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Abstract 

A heterogenous cohort with intensity functions of individuals 

following the Makeham law is considered. It is shown that if the 

frailty variable obeys a generalized form of the gamma distribution 

then the total force of mortality can be seen as a generalization 

of Perks formula. The model is applied to mortality of centenarians 

in Sweden and other countries. 

Keywords 

Old-age mortality, centenarians, heterogeneity, frailty, gamma 

distribution, Perks formula 
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1. Introduction 

Adult mortality, measured by the force of mortality 

(1.1) 

where l(x) is the number of survivors of a cohort at age x, is well 

approximated in broad age intervals by the Gompertz-Makeham formula 

(1.2) 

It is well known that the exponential increase is slowed down at 

higher ages. Perks (1932) found that the logistic curve 

(1.3) 

gave a much better fit to adult and old age mortality. For a review 

of these theories see Spiegelman (1968, Chapt. 6). 

In the discussion of Perks paper Trachtenberg advances the idea of 

a heterogeneous population: Individuals follow the Gompertz law 

(A = 0 in (1.2)) but with varying parameters B and k. Beard (1959) 

showed that if B (which measures inability to withstand 

destruction, called "frailty" by Vaupel et al.(1979)) in such a 

heterogenous cohort is gamma distributed at birth, then the 

totalforce of mortality is given by Perks formula. 

Perks formula implies that u(x) approaches a constant limit value 

in high ages. Vincent (1951), Depoid (1973), Thatcher (1981) and 

Barrett (1985) have studied the mortality of centenarians. Although 

Barrett finds a decline in estimated male mortality after age 104, 

there seems to be no evidence for a plateau in the mortality rates 

for the centenarians. The decline observed by Barrett is based on 

only 23 men aged 105 and no decline is found in the female rates. 
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Horiuchi and Coale (1983) analyse the age dependence of female 

mortality in several modern industrialized countries using the 

age-specific rate of mortality change with age, i.e. the derivative 

k(x)= dln(|i(x))/dx. The age interval is 50-95 years. They find that 

the function k(x) has a peak about age 75 and its peak is close to 

0.12 . This pattern supports the Perks model and "estimated k(x) 

values derived by fitting the Perks model to the logarithms of age-

specific death rates agree quite well with the smoothed sequence of 

observed k(x) values, except for some departures at both ends." 

In the higher ages the observed k(x) values do not approach zero as 

predicted by the Perks model. 

Using a micro simulation model Qvist (1987) models the mortality in 

coronary heart disease, the dominant cause of mortality at high 

ages. As a "frailty" index he uses the level of atherosclerosis 

leisons. The distribution of the frailty index is based on an 

investigation by Rissanen (1972) concerning patients who have 

suffered violent deaths. The approach is interesting for at least 

two reasons: (1) The heterogeneity assumption is medically well 

established and (2) The distribution of the frailty index is 

markedly skewed. 

In modelling the total mortality at old ages we think the 

heterogeneity assumption is essential. Variation in genetic 

constitution and life style account for differences between 

individual mortality rates. We think, however, that the assumptions 

leading to Perks formula should be somewhat modified since the 

plateau predicted by the formula does not seem to exist. Therefore 

we change the assumption on the frailty distribution in the 

neighbourhood of zero. We move the distribution to the right. 

Instead of the gamma distribution itself we use a generalized or 

shifted gamma distribution (Hahn and Shapiro (1967) , p 89). 
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2. A model of the frangible man 

We will model the total force of mortality in a cohort of men or 

women. To each individual corresponds a positive value of a frailty 

variable z and the value is supposed to be the same during the 

total lifetime. The survival and intensity function for an 

individual of frailty z is denoted l(x|z) and u(x|z) respectively. 

The frequency function of the frailty variabel at age x is denoted 

f(z|x) and for simplicity of notation we put g(z) = f(z|x=0), i.e. 

g(z) is the frequency function at birth. The frailty distribution 

at birth seems to be of little relevance for old-age mortality and 

we shall soon see that the time of birth is just a practical 

starting point. We can now state the following theorem on the total 

force of mortality H(x). 

Theorem ("The theorem of the frangible man") 

If the intensity functions of individuals follow the Makeham law: 

(2.1) 

and the frailty variable has a generalized (i.e. shifted) gamma 

distribution, with density 

(2.2) 

with parameters a,b och c, then the total force of mortality u(x) 

can be written: 

(2.3) 

where B = (A + ak)/(kb-l) och D = l/(kb-l). 

The proof is given in appendix A (Al). 
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The proof also shows that the frailty variable has a generalized 

gamma distribution at each age x; ef (A1.5). In describing the 

old-age mortality, we actually only need the frailty distribution 

assumption at age 85, say. If we assume that the frailty variable 

at that age has a generalized gamma distribution and that u(x|z) 

for x > 85 follows the Makeham law (2.1), then the formula (2.3) is 

still applicable. 

The equation (2.3) shows the close connection to the Perks formula. 

The additional term is due to our assumption about the "frangible 

man" - the frailty variable cannot take on values too close to 

zero. As a consequence n(x) —> +» as x —> +°° , which we think is a 

plausible property of the total force of mortality H(x). 

Fig 1. Examples of frailty distributions 
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What the equation (2.3) does not show is the close connection to 

the form of the frailty distribution. Assuming A = 0, which at high 

ages seems a reasonable approximation, equation (2.3) can be 

written (Appendix, A2): 

(2.4) 

where n is the mean of U = Z - c, the deviation of the frailty 

variable from the lower bound z = c, and a is the relative standard 

deviation of U. The measure a is directly related to the skewness 

of the distribution (Hahn and Shapiro(1967), p 124). See fig 1. 

Fig 2. The effect of changing the ratio C/(C+TI) in (2.4) 
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lex n 
From (2.4) follows immediately H(xo) = (c+T))e u . Thus for given k 

and a, all curves with the sum c + TI = m pass through the same 

point (x(j,H(xo)) as shown in fig 2 for a = 0.5, k = 0.12, 

m = 8x10 and xo = 85. The extreme cases T) = 0 and c = 0 

correspond to Gompertz and Perks law (with A = 0) respectively. 

3. Fitting the model to the data 

3.1 The data 

Extensive data on old-age mortality for four countries (France, 

Sweden, Switzerland and The Netherlands) and several periods are 

given by Depoid(1973). To these data we have added mortality data 

for Sweden during later years (see appendix B). In this way we 

have disposed of mortality patterns as wide apart as Switzerland 

1876- 1914 and Sweden 1979-84. 

One year risks of death (q ) have been transformed to intensities, 

using the formula: 

(3.1) 

For each country, period and sex we have such a set of estimated 

intensities. The number of observations in each set is about 20. 

Intensities based on less than 12 survivals have been excluded. By 

this choice we have avoided the cases q = 0 and q = 1 . 
x x 
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The data are not purely period data. Thus, in the set of 

intensities for Sweden 1967-73 the cohort born 1877 is included, 

having their 90 years birthday during the first year of the period, 

and then followed during six years until the age of 96 in 1973. In 

this way the mortality rate of persons aged 90 is based on the 

generations born 1877-1882, while the rate of persons aged 91 is 

calculated from the mortality of the cohorts 1876-1881. As usual, 

age and cohort effects are not separable - a decrease in cohort 

mortality will show up as an increase in the age effect. But even 

cohort data are problematic - a period effect will be confounded 

with the age effect. 

3.2 Some additional assumptions 

Fitting the model (2.4) to our mortality data cannot unambiguously 

determine the four parameters. Unless additional information on the 

parameters is supplied, a whole variety of parameter values will 

give about as good a fit as possible. This is true also of the 

Perks model. Perks(1932) observes, fitting the curve to the 

mortality rates at ages 40-100 years, that the parameter k could be 

changed without essentially affecting the goodness of fit. As we 

start at age 85 (xo = 85), the data contain less information about 

the curvature of the mortality rates, which also means less 

information about the frailty distribution. 

This lack of information is illustrated in fig 3. Using the 

least-squares method, we have fitted equation (2.4) to the 

mortality intensities of Swedish men 1979-84 for three different 

combinations of a and k. It is seen that the predicted intensities 

for the different combinations are almost identical at ages 85-105. 
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Fig 3. All the parameters cannot be estimated 

The pairs of a and k used in fig 3 (and all pairs on the same line 

in the neighbourhood of k = 0.12) almost minimize the total sum of 

squares taken over all our data sets. To solve the problem of 

indeterminacy we have chosen a = 0.5 and k = 0.12 as "universal" 

constants to be used in the following. To this a-value corresponds 

a rather skew frailty distribution (fig 1) - and we think the 

distribution should be rather skew (Qvist(1987)) - and the k-value 

we think is in good agreement with the findings of Horiuchi and 

Coale(1983). But the exact choice must of course be somewhat 

arbitrary. 
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Analysing all data sets by means of the same a and k simplifies the 

comparison of mortality patterns between countries and periods as 

we get a common basis for the parameters. Thus, the estimated 

intensity level at age x is directly related to the sum m = c + n 

and, if comparing two data sets with mi and m2 respectively and 

mi > m2, then we have (J.i(xo) > |J.2(xo) • Moreover, the ratio c/m 

contains the information of the form of the curve (cf fig 2). 

3.3 Least-squares estimation of the parameters 

Given a (= 0.5) and k (= 0.12), the force of mortality (2.4) is a 

function of the two parameters c and n. To fit the model to 

observed intensities H(x) (x=85.5,..), we will use the method of 

least-squares. Since the function u(x) is nonlinear in n, we 

replace it with a linear approximation in a neighbourhood of a 

guessed value of n, denoted T)Q (Draper and Smith(1981), Chap.10). 

Then we get the following regression equation, linear in the two 

unknown parameters c and An (An = n - TIQ): 

(3.3) 

Assuming the number of deceased aged x binomially distributed with 

parameters n and q , then, if the model is true, the variance of 

the residual is approximately: 

(3.4) 

The number of survivals at age x, denoted n , decreases rapidly 

with x - the number of survivals at age 100 is just a small 

fraction of the number at age 85. This fact means that the 

estimates H(x) are of very different precision. Therefore, we use 
2 

weighted least-squares with weights w = n (1-q )/q , i.e. we 

estimate c and An by minimizing the sum of squares: 
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(3.5) 

The sum of squares can also be written: 

(3.6) 

where 

With this change of notation we are back to the ordinary linear 

regression model, so the coefficents Pi and p2 can be determined 

by a standard program for regression analysis. Note, however, that 

there is no constant term (Po = 0). From the estimates Pi and P2 w e 

then get c = Pi and T| = r)o + P2· 

Substituting the estimate of r\ for "HQ, the procedure can be 

repeated an arbitrary number of times. If we choose the value of TJO 

in the following way, then just the first step in this iteration 

procedure seems to be sufficient: 
~ -8 5.5k 

(1) Put mo = co + T)o = n(85.5)e , which means that the 

intensity function containing co and no equals the estimated 

intensity at age x = 85.5 . (2) Put no = 0.75mo and co = mo~ "no • 

The weights w have been computed from these initial values of c 

and n. 
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3.4 The parameter estimates 

The parameter estimates are given in table 1 below. See also fig 4. 

The estimates are given as the sum m = c + r| and the ratio c/m and 

refer to the frailty distribution at age 85 (cf fig 1) with a=0.5 . 

Table 1. Estimates of expected frailty at age 85 (m «• c + T)) and 

the lower bound of the frailty distribution in percent of expected 

frailty (c/m). Twice the st.dev. is given for each estimate(2o~). 
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Fig 4. Parameter estimates 

Expected frailty at age 85 on the horizontal axis (m = c + T)) 

and the lower bound of the frailty distribution in percent of 

the expected frailty (c/m) on the vertical axis. 

The c-value is about 25% of the m-value. 
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The sum m indicates the mortality level at age 85.5: 

Example: For men in France during 1920-29 we have 

and, therefore, 

The indicator of the mortality level, m, varies systematically 

between sexes, countries and periods. The ratio c/m seems on the 

other hand to fluctuate more arbitrarily around a constant mean of 

about 0.24. This is the reason why we express c as a proportion of 

m. But the total variation of the ratio c/m does not seem to be due 

to the random variation in the estimated intensities. Some 

systematic differences seem to exist. 

3.5 The fit of the model 

We have plotted estimated and predicted mortality rates (q ). See 

appendix C. No systematic pattern recurring in several data sets 

have been found. We have also tested the goodness of fit by a 
2 2 

X -test. The calculated X -value is printed on the top of each 
figure. 

2 
The X -test is based on the sum of squared residuals: From the 

definition of the weights w it follows that the variance of y in 
x x 

(3.6) equals almost unity. Since y is a linear function of the 

intensities u(x), which are approximately normally distributed and 

independeant for large n , the sum of squared residuals is 
X 2 

approximately distributed as X with f = N-2 degrees of freedom, 
where N is the number of terms in the sum of squares (3.6). 

The test values are found in table 2. In the case of a significant 

value (p<0.05), then the sum of squares has been split into two 

parts: One over the interval 85-94 years and the other over the 

ages above 94 years. 
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2 
Table 2. X -test of goodness of fit 

(1) = The sum of squared residuals 85 - 94 years and (2) >95 years 
2 

(l)+(2) is, if the model is correct, distributed as X with df 

degrees of freedom. 

2 
According to the X -test, the fit of the model is less good in the 

case of French data and the partial sums of the squared residuals 

show that the largest contribution to the test values comes from 

the extremely old. No distinct systematic pattern can be seen, 

however. One explanation to significant test values for France is 

the fact that the French data are based on larger populations and, 

therefore, the probability of detecting even small discrepancies is 

increased. 
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2 
How should we explain the significant X -values? In the first place 

we have of course questioned the form of the intensity function. A 

visual inspection of observed and predicted death risks has not 

revealed, however, any significant pattern common to the data sets. 

Therefore, it seems more probable that the cause is to find 

somewhere else. In fact several of the reasons below may contribute 
2 

to the significant X -values: 

- False significances. In a sequance of 32 independeant tests on 

the 5% level 1.6 false significances are expected and the 

probability of the occurrence of two or more is almost 50%. 

- The normal approximation is less good for intensities based on 
2 

small groups. Therefore, the X -approximation is supposed to be 

less adequate at extremly high ages. 

- The approximation of the residual variance is based on large 

groups and is less adequate at extremly high ages. 

The residuals are not independent due to cohort effects. 

- The quality of the data. 

4. Application to the Swedish life table 

The Swedish life tables are based on observed risks of death up to 

the age 90 years. From the age 91 years the risks are estimated 

-(M-x)n 

according to Wittsteins formula: q = a v , where M is an 

assumed maximal lifespan (105 years for men and 106 for women), a 

and n are constants determined from the data. 

We have recomputed the table 1981 - 85 using the generalized Perks 

formula (table 3 a and b). The expected number of centenarians are 

more than doubled according to our calculation. 
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Table 3a. Comparison of methods of smoothing. 

Swedish men 1981 - 85. 

1) Notation: q = observed risk of death= D /(M + d ) , where D is 

the number of deceased during the period in the 

age interval x to x+1, d is the the number of 
x 

deceased during the period in the same age 
interval but after the birthday and M is the 

x 
mean population aged x. 

~ N 
q = smoothed risk of death, new formula and 
^x ' 

~ W 
q = " , Wittsteins formula. 
x ' 
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Table 3b. Comparison of methods of smoothing. 

Swedish women 1981 - 85. 

1) Notation: q = observed risk of death= D /(M + d ) , where D is 
' X X X X X 

the number of deceased during the period in the 

age interval x to x+1, d is the the number of 

deceased during the period in the same age 

interval but after the birthday and M is the 

mean population aged x. 
~ N 
q = smoothed risk, of death, new formula 
x 

q W = " " " , Wittsteins formula 
x 



20 

5. References 

Barett,J.C.(1985):The Mortality of Centenarians in England and 

Wales. Arch. Gerontol.Geriatr., 4, p 211-218 . 

Beard,R.E.(1959):Note on Some Mathematical Mortality Models, 

Colloquia on Ageing, CIBA Foundation, Vol 5. 

Churchill, London 

Beard,R.E.(1961):A Theory of Mortality Based on Actuarial, 

Biological and Medical Considerations. 

IUSSP 1961, New York , Vol 1, p 611-25. 

Depoid,F. (1973):La mortalité des grands vieillards. 

Population 28, p 755-792 

Draper,N.R. and Smith H. (1981):Applied Regression Analysis 

Sec éd., Wiley. 

Hahn,G.J, and Shapiro,S.S.(1967)Statistical Models in Engineering. 

Wiley. 

Horiuchi.S. and Coale.A.J.(1983):Age Patterns of Mortality for 

Older Women: An Analysis Using the Age-Specific 

Rate of Mortality Change with Age. The 1983 Annual 

Meeting of the Population Association of America 

Pittsburgh, Pennsylvania, (stencil) 

Horiuchi,S.(1983):The Long-Term Impact of War on Mortality: Old-Age 

Mortality of the First War Survivors in the 

Federal Republic of Germany. Population Bulletin 

of the United Nations, No. 15, p 80-92 

Manton.G. et al. (1986)alternative Models for the Heterogenity of 

Mortality Risks Among the Aged. JASA 81, p 635-644 

Perks,W. (1932): On Some Experiments in the Graduation of Mortality 

Statistics. Journal of the Institute of Actuaries. 

Vol LXIII, 1932, p 12-57 . 

Qvist,J.(1987) : A Micro Simulation Model for Mortality. 

Statistics Sweden (stencil). 



21 

Redington,F.M.(1969):An Exploration into Patterns of Mortality. 

Journal of the Institute of Actuaries, Vol 95, 

Part II, No 401, p 243-317 

Rissanen,V.(1972):Aortic and Coronary Atherosclerosis in a Finnish 

Autopsy Series of Violent Deaths. 

Annales Academiae Scientiarum Fenniace, Series A, 

V.Medica, 155 . 

Spiegelman,M.(1968):Introduction to Demography, Cambridge, MA., 

Harvard University Press. 

Thatcher,A.R.(1981):Centenarians. Population Trends 25, p 11-14 

Vaupel,J.W., Manton,K.G. and Stallard,E.(1979):The Impact of 

Heterogeneity in Individual Frailty on the 

Dynamics of Mortality. Demography,Vol 16, No 3, 

p 439-454 

Vincent,P.(1951):La mortalité des vieillards. 

Population, No 2, p 181-204 



22 

Appendix A 

Al. Proof of (2.3) 

The relation between H(x) and Kx|z) is (Beard (1959, Appendix)): 

(Al.l) 

With the assumption (2.1) we get: 

(A1.2) 

But f(x|z) = g(z)l(x|z)/l(x) where l(x|z) is determined by (2.1): 

(A1.3) 

Then g(z)l(x|z) = H(x)(z-c)a e where H(x) does not contain z 

and 

(A1.4) 

Further 

(A1.5) 

which means a generalized gamma distribution with parameters a, 

b(x) and c 
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But then, since Z-c is gamma distributed with parameters a and 

b(x), we have (Hahn and Shapiro (1967), p 124) 

(A1.5) 

Inserting this expression for E{Z|X} in (A1.2) we get: 

(A1.6) 

which, after rewriting, gives (2.3). 

The proof is now completed. 

A2. Derivation of (2.4) 

Consider first the frailty distribution at x = XQ. Let Z be the 

frailty variable at that age. According to (A1.5) Z has a 

generalized gamma distribution with parameters a, b(xo) and c Then 

U = Z - c is gamma distributed with parameters a and b(xo) « The 

mean and relative standard deviation of U is denoted by TI and a 

respectively, i.e. 

(A2.1a,b) 

Inserting this expression for b(x) in (A1.6) and using (A2.1a,b) we 

get in the case of A = 0 the equation (2.4). 
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Appendix B 
France 1920 - 1929 

1) Number of deceased who should have attained age x+1 during 1921-29 

2) Number of persons who attained age x during 1920-28 

Source: Depoid,F.(1973): La mortalité des grands vieillards, 

Population 28, p 755-792 

Swedish data 1967-73, 1973-79 and 1979-84 are collected from 

Population Changes (SOS), part 3, Statistics Sweden. 
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France 1929 - 1938 



26 

France 1948 - 1969 
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The Netherlands 1910 - 1925 
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The Netherlands 1925 - 1945 



29 

The Netherlands 1945 - 1970 



30 

Switzerland 1876 - 1914 



31 

Switzerland 1914 - 1948 
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Switzerland 1948 - 1970 



33 

Sweden 1901 - 1914 



34 

Sweden 1914 - 1930 



35 

Sweden 1930 - 1945 



36 

Sweden 1945 - 1967 



37 

Sweden 1967 - 1973 



38 

Sweden 1973 - 1979 



39 

Sweden 1979 - 1984 
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Appendix C 

France 1920-1929 
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France 1929-1938 



42 

France 1948-1969 
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The Netherlands 1910-1925 



44 

The Netherlands 1925-1945 



45 

The Netherlands 1945-1970 



46 

Switzerland 1876-1914 



47 

Switzerland 1914-1948 



48 

Switzerland 1948-1970 
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Sweden 1901-1914 



50 

Sweden 1914-1930 
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Sweden 1930-1945 



52 

Sweden 1945-1967 



53 

Sweden 1967-1973 



54 

Sweden 1973-1979 
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Sweden 1979-1984 
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