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ABSTRACT: Computations of income inequality measures are usually based 

on data from sample surveys. The most well-known measure is the Gini 

coefficient, which is a ratio statistic. We study both the exact samp­

ling distribution obtained by simple random sampling without replace­

ment from two small populations and approximated sampling distributions 

based on simulations. Four variance estimators are compared. 
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1. Introduction 

During the last decades the interest in measuring income inequality has 

substantially increased. One reason for this is the fact that many 

economic-political steps are taken to promote equality between indivi­

duals and/or households. The most well-known measure of income inequa­

lity is the Gini coefficient. 

Analyses of income distributions including computations of inequality 

measures are usually based on sample surveys. However, a discussion of 

the sampling properties of the Gini coefficient (and other measures of 

income inequality) is usually ignored, a fact which is probably due to 

its 'intractability'. 

In this paper we will study both the exact sampling distributions ob­

tained by a simple random sampling (srs) design without replacement 

from two small parent populations of size N = 11 and approximated samp­

ling distributions based on simulations. In the latter case we use 

parent populations of size N = 10,000 obtained from eleven continuous 

distributions. The design is srs with replacement. 

The main objective of this study is to compare four variance estimators 

of the estimated Gini coefficient but also to indicate the behavior of 

the estimator of the Gini coefficient since it is a ratio statistic. 

The numerator of the estimated Gini coefficient can be viewed as an 

L-statistic with scores depending on the sample. The first variance 

estimator ignores this fact and may be treated as a rough estimator. We 

call it a ratio estimator (V„). In the second estimator we take account 

of the fact that the scores depend on the sample and call it a Taylor 

estimator (VT). The third variance estimator is based on an asymptotic 

variance (V.) and the fourth on a jackknife procedure (V,). 

In Section 2 the Gini coefficient is defined and the four variance es­

timators presented. A main conclusion is drawn from the discussion of 

the exact sampling distributions in Section 3: Let the values y. yu, 
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associated with the units of a f i n i t e populat ion, take on both negative 

and posi t ive values. I f we t ranslate the f i n i t e population d i s t r i bu t i on 

1 N 

f u n c t i o n F.. so t ha t yM = N E yu tends towards zero than the f i n i t e 
N N k = 1 k 

population Gini coe f f i c ien t w i l l tend towards i n f i n i t y and the bias in 

both the estimator and the variance estimators w i l l be very large. In 

such cases, when yN i s close to ze ro , we recommend t h a t the Gini 

coe f f i c i en t is not used. 

In the simulation study, discussed in Section 4, we took 500 sample 

r e p l i c a t e s of s izes n = 5, 10, 20, and 100. The study showed that VA 

and V, are the best variance estimators (even for small sample s izes) . 

VD was poor and VT performed quite well for n > 20. When n •> », and N -»• 

» , f = n/N - f , 0 < f < 1 , then VT and V. are ident ica l in the srs ' n T A 
design. 

2. The estimation problem 

We f i r s t give a general de f i n i t i on of Gin i 's mean di f ference and the 

Gini coe f f i c ien t associated with a d i s t r i bu t i on func t ion . 

Let F be a d i s t r i bu t i on function (d f , for shor t ) , by which we mean a 

real-valued function defined on (-<=,») that is nondecreasing, r i gh t 

continuous and sa t i s f ies F(-°°) = 0 and F(+») = 1 . In terms of the 

Lebesgue-Stielt jes i n t e r g r a l , G in i 's mean d i f ference, G, associated 

wi th F is defined as 

(2 .1) 

The Gini coefficient, R, associated with F is defined as 

(2.2) 

where 

(2.3) 
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Formally, G and R may be considered as functional s : To any given df F, 

(2.1) and (2.2) assign values G and R. (For the definition of R to be 

meaningful, it is required that ^40.) 

We note that G is a location-free quantity, in the sense that it is 

unaffected by a shift of F. (If F. and F? are two df's such that F.(y)= 

= F?(y+c), then F1 and F_ will have the same G.) For a sequence of df's 

such that G is constant but p, tends to zero, R will tend to infinity. 

We also note that G>0, and hence that R will have the same sign as n, 

provided G>0. 

Gini coefficients are frequently used in the study of income distribu­

tions, where R is a measure of the income inequality among units in a 

population. 

Let y,,...yN be values associated with the units of a finite population 

of size N, and let y,,. £ yN,„ £ ... 1 yN.N be the same values arranged 

in nondecreasing order of magnitude. Let FN be the finite population 

df, that is, FN(y) is the proportion of units such that y. _< y. Inser­

ting FM for F in (2.1) - (2.3) we obtain 

(2.4) 

(2.5) 
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The quantity R., defined by (2.5) is a finite population parameter. It 
N 

is essentially a ratio between two finite population totals, £.wkyk and 

E^yk. Estimating RN
 from a probability sample of units is not quite 

straightforward, however, because the w.-values of the sampled units 

will remain unknown and have to be estimated in some way. An estimator 

R.. under a general probability sampling design was suggested by Nygård 
N 

and Sandström (1985). 

In this study we consider simple random sampling (both with and without 

replacement). Let s be the set of sampled units, i.e., a subset of 

{1,2,....N}, with sample mean y$ = n~k!syk» and let ys:1± ys:2l' "^s.-n 

be the values of the sampled units arranged in nondecreasing order of 

size. We will consider the following estimator of RN, which is simply 

the sample analog of R.,, 

(2.6) 

Our problem is to estimate the sampling variance of RM, denoted V(RM), 

under simple random sampling, using data from one single sample. Since 

RN i s a "complex" s t a t i s t i c , i t is not possible to estimate i t s v a r i ­

ance by t rad i t iona l methods of unbiased variance est imat ion. We have to 

re ly on some approximate variance estimation technique. Four methods of 

t h i s kind w i l l be considered here. 

i ) The f i r s t method uses a variance estimation formula obtained by 

analogy with the well-known formula for estimating the approximate 

variance of a ra t io estimator, based on f i r s t - o rde r Taylor approxima­

t ion (see, e .g . , Cochran (1977)). Observing that 
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(2.7) 

we thus have the variance estimation formula 

(2.8) 

where f = n/N. Note that the analogy with the ratio estimator is not 

per fec t , however, since the w. 's in (2.7) are sample-dependent, in the 
sense that the value of w. is not determined once we know k, but is 

determined also by the other units in s and their y-values. This random 

variation in the w.-values is not taken care of by formula (2.8). 

i i ) The second method is based on the same f i rst-order Taylor approxi­

mation as used in i) above, which suggests a variance estimation for­

mula of the type 

(2.9) 

Using V(zs wkyk) and C(Es wkyk, zsyk) as suggested by Nygård and Sand­

ström (1985), which account for the randomness involved in the wk-

values, we obtain a somewhat complicated variance estimation formula 

denoted VT, defined in Table 2.1. 

iii) The third method is motivated by a model-based reasoning, assuming 

the actual finite population to be generated by some underlying proba-

bil i ty model. The resulting variance estimation formula, denoted v., is 

a consistent estimator of the asymptotic expression for the "model-

expected squared error" £(RN - RN) , where c denotes expectation with 

respect to the assumed model, for a fixed sample s (For details, see 

Sandström (1983), and Nygård and Sandström (1985) ). The formula is 

given in Table 2.1. 
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Table 2.1 Variance estimators V R , V T and VA for the Gini coefficient. 

1."Ratio estimator" 

2. "Taylor estimator" 

3. "Asymptotic estimator" 
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iv) The fourth method is based on a jackknife technique. One observa-

tion at a time is deleted from the sample. Each time we calculate R» , 

analogous to RN, but based only on the remaining n-1 observations (de­

leting the j observation; j = l, 2 n). The variance estimation 

formula is 

As N -»• », n - » , and n/N ->• f (0 < f < 1), the two variance estimators 

YT and V. become identical, as seen from Table 2.2. 

Table 2.2 Approximated variance estimators VR, VT and VA for the Gini 

coefficient when N and n are large. 

1. "Ratio estimator" 

2. "Taylor estimator" 

3. "Asymptotic estimator" 
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A 

In Section 3, exact sampling distributions of RM and the variance esti-
A A A A N 

ma tors VR, V, , V.and V, wi l l be obtained under simple random sampling 

of n = 5 units from various f i n i t e populations of size N = 11. The 

f i n i t e populations are constructed to i l lus t ra te how the sampling per­

formance of R.. and of the variance estimators are becoming more and 
N 

more erratic, as the population mean y approaches zero. 

In Section 4, the sampling behavior of R., and of the variance estima­

tors for larger sample sizes will be studied in a simulation experiment 

involving simple random sampling with replacement from finite popula­

tions of various shapes, such as Pareto, Normal, Lognormal and Wei-

bull. 

3. Small Populations: Studies of the Exact Sampling 

Distributions 

A 

To illustrate the behavior of the point estimator RN of the finite 

population Gini coefficient and the four variance estimators when the 

location parameter yM = N s y. is moved towards zero we will make 
N i = l 1 

use of two small populations, both of the size N=ll. The first popula­

tion (PI) is symmetric and the second (P2) is positive skew. PI and P2 

are depicted in Figure 3.1. 

The arithmetic means in the two populations are yp.= 50 and yp?= 395/11 

= 35.91, respectively, and their Gini coefficients are Rpl= 424/3025 = 

0.1402 and Rp2= 232/869 = 0.2670, respectively. 

The sample design to be used is srs without replacement with a sample 

size of n = 5, i.e. the total number of possible samples is 462. New 

populations have been obtained by letting the location parameters tend 

towards zero. Totally we have four populations based on PI and three 

based on P2. They are all summarized in Table 3.1. 
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Figure 3.1 The two small parent populations (N=11) used in this study. 

P1: Parent Population 

P2: Parent Population 
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Table 3.1 A summary of the four symmetric populations (P1) and the three skew populations (P2) from which the samples 

are taken and some characteristics of the sample distributions of RN 
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GN Since RN = - 3 - , and G>. is locat ion-free , all changes are due to 
2yN 

changes in the location parameter y... Note that R.. is not bounded to 
N N ^ 

[0,1-1/N] when Y e ] -«,»[ . The sampling distributions of RN are given 

in Figure 3.2. 

In Table 3.1 we have also summarized the results of the sampling dis-

t r ibu t ions of R... I t is notable that the bias is of the same order of 

magnitude (with change of sign) as the true value of R.. when v.. is 
N N 

close to zero. This indicates that one should be very careful in esti­

mating Gini coefficients from populations with low arithmetic means 

(Y€]-»,<»[). 

REMARK 3.1 It is possible to have distributions with both negative and 

positive incomes if the income definition is based on e.g. 

the rules of the taxation system. At least one of the defi­

nitions of the entrepreneurial income in the Swedish income 

distribution surveys has this property. 

In Table 3.2 we have summarized the results of the sampling distribu­

tions of the four variance estimators. In the first three symmetric 

populations (PI, - P O the asymptotic variance estimator V. seems to be 

the best as measured by the Relative Mean (=Relative Bias + 1 ) . In PI. 

(where yN=0.1) the jackknife variance estimator is best according to 

the Relative Mean. In the skew populations the jackknife estimator 

performs best according to the same criteria. The bad performance of 
A 

the ratio estimator VR in PI. and P2, is confirmed in the simulation 
study in Section 4. The possibility of negative Taylor variance 

estimators, V1,., is also confirmed in Section 4 (at least for small 

samples). 

The sample distributions of the four variance estimators from PI, and 

P2, are illustrated in Figure 3.3. 

The results of this study shows that whenever the location parameter yN 

is close to zero, with y taking on both negative and positive values, 
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Figure 3.2 The sampling distributions of RN when sampling (srs) 

without replacement from P1 and P2. Note that the scales 

on R., are different. 

Symmetric parent population 

PI 

Skew parent population 

P2 
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Table 3.2 A summary of the sampling distributions of the four variance 

estimators VR, VT, VA and VJ. 
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Figure 3.3 Sampling distributions of variance estimators for the 

estimated Gini coefficient. 

p 1 

a) Ratio estimator 

P 2 

a) Ratio estimator 

b) Taylor estimator b) Taylor estimator 

c) Asymptotic estimator c) Asymptotic estimator 

d) Jacknife estimator d) Jacknife estimator 
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Table 3.3 The correlation coefficients between the variance estimators and between RN and the 

variance estimators 
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one should be careful in t r y i ng to estimate the Gini coe f f i c i en t 

R.. = —— and the v a r i a n c e of R... I t may be observed t h a t the 
N 2 - N 

c o r r e l a t i o n between GN and ?N i s 0 and 0.9041 when the samples are 

taken from PI and P2, respect ive ly . The zero cor re la t ion fol lows theo­

r e t i c a l l y from a Theorem by Hogg (1960). The corre lat ions between the 

variance estimators are given in Table 3.3 together with the cor re la -

t ions between R., and the variance estimators. 
N 

4. Large Populations: Monte Carlo Studies of the Sampling 

Distributions 

To illustrate the performance of the four variance estimators VD, VT V. 

and V, a Monte Carlo study was designed. Eleven continuous parent dis­

tributions were used, viz. Logistic, Uniform, Normal, Lognormal, Pareto 

and standard Weibull (6 values on the parameter a). To each continuous 
df we constructed a finite population from which the samples were tak­

en. The population size was N = 10 000. The finite normal parent popu­

lation was constructed by use of the Box-Muller method and from this 

parent population the finite lognormal parent was obtained. For the 

other distributions the values of the finite population were obtained 

through the inverse df F , where F is the rounded F [0,1] such that 

F = 10"5(10k + 5), k = 0(1)9999. 

In Table 4.1 we have summarized the df's under consideration together 

with the formulas for the Gini coefficient R and its values according 

to the selected parameters of the df's. The values of the Gini coeffi­

cient in the finite population approximations are also given in Table 

4.1. The deviation between the latter values and those obtained from 

the continuous df's indicate how good our finite population approxima­

tions are. 

The sampling design used was simple random sampling (srs) with replace­

ment. The sample sizes were n = 5, 10, 20, and 100 and all simulations 

are based on 500 replicates. All computations were made in APL on the 

IBM 370 at Statistics Sweden. 
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Table 4.1 The df's used in the simulation study together with its specific para­

meter values and the Gini coefficient of F and its finite population 

approximation F N,N = 10,000 
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Table 4.2 Estimates of E(RN) and V(RN) based on 500 replicates for eleven 

parent distributions. The estimates are denoted Ea(RN) and Va(RM). 
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4.1 Point Estimates 

Estimates of E(R,,), based on 500 replicates, are given in Table 4.2 for 

the samples (n = 5, 10, 20, and 100) taken from the eleven parent popu­

lations. In the same table we have also given the variances among the 

500 replicated estimates R... 
N 

To illustrate the effect of the sample size on the bias of the estima­
it 

ted E ( R N ) , Figure 4.1 gives the relative mean (Rel Mean) together with 

the relative maximum and minimum. The two latter ratios are computed as 

Max Ru/Ri. and Min RN/RN» respectively, where the maximum and minimum 

values are taken among the 500 estimates R... As is seen in the figure 

we are, on the average, underestimating RN irrespective of the parent 

population and the Rel Mean increases most slowly when data is taken 

from parent populations with positive skewness. For samples of the size 

n = 100 and greater the bias is negligible. For small samples the bias 
N A 

could be reduced considerably if we defined RM = -^- RM and RM = 
N-l 

The appearance of the approximate sampling distributions for RN taken 

from the eleven populations is illustrated in Figure 4.2 when the 

sample size equals n = 20. The coefficients of skewness of these dis­

tributions are given in Table 4.3 for n = 5, 10, 20, and 100. It is 

remarkable how symmetric these distributions are when the parent popu­

lations are skew. 

4.2 Variance Estimates 

A \ /\ A 

Of the four variance estimators, VR, Vj, VA, and Vj, only the 'Ratio 

estimator' VR considers the weights to the incomes in the Gini coeffi­

cient as constants. As is seen in Table 4.4 and Figure 4.3 this fact 

highly affects the variance estimation. The Rel Mean of the estimated 
A 

E(VD), re lat ive to V, is a factor 2-300 times higher than the Rel Mean 

of the other three variance estimators! V = V(Rl() is the variance taken 
A N 

over the 500 replicated estimates R... It is notable that the Rel Mean 

of the Ratio estimator VRis lowest when the data is taken from positi-
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Figure 4.1 The estimated E(RN) relative to R and the relative maximum and minimum, based on 500 replicates 

of sample sizes n = 5, 10, 20, and 100. 

LOGISTIC LOGN0RMAL 

W E I B U L L 

UN I FORM PARETO 

NORMAL 

-[ Relative maximum 

! 

• R e l a t i v e Mean 

. Relat ive minimum 

n-scale: V1og]()n 
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K 

Figure 4.2 The simulated sampling distributions of R based on 500 replicatesof sample size n = 20. 

We i bull «.= 3.6 

Logi stic Lognormal 

We i bull ex. = 0.8 

Un i form Pareto Weibull < = 1.0 

We i bull ex = if. 8 

Normal 
Weibul 1 < = 2.0 

Weibul 1 < = 10.0 
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Table 4.3 The coefficient of skewness of the simulated sampling 

distirbutions of RN when the sample size is 

n = 5, 10, 20 and 100. 
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Table 4.4 Estimates of V(RN) based on 500 replicates of sample sizes n = 5 , 10, 20 and 100 

V is the variance among the 500 replicates of RN. 
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Figure 4.3 The Relative Mean Df the estimated E(0(RN)) relative to V(R ) , where the latter variance is 

taken over 500 replicates of R Sample sizes: 5, 10, 20, and 100. 

LOGISTIC LOGNORMAL 

W E I B U L L 

UN I FORM 
PARETO 

NORMAL 

R: R a t i o e s t i m a t o r 

T : Taylor estimator 

A: Asymptotic estimator 

J : Jactcnife estimator 

n-scale: <tlog)0n 
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vely skewed populations - the Rel Mean is here of order 0.95-4.0 - but 

when data is taken from symmetrical or negatively skewed populations 

the Rel Mean is of order 10-360. The highest values are obtained when 

data comes from the uniform parent population. 

In Table 4.4 the estimated values of E(V) are given for the four esti-
A 

mators . The coverage rates for the 500 confidence intervals of type RN 

+_ 1.96 V are given in Table 4 .5 . I f we reduce the bias using the fac­

to r n / (n - l ) times the endpoints of the confidence interval R.. + 1.96 V^ 

then the coverage rates w i l l increase. In the Normal parent population 

case the increase is 10-15% when the sample size is n=5 but only 1% 

when n=100 and in the Lognormal case the increase is 9-17% i f n=5 but 

1-2% when n=100. This is va l i d for V , , V. and V t . In the Vn case small 
T A J R 

decreases was also obtained. 
A 

From these facts we may conclude that the Ratio estimator, VR, is a bad 

estimator of V at least in small samples (n<20). The Taylor estimator 

(Vj), on the other hand, shows to have a defect for sample sizes n<20, 

viz. that it takes on negative values! 

To illustrate this fact and also showing the discrepancies between the 

four estimators their approximated sampling distributions for sample 

sizes n=5, 10, and 20 are given in Figure 4.4 for the Lognormal parent 

population. The figures show the general tendency which is attained in 

all the approximated sampling distributions from the eleven parent 
A 

populations: VT takes on negative values when n<20, but not for n>20. 

VR and VT are more flatted when n=5 than VA, and V,, and VR has larger 

variance than VT when n>20. 



26 Table 4.5 Coverage rates {%) for the 500 confidence intervals of type R +_ 1.96 V1/2 of 

sample sizes n = 5, 10, 20 and 100. 



27 
Figure 4.4 Approximated sampling distribution of the four variance estimators based on 500 replicates 

from the Lognormal parent population. Sample sizes, n = 5, 10 and 20. 

Ratio estimator, V Taylor estimator, VT Asymptotic estimator, VA Jacknife estimator, Vj 
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From the simulations made on the variance estimators the following 

schedule of conclusions may be done: 
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The following figure shows the tendency in the Rel Mean (except for VD) 
K 

with respect to the skewness in the parent population when n is small 

Rel Bias 

skewness 

negative 0 positive 

As for the exact sampling distributions in Section 3 we have also stud-

ied the correlation (p) between GN and ?N based on the 500 replicates 

taken from the eleven parent populations. The following was observed: 

the correlation increases slowly with n and also with the skewness of 

the parent population, p is approximately - 0.35 when sampling from 

Weibull, a = 10.0, zero when the parent populations are symmetrical and 

0.40-0.45 when sampling from Weibull a = 2.0. The most positively skew­

ed populations gave rise to the following correlations: Weibull, <x = 

0.8: 0.90, and Lognormal : 0.95. The Pareto population gave a correla­

tion around 1. 

When the parent populations are symmetric or negatively skewed there is 

a clear tendency in the correlations between variance estimators. In 

nearly all cases the correlation between VD and V., i=T,A,J, is nega-
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tive (two positive correlations are observed when the parent population 

is Logistic). The correlations between the remaining pairs are of size 

0.95-1.00 when n = 10 and of size 0.79-0.99 when n=5. The negative 

correlation observed when VR is involved also shows the defectiveness 

of the estimator. 

The tendency is not as clear as above when the parent population is 

positively skewed. But when n = 20 and we are sampling from the Lognor-

mal, Pareto and Weibull, a = 0.8, all correlations are of size 

0.50-0.97, except p = 0.20 when sampling from Weibull, a = 0.8. 
VR,VA 

The correlations between R„ and v . , i=R,T,A,J, respectively, are i l l u -

strated in Figure 4.5. When the parent population is symmetric or nega­

t i ve l y skewed, with the exception of the Uniform, pA 0 is arround 
KN,VR 

-0.25 to -0.50 and the other three coefficients of correlation are 
gathered just above 0.50. An interesting pattern is found when the 

parent population is positively skewed. The reader may look at the 

figures for Lognormal, Pareto and Weibull (a = 0.8, 1.0) parent popula­

tions in Figure 4.5. The i r regular i ty found for the Uniform population 

may perhaps be explained by the fact that the distr ibution is equally 

thick. 
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Figure k.S The correlation between R and the four variance estimators 0, respectively, based on 

500 replicates and with sample sizes n = 5, 10, 20, and 100. 

LOGISTIC LOGNORMAL 
WEIBULL 

UN I FORM PARETO 

NORMAL 

CORR - C0RR(RN,Û.(RN)) 

i - R,T,A,J 

R: RATIO ESTIMATOR 

T: TAYLOR ESTIMATOR 

A: ASYMPTOTIC ESTIMATOR 

J: JACKNIFE ESTIMATOR 

n-SCALE: 41og 0n 
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