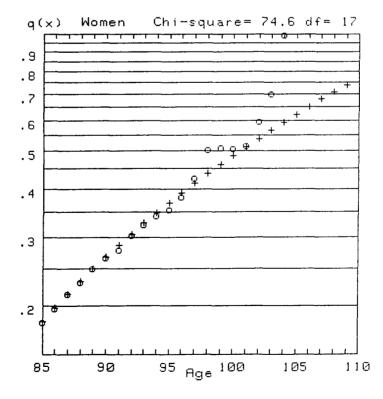

		Men			Women	
Âge						
×	D(x)	S(x)	q(x)	D(x)	S(x)	đ(x)
85	6160	39504	. 1559	7462	57193	.1305
86	5516	32209	. 1713	6809	47207	.1442
87	4777	25794	.1852	5896	38363	,1537
88	4074	20428	.1994	5288	31019	.1705
89	3429	15755	.2176	4422	24161	,1830
90	2792	12097	.2308	3823	18727	.2041
91	2262	9089	.2489	2997	14206	.2110
92	1770	6625	.2672	2552	10656	.2395
93	1320	4670	.2827	1867	7618	.2451
94	928	3131	.2964	1444	5305	.2722
95	657	2067	.3179	1034	3579	.2889
96	449	1279	.3511	752	2416	.3113
97	271	761	.3561	514	1546	.3325
98	173	458	.3777	321	963	.3333
99	106	253	.4190	209	566	.3693
100	59	133	. 4436	136	319	. 4263
101	31	69	. 4493	72	173	. 4162
102	14	34	.4118	39	98	.3980
103	7	17	.4118	26	55	. 4727
104	3	8	.3750	17	28	.6071
105	5	2	.7143	8	15	.5333
106	1	1	1.0000	7 1	8	.8750
107	0	0	-	1	1	1.0000

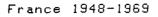
Sweden 1973 - 1979

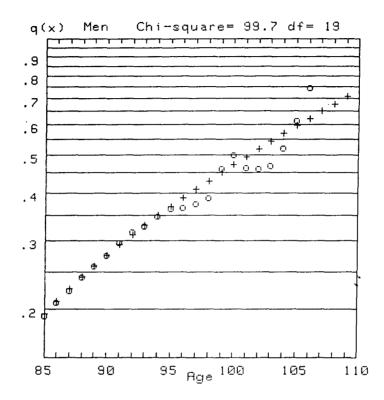

		Men			Women	
Age						
×	D(x)	S(x)	q(x)	D(x)	S(x)	q(x)
85	6752	43313	. 1559	8686	72311	.1201
86	6129	36045	.1700	8153	61288	.1330
87	5502	29772	.1848	7398	51147	.1446
88	4813	23926	,2012	6596	41729	. 1581
89	3966	18979	.2090	5759	33723	.1708
90	3377	14775	.2286	5036	26731	.1884
91	2703	11099	.2435	4154	20491	.2027
92	2138	8076	.2647	3262	15235	.2141
93	1627	5716	.2846	2735	11208	.2440
94	1186	3952	.3001	2036	7996	.2546
95	895	2640	.3390	1490	5462	.2728
96	574	1694	, 3388	1050	3650	.2877
97	389	1106	.3517	768	2404	.3195
98	258	203	.3670	544	1549	.3512
99	159	436	.3647	320	922	.3471
100	99	244	.4052	203	557	.3645
101	55	125	.4400	131	327	.4006
102	30	59	.5085	66	168	.3929
103	10	27	.3704	43	92	.4674
104	11	18	.6111	24	44	.5455
105	3	5	.6000	6	15	. 4000
106	1	3	.3333	6	7	.8571
107	2	2	1.0000	1	1	1.0000

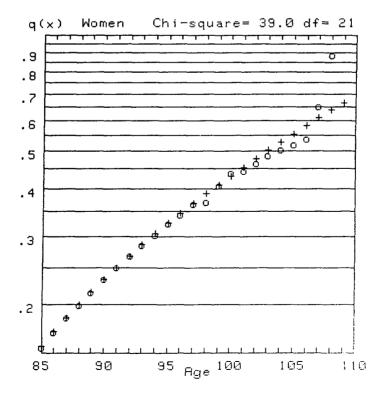

Sweden 1979 - 1984

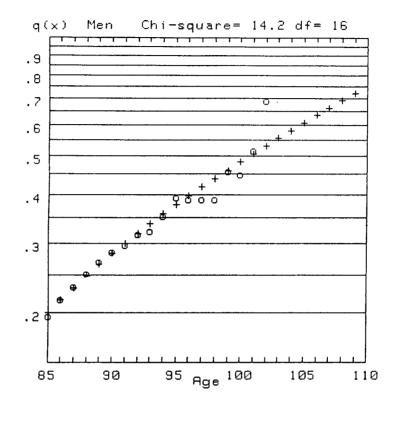
		Men			Women	
Age						
×	D(x)	5(x)	q(x)	D(x)	S(x)	q(x)
85	6145	41137	.1494	8347	73627	.1134
86	5475	34061	.1607	7441	62924	.1183
87	4882	27726	.1761	7125	53400	.1334
88	4204	22058	.1906	6643	44492	.1493
89	3642	17347	.2100	5942	36056	.1648
90	2925	13320	.2196	5071	28605	. 1773
91	2439	10117	.2411	4307	22266	. 1934
92	1972	7594	.2597	3679	17170	.2143
93	1572	5529	. 2843	2960	12821	.2309
94	1143	3917	.2918	2324	9334	.2490
95	856	2717	.3151	1771	6693	.2646
96	601	1857	.3236	1370	4684	.2925
97	413	1171	.3527	927	3071	.3019
98	259	704	.3679	641	1964	.3264
99	155	394	.3934	393	1216	.3232
100	96	243	.3951	256	733	.3493
101	82	146	.5616	169	433	.3903
102	29	71	. 4085	91	238	.3824
103	22	40	.5500	65	146	. 4452
104	9	17	.5294	30	74	.4054
105	5	7	.7143	26	40	.6500
106	1	1	1.0000	5	12	. 4167
107	0	0	-	4	6	.6667

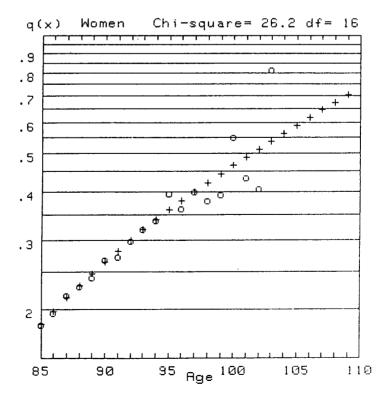

France 1920-1929

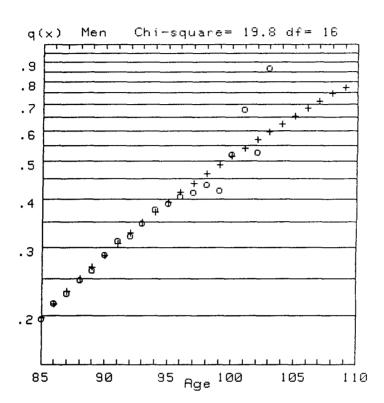


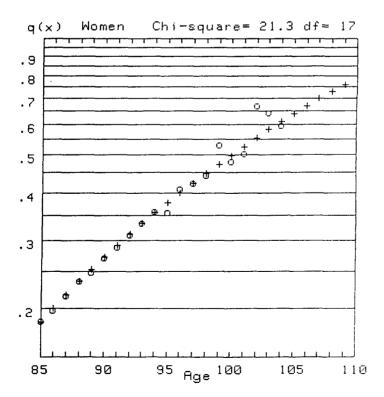


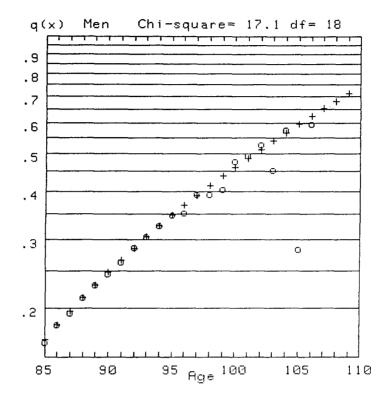

France 1929-1938

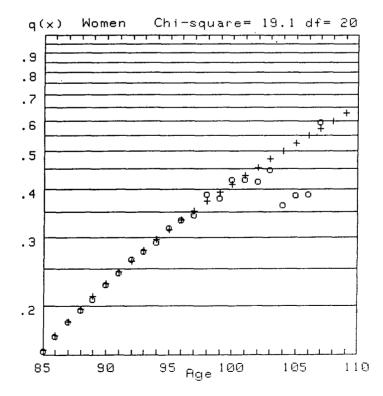


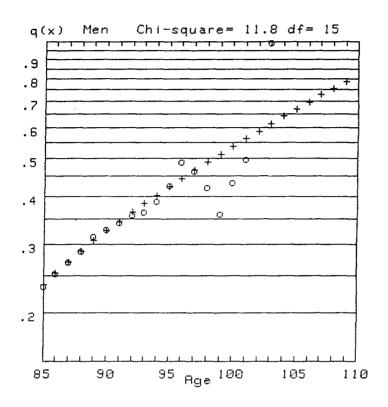


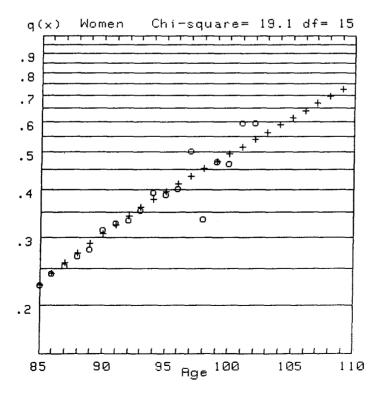


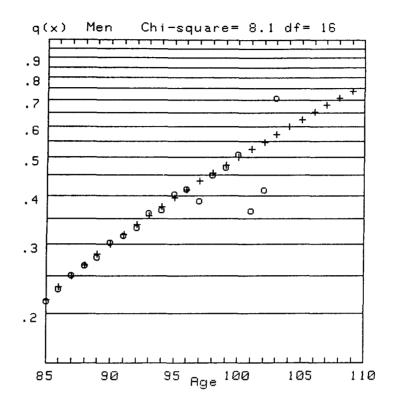


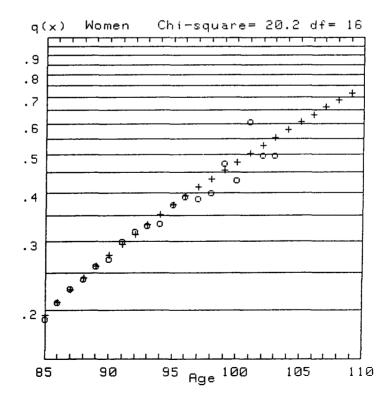


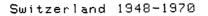


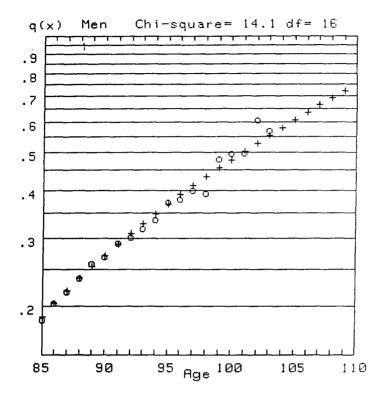


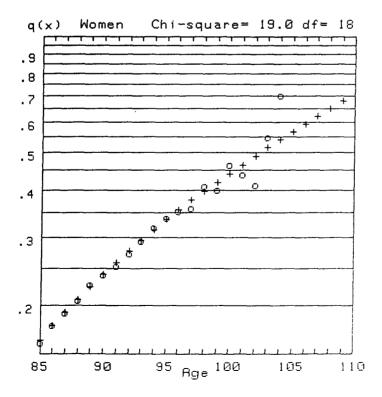


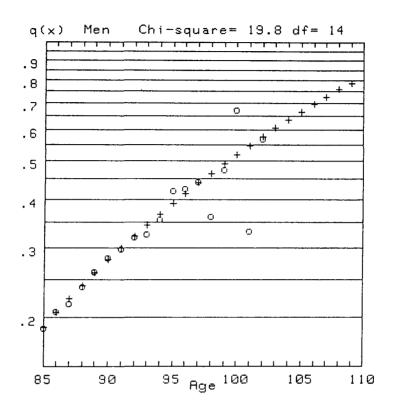


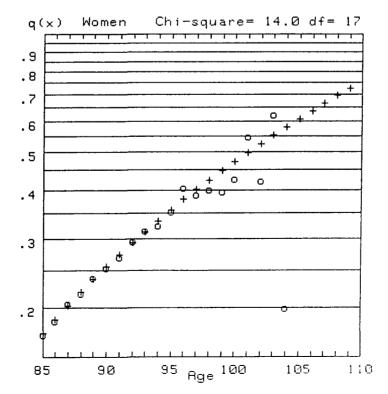


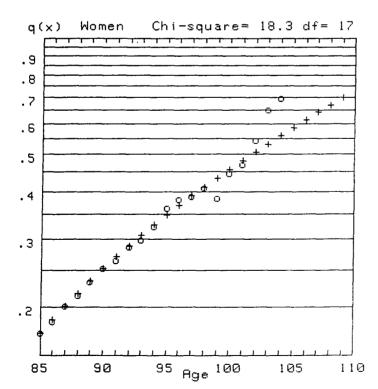

Switzerland 1876-1914



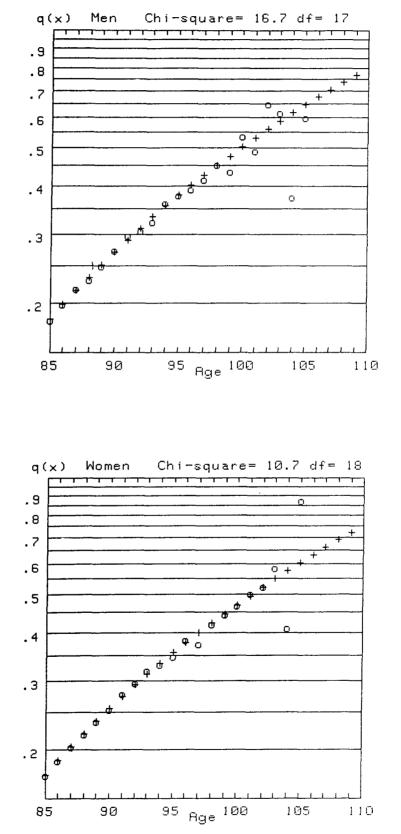

Switzerland 1914-1948

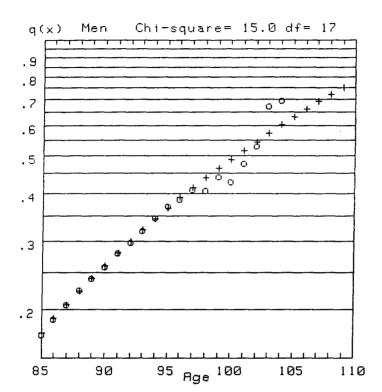


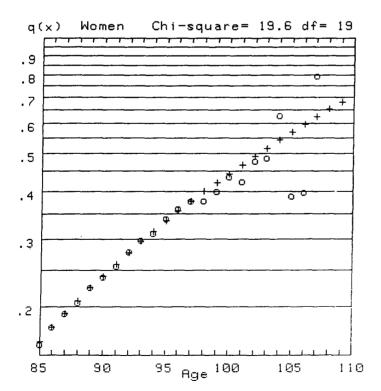




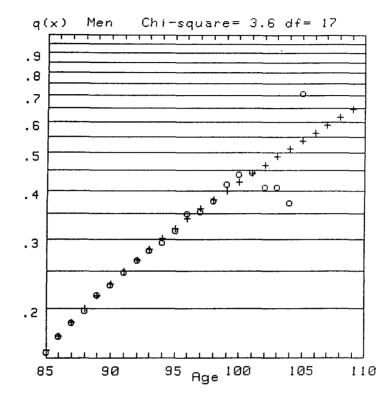
Sweden 1901-1914

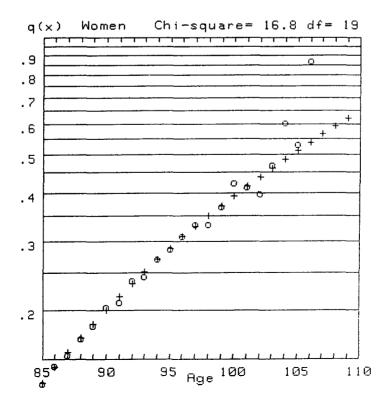


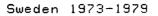


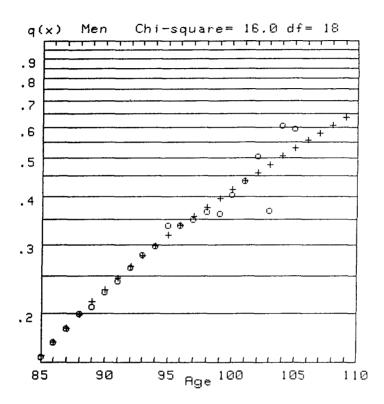


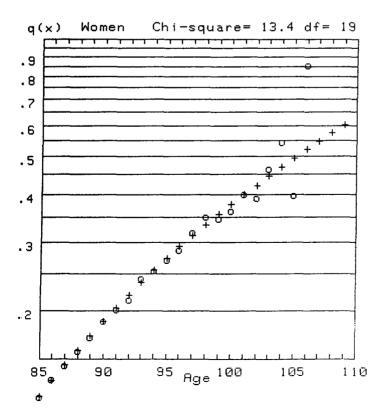
Sweden 1930-1945

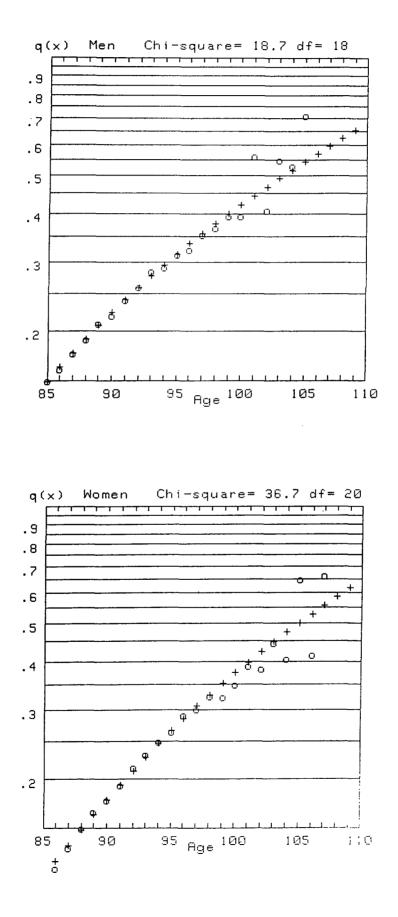







Sweden 1945-1967


Sweden 1967-1973



Sweden 1979-1984

Tidigare nummer av Promemorior från U/STM: NR

- 1 Bayesianska idéer vid planeringen av sample surveys. Lars Lyberg (1978-11-01)
- 2 Litteraturförteckning över artiklar om kontingenstabeller. Anders Andersson (1978-11-07)
- 3 En presentation av Box-Jenkins metod för analys och prognos av tidsserier. Ake Holmén (1979-12-20)
- 4 Handledning i AID-analys. Anders Norberg (1980-10-22)
- 5 Utredning angående statistisk analysverksamhet vid SCB: Slutrapport. P/STM, Analysprojektet (1980-10-31)
- 6 Metoder för evalvering av noggrannheten i SCBs statistik. En översikt. Jörgen Dalén (1981-03-02)
- 7 Effektiva strategier för estimation av förändringar och nivåer vid föränderlig population. Gösta Forsman och Tomas Garås (1982-11-01)
- 8 How large must the sample size be? Nominal confidence levels versus actual coverage probabilities in simple random sampling. Jörgen Dalén (1983-02-14)
- 9 Regression analysis and ratio analysis for domains. A randomization theory approach. Eva Elvers, Carl Erik Särndal, Jan Wretman och Göran Örnberg (1983-06-20)
- 10 Current survey research at Statistics Sweden. Lars Lyberg, Bengt Swensson och Jan Håkan Wretman (1983-09-01)
- 11 Utjämningsmetoder vid nivåkorrigering av tidsserier med tillämpning på nationalräkenskapsdata. Lars-Otto Sjöberg (1984-01-11)
- 12 Regressionsanalys för f d statistikstuderande. Harry Lütjohann (1984-02-01)
- 13 Estimating Gini and Entropy inequality parameters. Fredrik Nygård och Arne Sandström (1985-01-09)
- 14 Income inequality measures based on sample surveys. Fredrik Nygård och Arne Sandström (1985-05-20)
- 15 Granskning och evalvering av surveymodeller, tiden före 1960. Gösta Forsman (1985-05-30)
- 16 Variance estimators of the Gini coefficient simple random sampling. Arne Sandström, Jan Wretman och Bertil Waldén (Метю, Februari 1985)
- 17 Variance estimators of the Gini coefficient probability sampling. Arne Sandström, Jan Wretman och Bertil Waldén (1985-07-05)
- 18 Reconciling tables and margins using least-squares. Harry Lütjohann (1985-08-01)
- 19 Ersättningens och uppgiftslämnarbördans betydelse för kvaliteten i undersökningarna om hushållens utgifter. Håkan L. Lindström (1985-11-29)
- 20 A general view of estimation for two phases of selection. Carl-Erik Särndal och Bengt Swensson (1985-12-05)
- 21 On the use of automated coding at Statistics Sweden. Lars Lyberg (1986-01-16)
- 22 Quality Control of Coding Operations at Statistics Sweden. Lars Lyberg (1986-03-20)
- 23 A General View of Nonresponse Bias in Some Sample Surveys of the Swedish Population. Håkan L Lindström (1986-05-16)
- 24 Nonresponse rates in 1970 1985 in surveys of Individuals and Households. Håkan L. Lindström och Pat Dean (1986-06-06)
- 25 Two Evaluation Studies of Small Area Estimation Methods: The Case of Estimating Population Characteristics in Swedish Municipalities for the Intercensal Period. Sixten Lundström (1986-10-14)
- 26 A Survey Practitioner's Notion of Nonresponse. Richard Platek (1986-10-20)
- 27 Factors to be Considered in Developing a Reinterview Program and Interviewer Debriefings at SCB. Dawn D. Nelson (1986-10-24)
- 28 Utredning kring bortfallet i samband med den s k Metropolitdebatten. Sixten Lundström (1986-11-10)
- 29 Om HINK-undersökningens design- och allokeringsproblematik. Bengt Rosén (1986-10-06)
- 30 Om HINK-undersökningens estimationsförfarande. Bengt Rosén (1987-01-28)
- 31 Program för minskat bortfall i SCBs individ- och hushållsundersökningar förslag från aktionsgruppen för uppgiftslämnarfrågor. Lars Lundgren (1987-02-20)
- 32 Practical estimators of a population total which reduce the impact of large observations. Jörgen Dalén (87-03-03)
- 33 A Multivariate Approach to Social Inequality. M Ribe (1987-05-05)
- 34 BORTFALLSBAROMETERN NR 2. Bortfall vid I-avdelningen, AKU och F-avdelningen t o m 1986. Håkan L. Lindström, Peter Lundquist och Tomas Garås (1987-08-01)
- 35 Use of Laboratory Methods and Cognitive Science for the Design and Testing of Questionnaires. Handbook of Methods. Judith T. Lessler (June 1987)

- 36 Some Optimal Problems When Estimating Household Data on the Basis of a "Primary", Stratified Sample of Individuals. Bengt Rosén (1987-08-10)
- 37 Early Survey Models and Their Impact on Survey Quality Work. Gösta Forsman (1987-09-17)

Kvarvarande exemplar av ovanstående promemorior kan rekvireras från Elseliv Lindfors, U/STM, SCB, 115 81 Stockholm, eller per telefon 08 7834178