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1. INTRODUCTION

Sandstrdm et al. (1985) studied the sampling distributions of
the estimated Gini coefficient and compared four variance estimators
under simple random sampling, both with and without replacement.
This paper complements the previous one in that we have studied

the sampling distributions and the variance estimators under
a more general framework, viz. probability sampling. In particular,

we use real income data, taken from a Swedish survey '‘Income Distri-

bution of Households', to conduct the -simulations.

The Monte Carlo Study is discussed in Section 2, and in Section 3
we discuss the estimation of the Gini coefficient, the inference
problem, and the simulation results. Various variance estimators are
introduced in Section 4 accompanied by results from the simulations.

Some empirical results and conclusions are given in Section 5.
2. THE MONTE CARLO STUDY

Annual income distribution surveys have been carried out by Statistics
Sweden since 1972. The surveys consist of around ten thousand households.
Beginning with the 1975 survey, the design was stratified sampling
with rotating panels. Each panel, consisting of about half the sample,
was part of the surveys for two consecutive years. In this study we have

used panel no. 9 (used 1982 and 1983) as the parent population.

The annual surveys are based on a stratified sample of individuals
(16 strata). Since there is no way of knowing what types of households
these individuals belong to, household classification information is
gathered through a questionnaire. As the number of strata at the
individual level is 16, the possible number of households is
136, because two individuals may belong to two different strata. The
only information en the data file concerning stratum affiliation was the
inclusion probabilities. To make the sampling procedure easier
and to guarantee each stratum having at least a few hundred objects,
the households were reclassifjed into seven strata. In Table 2,1
we give the number of heuseholds in our parent population
(which is equal to the number of individuals and households in panel
no. 9) and the estimated number of individuals in the total Swedish

population.



Table 2.1 The number of objects (individuals/households) in the parent
population and estimated number of individuals in the Swedish
population.

Stratum Hindividuals in panel Estimated number of
no. 9 and households in individuals in Sweden
our parent population

] ]

h Ny Nh
1 939 170 739
2 1172 106 377
3 1 058 1 439 647
4 826 1 143 073
5 488 298 525
6 577 1 891 367
7 352 1 386 009
5 412 6 435 737

From our parent population of N = 5412 households, samples of
size n = 300 were drawn according to three different designs, of which
two were stratified samples (with simple random sampling - srs ~ with-
out replacement within each stratum) and the third was srs without
replacement. The number of sampled units from each stratum was proportional
to: the estimated number of individuals in Sweden belonging to the
stratum (Simulation 1, S1), and the number of households in the

parent population belonging to the stratum (Simulation 2, S2). Hence,

if ML and N, are the number of sampled units within stratum h,
h=1,..,7, in S1 and S2, respectively, then
N
_ h
Thi 300 =
i
z Nh
and
—_ 0 n.
N, = 300 h
Zn



The simulation based on the srs design is denoted S3. The number of
replicates in each simulation was 500. In Table 2.2 we give the total
number of sampled units within each stratum in S1 and $2 with

the inclusion probabilities.

Table 2.2 The number of sampled units within each stratum in simulations
S1 and S2 together with the inclusion probabilities.

Stratum # sampled units inclusion probabilities
S1 S2 S1 S2
1 8 L7 0.0085 0.0501
2 63 0.0043 0.0538
3 67 63 0.0633 0.0595
4 53 L6 0.0642 0.0557
5 14 27 0.0287 0.0553
6 88 32 0.1525 0.0555
7 65 22 0.1847 0.0625
300 300

3. THE GINI COEFFICIENT AND THE PROBLEM OF INFERENCE

We will begin with the definition of the Gini coefficient, then
discuss various approaches to inference and conclude with the

simulation results.

3.1 The Gini Coefficient

Let F denote a distribution function (df), by which we mean a real-
valued function defined on (-», « )that is nondecreasing, right

continuous and satisfies F(-») = 0and F(®) = 1. Gini's mean difference,

G, associated with F is defined, in terms of the Lebesgue-Stieltjes

integral, as

00

6=/, S |x-y|dF(x)dF(y), (3.1)

-=00 = =00

and the Gini coefficient, R, associated with F is defined as

2y (3.2)



u = J ydF(y) # 0. (3.3)

Let FN denote the finite population df and let Yis ece0 YN .denote the
values associated with the units of the finite population (of size N).
FN(y) is then the proportion of units such that y, < y. Let Y18 S Yo.N <

< YN:N denote the values arranged in nondecreasing order.
Inserting Fy for F in (3.1)-(3.3) we obtain, cf. Nygdrd and Sandstrdm (1981),

1
Gy = %2 ¢ - Y Y =
NN I T
N .
2 i 1
A R AP 3.4
- ] N
p =y = e Z y,
N NN Tk
and
N |
GN iET (2 ﬁ'_ _)yl N
Ry = —— = — - 1. (3.5)
2y
N L Yy
k=1

[ee]
REMARK 3.1 G in (3.1), can be rewritten as 2 / (2F(y)-1) ydF(y), and
00
the identity between this formulation and (3.4) when F = Fy is seen

by use of the inverse df, cf. Nygdrd and Sandstrdm (1985b).

The quantity Ry defined by (3.5) is a finite population parameter
and it is essentially a ratio between two finite population totals

N N .
' : L1
kil W, ¥) and ki1 Y where the ordered W' are Wiy 2 NN The

estimation of Ry is not straightforward, because the wy-values

of the sampled units will remain unknown and have to be estimated.

As indicated above, it is the finite population parameter Ry that we
are interested in making inferences about.However, in some situations
it may well be a corresponding model parameter that we are interested

in. In the next section we will point out different approaches to



making inferences about R or RN’ and we also give explicit

point estimates.
3.2 The Problem of Inference and Explicit Estimators

We will shortly consider three different approaches to inference,

each on its own assumptions,

First, we have the Model (M) approach: We assume a superpopulation

model with an unknown parameter R and consider the

sample, irrespective of the sampling design, as consisting of
observations that are independent and identically distributed (iid) as
YarF(y).

Second, we have the Auxiliary Model (AM) approach: The superpopulation

model is used as a means to get asymptotic results about the estimator

of Ry- In this approach, Ry is a stochastic variable (and R is a model
parameter) and any confidence statements about Ry are as by Royall (1971),
cf. also Cassel et al. (1977,p.126). The values in the finite population
constitute a vector IN = (y],yz, ...,yN), considered a random

outcome of a stochastic vector xN = (YI’YZ’ ooy YN), where the Yi's are
iid as Ym F(y). The sample is assumed to be fixed so the only stochastic
element in this approach is the random nature of the finite population
vector‘xN. Two subapproaches can be used, the first is based on

work by Hoem and Funck-Jensen (1982) and says that if the design is
noninformative then it can be ignored. The estimation procedure will

be as in the M approach. The second subapproach maintains that one
should incorporate the effects of the sampling design in the estimation.
In doing so,the point estimates of RN will be exactly the same as. under

the fixed and Finite Population (FP) approach, our third approach to

inference.

in the FP approach, the vector.zN = (y1,y2, coey yN) is considered to
be fixed and the only stochastic element in this approach is the randomi=
zation of the sample. Inference about the FP parameter RN is based on
large sample considerations, i.e. by use of asymptotic results in the

M or AM approaches.

The three approaches are summarized in Table 3.1.



Three approaches in making inference about a Gini coefficient.

Table 3.1
AM = Auxiliary Model approach, FP = Finite Population approach,
M = Mode!l approach, S = sample, SP = superpopulation
M/AM
SP: Y~F(y)
R
FP
S{ -~ -
RN samPllng . RNor R
design
Parameter/variable
Approach to be estimated Inference (95% 'confidence' interval)
M R, parameter R+ 1.96 Iy
estimation made from S,
(iid), taken from SP
AM RN, stochastic RN + 1.96 Tam
variable i. ignoring of the sampling design;
estimation as under M
ii. taking account for the sample
design; confidence statements
according to Royall (1971)
FP RN, parameter RN + 1.96 Oep

"Large sample' considerations




Variance estimators of 02 ciM, and 02 are discussed in Section 4. Our

M’ FP
personal views are that it is only the FP approach and, perhaps, the
AM approach (taking the sampling design into account) that are of
primary interest if the finite population Gini coefficient is to be

estimated.

Point estimators of the Gini coefficient are given in Table 3.2, cf,
Nygdrd and Sandstrdm (1985a), (1985b), where T, deonotes the inclusion

probability of unit i, ies, and s denotes the sample of fixed size n.



Table 3.2 Point estimates of the Gini coefficient
(from Nyg&rd and Sandstrdm (1985b)).

Approach Point estimates

- I (2Pi + 'rri-j)yi/'rri
FP and AM Ry = -1
N Zsyi/ﬂi

P, = Z 1Ily. < v. .
. {yJ yl} /TTJ
jes

I{} is the indicator function

~ I, (2q., + 1) vy,
M R=I 1 |_1

nyn

y =n Ziyi , |if Yp €Yy < ey <Y
then Qi = j-1

| {*} is the indicator function

Note: |f the sampling design is simple random sampling then RN, in the

FP and AM approaches, is identical with R in the M approach.



3.3 The Monte Carlo Studies of the Sampling Distributions

The Gini coefficient in our parent population (N = 5412) is Ry = 0.293.
and the arithmetic means of the 500 point estimates based on samples

of size n = 300 in the three simulationsare, together with the relative

means,
Mean of Ry Mean of RN/RN Notes
S1: 0.2839 0.968 allocated according
to the Swedish popula-
tion
S2: 0.2859 0.974 proportional allocation
S3: 0.2922 0.996 STs

in Figure 3.1 the three observed sampling distributions are illustrated.
As seen from this figure and from the results of Table 3.3, S1 and S2

gave rise to the "most' symmetrical distributions.

Table 3.3 Coefficients of skewness and kurtosis, and the minimum and

the maximum value of RN in the observed sampling distributions

Coefficent of
Simulation Skewness Kurtosis Min RN Max RN
S1 0.049 0.417 0.2413 0.3308
S2 0.144 -0.165 0.2545 0.3281
S3 0.682 1.027 0.2558 0.3425

ﬁN based on S3, i.e. under the design srs (without replacement), can
be seen as an estimate of R in the M approach. Taken as an estimate of
Ry it is '"better'' than the other two where we have

taken the design into consideration. On the other hand, the shape of
the sampling distribution indicates that the estimators based on $1 and
S2 give better confidence intervals for the Gini coefficient. In the
srs-case, the observed sampling distribution are quite symmetrical even

for small samples, see Sandstrdm et al. (1985).



Figure 3.1 The approximated sampling distributions of the Gini coefficient based on 500 replicates
of samples of size n = 300 from a parent population of the size N = 5412,

S1: Allocation proportional S2: Proportional allocation; S3: srs, without replacement
to the number of indi- srs, without replacement,
viduals in the Swedish within strata

population; srs, with-
out replacement, within

strata.
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L VARIANCE ESTIMATION

In making inference about any Gini coefficient, e.g. R or RN’ we have
to estimate its variance, Under the three approaches, summarized in
Table 3.1, there are three,more or less different,variances to be estimated,
viz,, oﬁ, oim, and oiP.

4.1 Variance Estimators

-

Under the M approachaconsistent estimator I is given by Sendler (1979).

. . . 2
This is a special case of our estimator o, below.

Since the estimator of the Gini coefficient is a ''complex'' statistic,
it is not possible to estimate its variance by traditional methods of
unbiased variance estimation. In this case we have to rely on
approximate variance estimation technique. In Sandstrdm et al (1985)

four such estimators were considered:

i) One method uses a variance estimation formula obtained by the same proces:
as the well-known formula for estimating the approximate variance of a
ratio estimator (8?), based on a first-order Taylor approximation.

This estimator is proposed in Nyg&rd and Sandstrdm (1985a) as a rough
estimator because the weights w, (see Section 3.1) are considered not
sample-dependent. Sandstrém et al. (1985) show that 5& overestimates
the true variance by a factor of 10-360 depending on the shape of the
parent populations: Similar results were obtained in the present

study.

ii)In Nygdrd and Sandstrdm (1985a) another variance estimator, based on
the same first-order Taylor approximation as in i), was proposed. The
Taylor estimator (;%) takes account of the sample dependence in the
weights W - An explicit variance formula is given in op.cit . One disadvantage
of o, is that the general probability sampling design implies inclusion
probabilities up to the fourth order to be included. When n and N
are large this estimator coincides with the third estimator, see below.
As this estimator does not seem to have any advantages over the next
two estimators (cf. Sandstrdm et al. (1985)) and because we wanted to
keep away from computational problems, this variance estimator was not

computed in the simulation study.
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iii) The third method is motivated by the AM approach, and the
resulting variance estimation formula is a consistent estimator (82)
of the asymptotic expression for the ''AM-expected squared error'
E(EN-RN)Z, where € denotes expectation with respect to the assumed AM,
for a fixed sample s and where the inclusion probabilities are
deterministic weights. For details, see Sandstrdm (1983) and
Nygdrd and Sandstrdm (1985a). The formula, under a fixed probability

sample, is given in Table 4.1.

iv) The forth method is based on a jackknife technique (0?). One
observation at a time is deleted from the sample. Each time we calculate
RN(J), analogous to Ry (with the inclusion probabilities), based on

the remaining n-1 observations and deleting the jth observation, j=1,2,..n.

The variance estimation formula is:

-

() _ 10 ()
where RN =n E RN .

- - -~

The estimators Or, Oc» and oz are given for srs, without replacement,
in Nygard and Sandstrdm (1985a) and in Sandstrdm et al. (1985).
Glasser (1962) used method ii) (;i) to estimate the variance based on
srs with replacement and Love and Wolfson (1976) compared Glasser's
approach to a balanced repeated replication approach in estimating the

variance when the sampling design was more complex than srs.

In Table 4.2 we have summarized some possible choices of variance

estimators for the three approaches summarized in Table 3.1.
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Table 4.1 Explicit expression for the asymptotic variance estimator,
-2
o_.
a

- 2.2

2 _ (1-f+v7) "2
99 T 7 3%3 9>
nyN

where f= 2
N

, the squared coefficient of l/wi, i=1,..n

- ~_q N
W= N Loy
i=1

and

o = (bA_ - ah.)(bA, - ah.) - (b, - ab.)? -

1 o 1 1 2 1 2
1,2 " =2
- 7-{a S, = 2abS; + b 53} ,

where

a=2

b =14+ RN

b =Yy T V(1)

R Y(1) £ Y(2) ¢ £ Y(n)

By = Y(ny ~ By )
Let furthermore

boi =Yy “ Y1) ie. A=A
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Ay, = F.Y/ .y == )} y /T, i.e.A, = A
1i i7(i) : K "k n 1
N {ykﬁ'f(i)}
A, =Fr oy, - = (F2 - F2 )y ie. A, = A
2i i {y < L k=1""k 2n 2
NEY()
-_1 n
and F, = N oy, <v.} /..
i . J 1 J
j=1
Now ST’ Sz, and S3 are, with all summations taken over i=1,2,..,n,
S. =A% =~ AN +2Y, (A - D) - 2TFE(A . - A L)Y, +
1 1 270 (n) "o 1 1 "ol oi=1""1
) 2 _ ot !
+ 2N ZAoi_1Yi/wi LN ZF, Aoi-iyi/ﬂi +
-1
+ ZZFi(A” A”_1)yi + 2N Zz&”_1)’i/'rri

= - - - 2 -
S, = 2y(n)(A] By) + 2TF (B, = By )Y = 2BFT(A = Ay )Y+

vi/m? o N ga, L Yo/m - BN OTF A

~_2
* 2N TEA 2i 1i-1%7

S, = ZY(n)(AO -4y - 22Fi(Aoi - Aoi_1)yi -

o-1
LI S VA zz(A1i - A1i-l)yi'

-

Note: This variance estimator, Ga’ is a consistent estimator of the variance

2 —
o =/ [/ {min(F(y),F(x))- F(y)F(x)}{2F(y)-1-R}{2F(x)-1-R}dx dy,

cf. Sendler (1979).

oo O

All partial sums are easily computed if the observations are arranged

in nondecreasing order.

The relation between Fi and Pi in Table 3.2 is

n
F. =N P. +N T I{y, = Yi}/ﬂj
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Table 4.2  Some possible variance estimators in the three inference
approaches discussed in Section 3.2, Cf. Table 3.1
Approach Variance Some possible estimators
2 ~2 .
M Oy 0_, SIS with replacement
cf. Sendler (1979)
AM OiM i) neglecting the sampling design:
as under M
ii) taking account of the sampling
design:
o2 (method iii), Table 4.1)
~2 . .
. iv
g ( ))
FP o2 o (method iii), Table &.1)
FP a ’ .
A2 1] -
. == iv
o ( ))
~2 N .
o i)
and
oi (method ii), not considered

here because it includes up
to fourth order inclusion

probabilities)
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4.2 The Monte Carlo Studies of the Variance Estimators

In each simulation (S1, S2, and S3) we computed the variance among

the 500 estimates RN based on a sample size of n'= 300. In each
2 "2

sample, we computed the variance estimators O,» Gj, and
62 to study their sampling distributions and the coverage rate of

confidence interval of the type Ry * 1.96 o..

-

The standard deviation of the 500 observed values of RN(O)

with the square root of the arithmetric means of the 500 variance

estimators are

- - - | -~

o} Oa OJ O'r
S1: 0.0123 0.0123 0.0128 0.0422
S2: 0.0129 0.0124 0.0128 0.0423
S3: 0.0139 0.0139 0.0146 0.0435

To compare the bias of the various estimators relative to

0 we have looked at the following data:

oa/o oj/o crlc
St: 1.00 1.04 3.43
S2: 0.96 0.99 3.28
S3: 1.00 1.05 3.13

-

As is shown by the above data the estimator 03 is, as mentioned earlier,
a very rough estimator. It overestimates o> by a factor of 10. Because

of this we will not discuss it any further.

The design effect, as compared with the srs-design, can be measured

where for example 8? is the jackknife

a ./ ag. and 0 /5
s GJ/G a i,srs

j,srs a,srs’
variance estimator under srs:

P pRyAe
Ua/Oa,Srs gj’ gj,srs
Si: 0.88 0.88

S2: 0.89 0.88
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Figure 4.1 The approximated sampling distributions of aa and 8., based on 500 replicates of samples
of size n = 300 from a parent population of the size N = 5412,
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Once again the close resemblance in the results of Og and U§ is shown.

Both the visual display of the approximated sampling distributions

in Figure 4.1 and the summarizing measures of these distributions in

-

Table 4.3 shows that 02 and o? are quite similar in their perfoimance.

-~

The distribution of 9, is more symmetrical than that of 0? and the

-

estimates of cj are more spread out (wider range).

The results of $3 (srs, without replacement) are astounding: the
distributions of the variance estimators are positively skewed and
trimodal. This is. also seen in Figure 4.2 where we have plotted

Ry against Oi in the three simulations. The same relationship holds for

ag..
J

Table 4.3 Coefficients of skewness and kurtosis, in the observed
sampling distributions of Gﬁ and 0?, and the minimum

and the maximum values of Ua and Oj.

Coefficient of Min ¢ Max ©
skewness kurtosis
~2 -2 -2 2 - - - -
o o o X . [

a i a GJ Oa GJ o, 05

S1: 0.538 | 0.576 | 0.365| 0.372 | 0.0100 | 0.0104 { 0.0153 | 0.0159
S2: 0.353 | 0.415 | -0.012 | 0.153 | 0.0101 0.0104 { 0.0150 | 0.0156

S3: 3.1451 3,178 | 8.688 | 8.887 | 0.0092 | 0.0095| 0.0323 | 0.0350




~ 2
Figure 4.2 The estimators R, plotted against the variance estimators 8_; 500 replicates of samples of
size n = 300 from a parent population of the size N = 5412,
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The correlations between the estimator RN and the variance estimators

are:
Py =2
RN’ o)
~2 ~2
of g,
-2 -~
S1 0.47 0.46
S2 0.58 0.58
S3 0.57 0.57

-~

The resemblance between 52 and c% is also seen by the correlation
between them {S1:) 0.99, (S2:) 0.99, and (S3:) 1.00. In the same
way the rate of coverage (nominal: 95 %) is quite similar and, as one
can believe from the above results, the rate will be highest in S3,
because of the skewed distribution of the variance estimators:

Rate of Coverage (nominal: 95%)
Variance estimator

"2 "2

a G,

a J
St §7.4 88.6
S2 87.8 §9.4
S3 94.0 94.8

5. CONCLUSIONS AND SOME EMPIRICAL RESULTS

5.1 Cenclusions

From the above results we may draw the following conclusions (in

inference about RN):

i) When the sampling design is stratified random sampling we
believe that it is better to take account of the design than just
to use srs-methods even if the latter gives point estimates closer to
the true value and a rate of coverage closer to the nominal value.

This is rested upon the distributions of the variance estimators.

We suggest that whenever the design is more ''complex'' than

srs one should take account of this in the estimation procedure.
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ii) Of the variance estimators, 82 and 02 seem to be quite similar,
The observed sampling distributions of the iarlance estimates, suggest
that 02 might be preferred to of The computational formula of 02 in
Table h.l may seen quite laborious, but once the income data has been
arranged in nondecreasing order both ﬁN and 82 are arrived at

simultaneously after a single computation.

Because we believe that in most situations it is RN that we are
interested in the following approximated 100 (1-a) per cent confidence

interval can be constructed (for details, see Table 4.1):

- (1- f+v )% o
RNt %2 I3 ’ (5.1)
N
\ v e
o
a

where z is the solution of ¢(z - ¢('Za/2) = 1-a and ¢(+) denotes

/2 /2]
the standard normal distribution function.

The interval (5.1) has two interpretations depending on the choice
of inference approach: Under FP (5.1) has the interpretation of an
ordinary confidence interval but under AM the interpretation is of

Royall-type, cf. the discussion in Section 3.2.
5.2 Some Empirical Results

Our study is based on half the sample in the 1982 Swedish Survey
"Income Distribution of Households''. In order to estimate the Gini
coefficient in disposable income among Swedish households in 1982 we
used the whole sample of n = 10 234 households. Both the asymptotic
and the jackknife variance estimators (82 and 5?) were used, but as
stated above, we believe that 82 should be preferredu The
study includes both the Ginf coefficient of the disposable income/
household (RNh) and the disposable income/consumption unit (RNC) as

calculated in the survey. The results are summarized in Table 5.1.
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Table S.1

Income inequality among Swedish households in 1982

10234

Estimated total number of households,
f = n/N = 0.0023

v2 = 2.3447
1 - F+v2 = 3.3424

Sample size, n =

(squared coefficient of

N =4 389 211

variations of75-1)

Disposable income/household

Approximated 95%
confidence interval

Coefficient of
variation,

cv (RN)
Ry, = 03215
o? - 9.8663 x 10-6 0.3215 + 0.0062 0.0120
82 = 14,9371 x 10-6 0.3215 + 0.0076 0.0098
o? = 252 854 032.5
Vo= 7h 357
Disposablie income/consumption unit
Ry = 0.2099
o? = 7.4252 x 10-6 0.2099 + 0.0053 0.0184
o> = 17.9172 x 10-6 0.2099 + 0.0076 0.0130
~2
o} = 117 369 372.9

¥y = 50 692.1
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