SCB STATSTISKR CENTRALBYRAN Mot Febraiaey 1088

PROMEMORIOR FRAN P/STM
NR 16

VARIANCE ESTIMATORS OF THE GINI COEFFICIENT
- SIMPLE RANDOM SAMPLING

AV ARNE SANDSTROM, JAN WRETMAN OCH BERTIL WALDEN



INLEDNING
TILL

Promemorior fran P/STM / Statistiska centralbyran. — Stockholm : Statistiska
centralbyran, 1978-1986. — Nr 1-24.

Efterfoljare:

Promemorior fran U/STM / Statistiska centralbyran. — Stockholm : Statistiska
centralbyran, 1986. — Nr 25-28.

R & D report : research, methods, development, U/STM / Statistics Sweden. —
Stockholm : Statistiska centralbyran, 1987. — Nr 29-41.

R & D report : research, methods, development / Statistics Sweden. — Stockholm :
Statistiska centralbyran, 1988-2004. — Nr. 1988:1-2004:2.

Research and development : methodology reports from Statistics Sweden. —
Stockholm : Statistiska centralbyran. — 2006-. — Nr 2006:1-.

Promemorior fran P/STM 1985:16. Variance estimators of the Gini coefficient — simple random
sampling / Arne Sandstrém m.fl.
Digitaliserad av Statistiska centralbyran (SCB) 2016.

urn:nbn:se:scb-PM-PSTM-1985-16



SUB STATSTISKR CENTRALBYRAN Memo, February 1985

PROMEMORIOR FRAN P/STM
NR 16

VARIANCE ESTIMATORS OF THE GINI COEFFICIENT
- SIMPLE RANDOM SAMPLING

AV ARNE SANDSTROM, JAN WRETMAN OCH BERTIL WALDEN






Memo, February 1985

VARIANCE ESTIMATORS OF THE GINI COEFFICIENT
- SIMPLE RANDOM SAMPLING

Arne Sandstrom, Jan Wretman and Bertil Waldénl)

ABSTRACT: Computations of income inequality measures are usually based
on data from sample surveys. The most well-known measure is the Gini
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1. Introduction

During the last decades the interest in measuring income inequality has
substantially increased. One reason for this is the fact that many
economic-political steps are taken to promote equality between indivi-
duals and/or households. The most well-known measure of income inequa-
lity is the Gini coefficient.

Analyses of income distributions including computations of inequality
measures are usually based on sample surveys. However, a discussion of
the sampling properties of the Gini coefficient (and other measures of
income inequality) is usually ignored, a fact which is probably due to
its 'intractability'.

In this paper we will study both the exact sampling distributions ob-
tained by a simple random sampling (srs) design without replacement
from two small parent populations of size N = 11 and approximated samp-
ling distributions based on simulations. In the latter case we use
parent populations of size N = 10,000 obtained from eleven continuous
distributions. The design is srs with replacement.

The main objective of this study is to compare four variance estimators
of the estimated Gini coefficient but also to indicate the behavior of
the estimator of the Gini coefficient since it is a ratio statistic.
The numerator of the estimated Gini coefficient can be viewed as an
L-statistic with scores depending on the sample. The first variance
estimator ignores this fact and may be treated as a rough estimator. We
call it a ratio estimator (GR). In the second estimator we take account
of the fact that the scores depend on the sample and call it a Taylor
estimatorﬂ(gT). The third variance estimator is based gn an asymptotic
variance (VA) and the fourth on a jackknife procedure (VJ).

In Section 2 the Gini coefficient is defined and the four variance es-
timators presented. A main conclusion is drawn from the discussion of
the exact sampling distributions in Section 3: Let the values Yyseees¥ys



associated with the units of a finite population, take on both negative

and positive values. If we translate the finite population distribution
N
function FN so that 9N = N'1 Yy tends towards zero than the finite
k=1
population Gini coefficient will tend towards infinity and the bias in

both the estimator and the variance estimators will be very large. In
such cases, when }N is close to zero, we recommend that the Gini

coefficient is not used.

In the simulation study, discussed in Section 4, we took 500 sample
rep]icates of sizes n =5, 10, 20, and 100. The study showed that QA
ind VJ are the Eest variance estimators (even for small sample sizes).
VR was poor and VT performed quite w€}1 for 2_3 20. When n » », and N »
®, fn =n/N+f, 0<f <1, then VT and VA are identical in the srs

design.
2. The estimation problem

We first give a general definition of Gini's mean difference and the
Gini coefficient associated with a distribution function.

Let F be a distribution function (df, for short), by which we mean a
real-valued function defined on (-«,») that is nondecreasing, right
continuous and satisfies F(-») = 0 and F(+«) = 1. In terms of the
Lebesgue-Stieltjes intergral, Gini's mean difference, G, associated

with F is defined as

6= [ |xy| dF(X)EF(y) . (2.1)

-0 =

The Gini coefficient, R, associated with F is defined as

R =3 (2.2)

w= [y drly) %0 (2.3)
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Formally, G and R may be considered as functionals: To any given df F,
(2.1) and (2.2) assign values G and R. (For the definition of R to be
meaningful, it is required that u#.)

We note that G is a location-free quantity, in the sense that it is
unaffected by a shift of F. (If Fy and F, are two df's such that Fl(y)=
= Fz(y+c), then F1 and F2 will have the same G.) For a sequence of df's
such that G is constant but , tends to zero, R will tend to infinity.
We also note that G>0, and hence that R will have the same sign as p,

provided G>0.

Gini coefficients are frequently used in the study of income distribu-
tions, where R is a measure of the income inequality among units in a
population.

Let YooYy be values associated with the units of a finite population
of size N, and let yN:l-i yN:Z-i eee £ YN:N be the same values arranged
in nondecreasing order of magnitude. Let FN be the finite population
df, that is, FN(y) is the proportion of units such that Y £ Y. Inser-

ting F,, for F in (2.1) - (2.3) we obtain

N
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The quantity RN defined by (2.5) is a finite population para:eter. It
is essentially a ratio between two finite population totals, T WYk and
zTyk. Estimating RN from a probability sample of units is not quite
straightforward, however, because the wk-va1ues of the sampled units
will remain unknown and have to be estimated in some way. An estimator
RN under a general probability sampling design was suggested by Nygard

and Sandstrom (1985).

In this study we consider simple random sampling (both with and without

replacement). Let s be the set of sampled units, i.e., a subset of
. = _ -1

{1,2,...,N}, with sample mean Yg = N LYy and let Yg:15 Ygu0ler e Yg.p

be the values of the sampled units arranged in nondecreasing order of

size. We will consider the following estimator of RN’ which is simply

the sample analog of RN’

A
R

1
—— 3z y -y
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sy
- Kkes Kk 4 _A% (2.6)
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Our problem is to estimate the sampling variance of ﬁ&, denoted V(QN),
under simple random sampling, using data from one single sample. Since
ﬁN is a "complex" statistic, it is not possible to estimate its vari-
ance by traditional methods of unbiased variance estimation. We have to
rely on some approximate variance estimation technique. Four methods of
this kind will be considered here.

i) The first method uses a variance estimation formula obtained by
analogy with the well-known formula for estimating the approximate
variance of a ratio estimator, based on first-order Taylor approxima-
tion (see, e.g., Cochran (1977)). Observing that
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n Doce WY
Ry+ 1+ % - kes Kk (2.7)

Z:kezs Yk

we thus have the variance estimation formula

& 1 1- 1
VR }7_ n_ n-1 Txes MYk - (R tl+q )yk}
s
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_1 1-f 1 21 3 2 2
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Yo i=1

where f = n/N. Note that the analogy with the ratio estimator is not
perfect, however, since thi.w:'s in (2.7) are sample-dependent, in the
sense that the value of Wy is not determined once we know k, but is
determined also by the other units in s and their y-values. This random
variation in the w:-va1ues is not taken care of by formula (2.8).

iji) The second method is based on the same first-order Taylor approxi-
mation as used in i) above, which suggests a variance estimation for-

mula of the type

VR = s V(zwy)+(R+1+ 2V zy,) -
N n 95 { kes k7k kes K

kes kes

Using V(Z wkyk) and C(z wkyk, b yk) as suggested by Nygdrd and Sand-
strom (1985), which account for the randomness involved in the wk
values, we obtain a somewhat complicated variance estimation formula
denoted VT’ defined in Table 2.1.

iii) The third method is motivated by a model-based reasoning, assuming
the actual finite population to be generated by some underlying proba-
bility model. The resulting variance estimation formula, denoted VA’ is
a consistent estimator of the asymptotic expression for the "model-
expected squared error" G(QN - RN)Z, where & denotes expectation with
respect to the assumed model, for a fixed sample s (For details, see
Sandstrom (1983), and Nygdrd and Sandstrom (1985) ). The formula is
given in Table 2.1.



Table 2.1 Variance estimators

, Vo and VY, for the Gini coefficient.
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iv) The fourth method is based on a jackknife technique. One observa-
tion at a time is deleted from the sample. Each time we calculate ﬁ&J),

analogous to :N’ but based only on the remaining n-1 observations (de-
leting the jt

formula is

observation; j=1, 2,..., n). The variance estimation

A N oags A
Uy = o g (RE3) - RE)2
j=1
Aley _ -1 T oA(d)
where =N r R .
RN i N

AS N+ o, n »>o and n/N » f (0 < f < 1), the two variance estimators

VT and QA become identical, as seen from Table 2.2.

Table 2.2 Approximated variance estimators Gh, GT and OA for the Gini

coefficient when N and n are large.

Notation: See Taple 2.1.

Nso, Neo , ﬁy = ﬁy
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1. "Ratio estimator"

oo (1F)
VR(RN) = —7 Cn
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2. "Taylor estimator"
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3. "Asymptotic estimator”
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In Sect1on 3, exact samp11ng distributions of RN and the variance esti-
mators VR’ VT’ VAand VJ will be obtained under simple random sampling
of n = 5 units from various finite populations of size N = 1ll. The
finite populations are constructed to illustrate how the sampling per-
formance of ﬁN and of the variance estimators are becoming more and

more erratic, as the population mean y approaches zero.

In Section 4, the sampling behavior of ﬁN and of the variance estima-
tors for larger sample sizes will be studied in a simulation experiment
involving simple random sampling with replacement from finite popula-
tions of various shapes, such as Pareto, Normal, Lognormal and Wei-

bull.

3. Small Populations: Studies of the Exact Sampling
Distributions

To illustrate the behavior of the point estimator RN of the finite

population Gini coefficient and the four variance estimators when the
N

location parameter 9N = N"1 %Y is moved towards zero we will make
i=1

use of two small populations, both of the size N=11. The first popula-

tion (P1) is symmetric and the second (P2) is positive skew. Pl and P2
are depicted in Figure 3.1.

The arithmetic means in the two populations are ypl= 50 and 9P2= 395/11
= 35.91, respectively, and their Gini coefficients are RP1= 424/3025 =
0.1402 and RP2= 232/869 = 0.2670, respectively.

The sample design to be used is srs without replacement with a sample
size of n = 5, i.e. the total number of possible samples is 462. New
populations have been obtained by letting the location parameters tend
towards zero. Totally we have four populations based on Pl and three
based on P2. They are all summarized in Table 3.1.



Figure 3.1 The two small parent populations (N=11) used in this study.
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Table 3.1 A summary of the four symmetric populations (P1) and the three skew populations (P2) from which the samples

are taken and some characteristics of tha semple distributions of R

N

P1

P1

Parent Population

1 ) P, P1, P2, P2, Al P2,
Transiations | Y, ¥pq-34.9 ¥p1-39.9 Ypy-49.9 Yo, YP2-24.7' Yp,-35.7
W 50 15.1 10.1 0.1 35.91 11.21 0.21

Ry 0.1402 0.464 1 0.6939 70.083 0.2670 0.8708 45.85
ﬁ(ﬁN) 0.1245 0.4606 0.9571 0.0915 0.2270 0.8211 -0.2265
Bias -0.0157 -0.0035 +0.2632 -69.991 -0.0400 -0.0497 -46.08
V(ﬁN) 0.002 931 0.0635 1.5808 250.6 0.003649 1.418 287.3
Min éN 0.0224 0.0718 0.1026 -112 0.03478 -14.4 -101.6
Max ﬁN 0.2285 0.9811 17.3333 +112 0.3133 11.2 100.8

ol
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G

Since RN S , and GN is location-free, all changes are due to

2y
N
changes in the location parameter iN. Note that RN is not bounded to
[0,1-1/N] when Y €] -=,=[. The sampling distributions of R
in Figure 3.2.

y are given

In Table 3.1 we have also summarized the results of the sampling dis-
tributions of ﬁN' It is notable that the bias is of the same order of
magnitude (with change of sign) as the true value of RN when yN is
close to zero. This indicates that one should be very careful in esti-
mating Gini coefficients from populations with low arithmetic means

(Ye]-=,=).

REMARK 3.1 It is possible to have distributions with both negative and
positive incomes if the income definition is based on e.g.
the rules of the taxation system. At least one of the defi-
nitions of the entrepreneurial income in the Swedish income
distribution surveys has this property.

In Table 3.2 we have summarized the results of the sampling distribu-
tions of the four variance estimators. In the first three symmetric
populations (Pl1 - P3) the asymptotic variance estimator QA seems to be
the best as measured by the Relative Mean (=Relative Bias + 1). In P14
(where 9N=0.1) the jackknife variance estimator is best according to
the Relative Mean. In the skew populations the jackknife estimator
performs best according to the same criteria. The bad performance of
the ratio estimator QR in P11 and P21 is confirmed in the simulation
study in Section 4. The possibility of negative Taylor variance
estimators, OT’ is also confirmed in Section 4 (at least for small
samples).

The sample distributions of the four variance estimators from P11 and
P21 are illustrated in Figure 3.3.

The results of this study shows that whenever the location parameter iN
ijs close to zero, with y taking on both negative and positive values,
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Figure 3.2 The sampling distributions of ﬁN when sampling (srs)

without replacement from P1 and P2. Note that the scales

on ﬁN are different.
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Table 3.2 A summary of the samp11ng d1str1but1ons of the four variance
estimators VR’ VT’ VA and VJ.

13

Parent Population
P11 P12 P14 P1, P21 P22 P23
V(ﬁN) 0.0029 0.0635 1.5808 250.6 0.0036 1.418 287.3
E(V(Ry))
YR 0.0416 0.1188 145.04 990760 0.0452 76.9 1286000
!T 0.0033 0.1678 148.62 990850 0.0026 77.1 1286000
YA 0.0026 0.1517 119.93 792630 0.0012 61.71 1029000
VJ 0.0049 0.1809 163.49 7486 0.0087 12.45 1245
REL .MEAN =
E(V)/V
?R 14.34 1.87 91.75 3953.55 12.56 54,23 4476.16
YT 1.14 2.64 94,02 3953.91 0.72 54 .37 4476.16
XA 0.90 2.39 75.87 3162.93 0.33 43.52 3581.62
) v 1.69 2.85 103.42 29.87 2.42 8.78 4.33
Min Vv
Max V
OR 0.0335 0.0319 0.0214 0.0028 0.0341 0.0040 0.0267
0.0515 0.8817 53068 68461000 0.0594 23030 71600000
GT 0.000008 0.000111 0.000231 0.0030 -0.002716 0.0041 0.000026
0.0080 1.348 54021 68468000 0.0159 23450 71850000
OA 0.000009 0.000106 0.000246 0.0028 0.000046 0.0016 0.000085
0.0068 1.1469 43467 54934000 0.0055 17960 57060000
QJ 0.000044 0.000374 0.000713 0.00%94 0.000083 0.0078 0.000238
0.0114 1.2584 4585.5 14940 0.0514 385.7 32580
Coverage rate
for the 462
confidence
interva]s of
type R
+ 1 96N\'I\;é
ER 100 % 100 % 79.9 % 15.2 % 100 % 85.9% 18.2 %
!T 72.7 % 60.2 % 53.0 %4 15.2 % 59.1 % 86.6 % 18.2 %
XA 65.2 % 57.6 % 55.8 % 14.1 % 64.7 % 94.8 % 18.2 %
VJ 72.7 % 69.0 % 62.8 % 9.1 % 87.9% 94.4 7% 9.5 %
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Figure 3.3 Sampling distributions of variance estimators for the

estimated Gini coefficient.
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Table 3.3 The correlation coefficients between the variance estimators and between RN and the
variance estimators
Correlation
Parent Population

coefficient

of P, P1, P, P2, P2, P2,
Vg vs V- 20.70 0.99 1.00 0.83 1.00 1.00
Vg vs ¥, -0.85 0.98 1.00 ~0.75 1.00 1.00
Vg vs V] -0.61 0.97 0.47 0.76 0.27 -0.04
Vpovs V) 0.96 1.00 1.00 -0.33 1.00 1.00
Vpvs Vs 0.99 0.97 0.47 0.96 0.28 ~0.04
Vy vs Vg 0.92 0.99 0.48 -0.29 0.27 -0.04
Ry Vs Vg -0.44 0.75 -0.02 -0.18 -0.38 -0.03
Ry VS Vo 0.82 0.83 -0.02 0.14 -0.39 ~0.03
Ry sV 0.77 0.86 -0.01 0.40 -0.37 -0.02
Ry vs V, 0.86 0.86 0.13 0.32 -0.45 -0.02

gl
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one should be careful in trying to estimate the Gini coefficient

G A
Ry = N and the variance of RN' It may be observed that the

o2y, A .
correlation between GN and YN is 0 and 0.9041 when the samples are
taken from P1 and P2, respectively. The zero correlation follows theo-
retically from a Theorem by Hogg (1960). The correlations between the
variance estimators are given in Table 3.3 together with the correla-
tions between ﬁN and the variance estimators.
4. Large Populations: Monte Carlo Studies of the Sampling
Distributions

N A ~
To illustrate the performance of the four variance estimators VR’ VT,VA
and VJ a Monte Carlo study was designed. Eleven continuous parent dis-
tributions were used, viz. Logistic, Uniform, Normal, Lognormal, Pareto
and standard Weibull (6 values on the parameter a). To each continuous
df we constructed a finite population from which the samples were tak-
en. The population size was N = 10 000. The finite normal parent popu-
lation was constructed by use of the Box-Muller method and from this
parent population the finite 1lognormal parent was obtained. For the
other distributions the values of the finite population were obtained
through the inverse df F;l, where F, is the rounded F [0,1] such that

F, = 1072(10k + 5), k = 0(1)9999.

In Table 4.1 we have summarized the df's under consideration together
with the formulas for the Gini coefficient R and its values according
to the selected parameters of the df's. The values of the Gini coeffi-
cient in the finite population approximations are also given in Table
4.1. The deviation between the latter values and those obtained from
the continuous df's indicate how good our finite population approxima-

tions are.

The sampling design used was simple random sampling (srs) with replace-
ment. The sample sizes were n = 5, 10, 20, and 100 and all simulations
are based on 500 replicates. All computations were made in APL on the
IBM 370 at Statistics Sweden.
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The df's used in the simulation study together with its specific para-

meter values and the Gini coefficient of F and its finite population

approximat ion FN’ N = 10,000
Distribution function (Para- |{Theoretical Gini coefficients in
F(x) meters {Gini the specific the finite population
coefficient df.
R RN
1. LOGISTIC
[14e(x-0)/8) -1 « =5 p/a 7}= 0.2 0.1998
~wlx<e, - gl B =
z>0
2. UNIFORM
IX~a B 1 (B-a 1 .
B-q a = -3- (-B—E) TS- —0.0666 0.0666
a<x<8 B =
3. NORMAL
2 2 o 1 .
1 -(t-p)/2c b= - - —:0.1128 | 0.1127
[ e dt
ofon o o/ 5/
—ol{X<{® , ~o{|{ew 0’2=
02>0
4, LOGNORMAL
X 2
1 1 -(logy-u)/2c _ o -
[~ e dyf u = 2N(=; 0,1)-1 = 0.5204 0,5185
/2n Y 2 7
. o=
x=e”,U-N(p,0°)
x>0, -yl
02>O
9. Pareto
j o - _ 1 1.
1 -a X a = . i 0.5 0.4886
‘xZa, a>0 a =1.5
6. Weibull
1 o
-(z x) _ 1
/’-e ’ B ) ! —Z—Woc
x>0, >0, o0 -
a -
0.8 0.5796 0.5795
(Exponential) 1.0 1/2=0.5 0.5000
(Rayleigh) 2.0 0.2929 0.2929
3.6 0.1751 0.1751
4.8 0.1345 0.1345
0.0 0.06697 0.06697
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Table 4.2 Estimates of E(R ) and V(R ) based on 500 rep11cates for eleven
parent distributions. The est1mates arP denoted Ea(R ) and Va(R ).

Parent Sample size, n =
Population 5 10 20 100 Ry
Logistic .1645 1798 | .1896 .1994 .1998
Uni form .0545 0595 | .0637 .0656 .0666
Norma .0893 1019 | .1078 1115 1127
Ea(Ry)| Lognormal 3886 | .4456 | .4817 5053 | .5185
Pareto 2909 | .3858 | .3770 4515 | .4886
=08 | .4615 | .5201 | .5477 5730 .5795
= 1.0 | .3976 | .4514 | .4759 4940 | .5000
Weibull<d o= 2.0 | .2842 2648 | .2827 .2907 .2929
o= 3.6 | .1482 | .1607 | .1688 1736 | 1751
= 4.8 | .1003 1216 | .1302 1324 .1345
=10.0 | .0546 | .0612 | .0639 0666 | .0670
Logistic 72920 | 34130 | 16360 360
Uniform 227 100 49 10
Normal 1232 617 334 65
Va(Ry)| Lognormal 15990 9146 6251 1390
Pareto 25820 | 21690 | 15390 9305
1076 « ‘= 0.8 | 14850 8955 4686 971
o= 1.0 | 13830 7992 3876 895
Weibul1{ o= 2.0 | 7130 3504 1830 404
o= 3.6 | 2635 1632 820 160
= 4.8 | 2013 1017 534 118
L 0=10.0 540 251 147 34
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4.1 Point Estimates

Estimates of E(ﬁh), based on 500 replicates, are given in Table 4.2 for
the samples (n = 5, 10, 20, and 100) taken from the eleven parent popu-
lations. In the same table we have also given the variances among the
500 replicated estimates ﬁN'
To illustrate the effect of the sample size on the bias of the estima-
ted E(ﬁN), Figure 4.1 gives the relative mean (Rel Mean) together with
the relative maximum and minimum. The two latter ratios are computed as
Max ﬁN/RN and Min ﬁN/RN, respectively, waere the maximum and minimum
values are taken among the 500 estimates RN. As is seen in the figure
we are, on the average, underestimating RN irrespective of the parent
population and the Rel Mean increases most slowly when data is taken
from parent populations with positive skewness. For samples of the size

= 100 and greater the bias is negligible. For sma]l samples the bias

could be reduced considerably if we defined RN =N RN and R; =

ﬁ N-1
n-1 N°
A

The appearance of the approximate sampling distributions for RN taken
from the eleven populations is illustrated in Figure 4.2 when the
sample size equals n = 20. The coefficients of skewness of these dis-
tributions are given in Table 4.3 for n = 5, 10, 20, and 100. It is
remarkable how symmetric these distributions are when the parent popu-

Tations are skew.
4.2 Variance Estimates

0f the four variance estimators, VR, VT’ VA’ and VJ, only the 'Ratio
estimator' VR considers the weights to the incomes in the Gini coeffi-
cient as constants. As is seen in Table 4.4 and Figure 4.3 this fact
highly affects the variance estimation. The Rel Mean of the estimated
E(V ), relative to V, is a factor 2-300 times h1gher than the Rel Mean
of the other three variance est1mators' V= V(R ) is the variance taken
over the 500 rep11categ estimates R It is notable that the Rel Mean

N°
of the Ratio estimator V_ is lowest when the data is taken from positi-

R
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Figure 4.1 The estimated E(RN) relative to R

LOGISTIC

2.5 T 2.5 LOGNORMAL
2.0 ] 2-%
1.5 ‘[ 1.5 } }
1.0 b 1.0 >
0.5 1 0.5 l i
< n n
5 10 20 100 5 10 20 100
2.5 UN | FORM 2 54 PARETO
2.0 2.0
1.5 1.5
1
i,
1 0
0.5
n — —* "
5 10 20 100 5 10 20 100
2.54‘ NORMAL
|
| T Relative maximum
2 0[ !
' 1 Relative Mean
!
1.5, [ Relative minimum
1
1.0 T n-scale: 4log,n
| I
0.5

100

N and the relative maximum and minimum, based on 500 replicates
of sample sizes n =5, 10, 20, and 100.

WEIBULL
2. 2.5
x=0.8 a = 3.6
2. 2.0
-l -
1. ,‘~5J } ‘{
. 1] T e ]
0.5 ’ 0.5 1
!
N - o
s 10 20 100 5 10 20 100
2.4 2.5} X
a=1.0 a=4.8
2.0 2.0
1.5 1.5 } l
. | |
- 1 , I
0.5 0.5
n 1
— — —_—
5 10 290 100 5 10 20 100
A
2.5 2.5
e = 2.0 a = 10.0
2.0 ] 2.0 T
| T
1.5 1.5 .[
] 1 ]
1.0 1.0 -
3 _[ / -l
0.5 0.5 4
1 L=
n
5 W0 20 109 5 10 20 100

0¢



Figure 4.2 The simulated sampling distributions of R 20

N based on 500 replicatesof sample size n
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Table 4.3 The coefficient of skewness of the simulated sampling
distirbutions of RN when the sample size is
n =5, 10, 20 and 100.

Parent Sample size, n =

Popularion 5 10 20 100
Logistic 1.061 0.932 0.571 0.561
Uniform -0.213 -0.294 -0.130 -0.106
Normal 0.446 0.318 0.237 -0.087
Lognormal 0.142 0.075 0.236 0.159
Pareto 0.901 0.728 0.754 1.226
o= 0.8 | -0.171 -0.190 0.129 0.016

= 1.0 0.029 -0.151 -0.026 0.108
Weibull<{ o= 2.0 | 0.319 0.037 0.124 0.024
= 3.6 0.416 0,103 0.248 0.386
| o= 4.8 0.903 0.412 -0.069 0.194
_@=10.0 0.757 0.490 0.304 0.058




Table 4.4 EsFimates of.V(RN) based on 500 replicates of sample sizes n =
V is the variance among the 500 replicates of R

Parent Yariance Sample size, n =
Population 5 10 20 100
SRS SN SO B ]
Logistic v 5129 2915 1611 363
S LTy EpRp P SPIONRR
Ve (72920 34130 16360 3152
1076 « i 7727 3548 1715 334
Yy 8221 3576 1708 332
A 6649 3331 1679 336
Uniform v 227 100 49 10
N
Vo |78960 36160 17230 3282
10°6 Uy 251 110 50 10
iy 342 132 56 10
"
(¥ 389 188 59 10
Normal v 1232 617 334 65
N
Ve [77540 35510 16910 3233
M
1076 Y 1266 672 336 .70
Yy 1325 671 336 69
v 1436 728 351 71
Lognormal v 15990 9146 6251 1073
»
Vo [573%0 30520 16960 4073
106 U 7302 5545 4204 1332
vV, Ji8100 5723 3258 1235
vy, |199%0 10600 7102 1547
Pareto v 25820 21690 15390 9305
Vo 73670 42410 25380 8844
1076 « Yy 6519 8123 7204 4913
vy 7354 2740 4080 4403
V 5 |e6030 25990 17430 10050

= 5, 10, 20 and 100.

N
SO
Parent Yariance Sample size, n =
Population 5 10 20 100
Weibull v 14850 8955 4686 971

- -
« 0.8 v, {45980 24260 13020 2820
1076 . 7| 92ne 5356 3827 944
v, [33140 9694 4172 930
QJ 21060 11110 5327 1029
e T & —_—t ————— —
Weibull v 13830 7972 3876 895
ax 1.0 Ve (54830 27459 14080 2935
1076 . vy 10180 5934 3511 814
vy [ea180 8197 3768 807
v, (18810 9083 4327 862
Weibyll v 7130 3504 1830 404
a= 2.0 '\}R 61720 32310 15630 3022
1076 « v | 6679 35836 1847 381
v, {10390 4108 1937 183
GJ 8502 4085 1975 390
Weibull v 2635 1632 a20 160
— d
e 1.5 Vo 73800 34070 16060 3097
1076 . v, 3560 1599 850 166
v 4199 1753 890 167
v 3801 1714 876 169
S
Weibull v 2013 1017 534 118
a= 4.8 QR 75300 34360 16410 3131
N
106 « vy 1872 1033 539 104
v, 2338 1122 577 104
A
v 2094 1085 554 105
Weibull v 540 251 147 33
«=10.0 Ve (77940 35520 16850 3212
10-6 vy 558 277 154 30
Vy 627 293 157 31
v, 597 293 158 30

€



Figure 4.3 The Relative Mean of the estimated E(Q(ﬁN)) relative to V(ﬁN), where the latter variance is

taken over 500 replicates of Ry- Sample sizes: 5
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vely skewed populations - the Rel Mean is here of order 0.95-4.0 - but
when data is taken from symmetrical or negatively skewed populations
the Rel Mean is of order 10-360. The highest values are obtained when
data comes from the uniform parent population.

In Table 4.4 the estimated values of E(G) are given for the four esti-
mators.AThe coverage rates for the 500 confidence intervals of type QN
+ 1.96 V% are given in Table 4.5. If we reduce the bias using the fac-
tor n/(n-1) times the endpoints of the confidence interval ﬁN.i 1.96 V

then the coverage rates will increase. In the Normal parent population

case the increase is 10-15% when the sample size is n=5 but only 1%
when n=100 and in the Lognormal case the increase is 9-17% if n=5 but
1-2% when n=100. This is valid for QT’ QA and QJ. In the VR case small
decreases was also obtained.

From these facts we may conclude that the Ratio estimator, VR’ is a bad
estimator of V at least in small samples (n<20). The Taylor estimator
(OT), on the other hand, shows to have a defect for sample sizes n<20,
viz. that it takes on negative values!

To illustrate this fact and also showing the discrepancies between the
four estimators their approximated sampling distributions for sample
sizes n=5, 10, and 20 are given in Figure 4.4 for the Lognormal parent
population. The figures show the general tendency which is attained in
all the approximated sampling distributions from the eleven parent
Eopu]ations: GT takes on negative va]uesﬁwhen n<§0, but aot for n>20.
VR and VT are\more flatted when n=5 than VA’ and VJ, and VR has larger
variance than VT when n>20.



Table 4.5 Coverage rates (%) for the 500 confidence intervals of type ﬁN +1.96 V1/2 of
sample sizes n = 5, 10, 20 and 100.

9¢

Parent Variance Sample size, n = Parent Variance Sample size, n =
Population 5 10 20 100 Population 5 10 20 100
Logistic QR 100 100 100 100 Weibull gR 99.6 99.8 100 100
Vo 64.8 78.8 85.6 93.8 «=0.8 v 59.4 79.6 86.2 93
VA 70.6 79.0 85.6 93.4 Y.A 86.6 89.8 87.2 92.8
QJ 73.6 81.0 86.2 94.2 VJ 82.8 87.8 88.2 94
Uniform i/R 100 100 100 100 Weibull \ZR 100 99.8 100 100
Vy 53.0 78.4 90.8 93.0 a=1.0 v 62.8 77.8 87.6 92.2
Va 77.4 87.2 93.2 93.2 XA 80.6 88,2 90.4 92.2
VJ 79.0 89.6 94.4 93.6 VJ 81.6 86.0 89.4 92.6
Normal YR 100 100 100 100 Weibull \ZR 100 100 100 100
YT 56.8 79.6 89.6 94.2 a = 2.0 YT 63.0 83.4 91.2 94.4
YA 64.2 81.8 89.2 94.2 !A 80.4 86.2 91.8 94.2
vy 69.8 84.4 90.6 94.4 v, 80.0 87.4 91.6 94.4
Lognormal YR 99.2 99.8 100 99.8 Weibull ?R 100 100 100 100
YT 50.2 65.0 77.4 86.6 a= 3.6 !T 63.6 79.8 89.2 94
Va 70.2 73.2 76.0 86.2 Va 76.8 81.4 89.8 94
VJ 69.2 76.6 80.4 87.6 VJ 78.6 83.6 90.4 94.2
Pareto ?R 98 97 93.6 89.4 Weibull YR 100 100 100 100
Ve 29.8 43.2 48.2 68.4 a=4.8 Vr 57.2 79.2 89.4 90.2
XA 26.8 29.2 40.6 66.8 \:A 71.6 82.4 89.2 90
v, 42.8 53.6 54.4 72.0 vy 73.0 82.2 89.8 90.2
Weibull iR 100 100 100 100
a = 10.0 YT 54.6 80.6 86.0 91.8
Y\A 67.6 82.2 87.0 91.8
VQ 70.0 83.2 86.8 91.8
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Figure 4.4 Approximated sampling distribution of the four variance estimators based on 500 replicates

from the Lognormal parent population. Sample sizes, n = 5, 10 and 20.
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From the simulations made on the variance estimators the following

schedule of conclusions may be done:

Parent Population
Asymmetric
. Rel Mean tends towards 1, as

Symmetric
. the Rel Mean tends towards 1, as

the sample size increases: quite
fast

A
. V overestimates V

the largest Rel Mean is obtained
by Vg (a factor 10-360)

the sampling distribution of V:
n=5 positively skew
n=10 less variance

n=20 symmetrical, with tail
n=100 "~

. According to the results, the

best variance estimates are

L

=10 Vp, ¥y, Vg
n=20 YA’
n=100 VA’

g* Yy

v
Voo V1

the sample size increases: slowly

. when the parent population is

positive1x skewed VT underesti-
mates V, VA gnderesgimates V in
some cases. VR and VJ overesti-
mates V.

. the largest Rel Mean is obtained

by OR (a factor 1-10 for positi-
vely skewed parent populations
and a factor 20-140 for nega-
tively skewed populations)

the sampling distribution of G:

n=5 flat, VT oftsn negative

n=10 less flat, VT can be
negative

n=20 peaked, QT not negative

n=100 "-

. According to the results, the

best variance estimates are

n=6 Vv
n=10 Vv
n=20 V
n=100 v (Pareto:QR!)

for negatively skewed par-
ent populations the tableau
is similar to that for sym-
metric populations.
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The following figure shows the tendency in the Rel Mean (except for GR)
with respect to the skewness in the parent population when n is small

+ Rel Bias

+ skewness

negative 0 positive

As for the exact sampling distributions ig Section 3 we have also stud-
ied the correlation (p) between EN and YN based on the 500 replicates
taken from the eleven parent populations. The following was observed:
the correlation increases slowly with n and also with the skewness of
the parent population. 8 is approximately - 0.35 when sampling from
Weibull, « = 10.0, zero when the parent populations are symmetrical and
0.40-0.45 when sampling from Weibull ¢ = 2.0. The most positively skew-
ed populations gave rise to the following correlations: Weibull, « =
0.8: 0.90, and Lognormal: 0.95. The Pareto population gave a correla-
tion around 1.

When the parent populations are symmetric or negatively skewed there is
a clear tendency in the correlations between variance estimators. In

nearly all cases the correlation between V and Vi’ i=T,A,J, is nega-

R
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tive (two positive correlations are observed when the parent population

is Logistic). The correlations between the remaining pairs are of size

0.95-1.00 when n = 10 and of size 0.79-0.99 when n=5. The negative
A

correlation observed when VR is involved also shows the defectiveness

of the estimator.

The tendency is not as clear as above when the parent population is
positively skewed. But when n = 20 and we are sampling from the Lognor-

mal, Pareto and Weibull, « = 0.8, all correlations are of size
0.50-0.97, except Bq 0 = 0.20 when sampling from Weijbull, & = 0.8.
R, A

The correlations between ﬁN and Qi’ i=R,T,A,J, respectively, are illu-
strated in Figure 4.5. When the parent population is symmetric or nega-
tively skewed, with the exception of the Uniform, BﬁN VR is arround
-0.25 to -0.50 and the other three coefficients of cé}re]ation are
gathered just above 0.50. An interesting pattern is found when the
parent population is positively skewed. The reader may look at the
figures for Lognormal, Pareto and Weibull (¢ = 0.8, 1.0) parent popula-
tions in Figure 4.5. The irregularity found for the Uniform population
may perhaps be explained by the fact that the distribution is equally

thick.
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and the four variance estimators V, respectively, based on

10, 20, and 100.

Figure 4.5 The correlation between &N
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