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1. INTRODUCTION 

Sandström et al. ( 1985) studied the sampling distributions of 

the estimated Gini coefficient and compared four variance estimators 

under simple random sampling, both with and without replacement. 

This paper complements the previous one in that we have studied 

the sampling distributions and the variance estimators under 

a more general framework, viz. probability sampling. In particular, 

we use real income data, taken from a Swedish survey "Income Distri­

bution of Households", to conduct the simulations. 

The Monte Carlo Study is discussed in Section 2, and in Section 3 

we discuss the estimation of the Gini coefficient, the inference 

problem, and the simulation results. Various variance estimators are 

introduced in Section k accompanied by results from the simulations. 

Some empirical results and conclusions are given in Section 5. 

2. THE MONTE CARLO STUDY 

Annual income distribution surveys have been carried out by Statistics 

Sweden since 1972. The surveys consist of around ten thousand households. 

Beginning with the 1975 survey, the design was stratified sampling 

with rotating panels. Each panel, consisting of about half the sample, 

was part of the surveys for two consecutive years. In this study we have 

used panel no. 9 (used 1982 and 1983) as the parent population. 

The annual surveys are based on a stratified sample of individuals 

(16 strata). Since there is no way of knowing what types of households 

these individuals belong to, household classification information is 

gathered through a questionnaire. As the number of strata at the 

individual level is 16, the possible number of households is 

136, because two individuals may belong to two different strata. The 

only information on the data file concerning stratum affiliation was the 

inclusion probabilities. To make the sampling procedure easier 

and to guarantee each stratum having at least a few hundred objects, 

the households were peel ass ifjed into seven strata. In Table 2,1 

we give the number of households in our parent population 

(which is equal to the number of individuals and households in panel 

no. 9) and the estimated number of individuals in the total Swedish 

populat ion. 
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Table 2.1 The number of objects (individuals/households) in the parent 
population and estimated number of individuals in the Swedish 
population. 

From our parent population of N = 5^12 households, samples of 

size n = 300 were drawn according to three different designs, of which 

two were stratified samples (with simple random sampling - srs - with­

out replacement within each stratum) and the third was srs without 

replacement. The number of sampled units from egch stratum was proportional 

to: the estimated number of individuals in Sweden belonging to the 

stratum (Simulation 1, S1), and the number of households in the 

parent population belonging to the stratum (Simulation 2, S2). Hence,, 

if n,- and n,„ are the number of sampled units within stratum h, 

h - 1,..,7, in SI and S2, respectively, then 
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The simulation based on the srs design is denoted S3. The number of 

replicates in each simulation was 500. In Table 2.2 we give the total 

number of sampled units within each stratum in SI and S2 with 

the inclusion probabilities. 

Table 2.2 The number of sampled units within each stratum in simulations 
S1 and S2 together with the inclusion probabilities. 

3. THE GINI COEFFICIENT AND THE PROBLEM OF INFERENCE 

We will begin with the definition of the Gini coefficient, then 

discuss various approaches to inference and conclude with the 

simulation results. 

3.1 The Gini Coefficient 

Let F denote a distribution function (df), by which we mean a real-

valued function defined on (-00, °° ) that is nondecreasing, right 

continuous and satisfies F(-°°) =0and F(°°) = 1. Gini's mean difference, 

G, associated with F is defined, in terms of the Lebesgue-Stieltjes 

integral, as 

(3.D 

and the Gini coefficient, R, associated with F is defined as 

(3.2) 
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(3.3) 

Let Fj. denote the finite population df and let y., ..., yN denote the 

values associated with the units of the finite population (of size N). 

FN(y) is then the proportion of units such that y, < y. Let y-|.N"<. V^-N < 

yN#K| denote the values arranged in nondecreasing order. 

Inserting FN for F in (3 -1)- (3 -3) we obtain, ef. Nygård and Sandström (1981), 

(3.4) 

(3.5) 

oo 

REMARK 3.1 G in (3.1), can be rewritten as 2 / (2F(y)-1) ydF(y), and 

the identity between this formulation and (3-4) when F = F., is seen 

by use of the inverse df, ef. Nygård and Sandström (î985b). 

The quantity R.. defined by (3.5) is a finite population parameter 

and it is essentially a ratio between two finite population totals 

N N 1 

T, w^yk and E y. , where the ordered wk' are w..N= 2 -rr - TT. The 

estimation of RN is not straightforward» becau$e the wk-values 

of the sampled units will remain unknown and have to be estimated. 

As indicated above, it is the finite population parameter RN that we 

are interested in making inferences about. However, in some situations 

it may well be a corresponding model parameter that we are interested 

in. In the next section we will point out different approaches to 
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making inferences about R or RN, and we also give explicit 

point estimates. 

3.2 The Problem of Inference and Explicit Estimators 

We will shortly consider three different approaches to inference, 

each on its own assumptions. 

First, we have the Model (M) approach: We assume a superpopulation 

model with an unknown parameter R and consider the 

sample, irrespective of the sampling design, as consisting of 

observations that are independent and identically distributed (iid) as 

Y~F(y). 

Second, we have the Auxi 1iary Model (AM) approach: The superpopulation 

model is used as a means to get asymptotic results about the estimator 

of R... In this approach, Ru is a stochastic variable (and R is a model 

parameter) and any confidence statements about R^ are as by Royal 1 (1971), 

cf. also Cassel et al. (1977,p.126). The values in the finite population 

constitute a vector yjj = (y1,y2» •••»yN)» considered a random 

outcome of a stochastic vector Yj. = (Y.,Y2, ..., Y.,) , where the Y; 's are 

iid as Y#wF(y). The sample is assumed to be fixed so the only stochastic 

element in this approach is the random nature of the finite population 

vector YN. Two subapproaches can be used, the first is based on 

work by Hoem and Funck-Jensen (1982) and says that if the design is 

noninformative then it can be ignored. The estimation procedure will 

be as in the M approach. The second subapproach maintains that one 

should incorporate the effects of the sampling design in the estimation. 

In doing so,the point estimates of RN will be exactly the same as under 

the fixed and Finite Population (FP) approach, our third approach to 

inference. 

In the FP approach, the vector yN = (y,,y2» •••t yN) is considered to 

be fixed and the only stochastic element in this approach is the randomi­

zation of the sample. Inference about the FP parameter R,, is based on 

large sample considerations, i.e. by use of asymptotic results in the 

M or AM approaches. 

The three approaches are summarized in Table 3.1. 
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Table 3.1 Three approaches ïn making inference about a Gini coefficient. 

AM = Auxiliary Model approach, FP = Finite Population approach, 

M = Model approach, S = sample, SP = superpopulation 
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2 2 2 
Variance estimators of au, a.u, and a__ are discussed in Section 4. Our 

M AM Fr 
personal views are that it is only the FP approach and, perhaps, the 

AM approach (taking the sampling design into account) that are of 

primary interest if the finite population Gini coefficient is to be 

estimated. 

Point estimators of the Gini coefficient are given in Table 3.2, cf, 

Nygård and Sandström (1985a), (1985b), where IT. deonotes the inclusion 

probability of unit i, ies, and s denotes the sample of fixed size n. 
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Table 3.2 Point estimates of the Gini coefficient 

(from Nygård and Sandström (1985b)). 

Note: If the sampling design is simple random sampling then R , in the 

FP and AM approaches, is identical with R <n the M approach. 
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3.3 The Monte Carlo Studies of the Sampling Distributions 

The Gini coefficient in our parent population (N = 5̂ 412) is RN = 0.293. 

and the arithmetic means of the 500 point estimates based on samples 

of size n = 300 in the three simulations are, together with the relative 

means, 

In Figure 3.1 the three observed sampling distributions are illustrated. 

As seen from this figure and from the results of Table 3.3, S1 and S2 

gave rise to the "most" symmetrical distributions. 

Table 3-3 Coefficients of skewness and kurtosis, and the minimum and 

the maximum value of RM in the observed sampling distributions 

RN based on S3, i.e. under the design srs (without replacement), can 

be seen as an estimate of R in the M approach. Taken as an estimate of 

R.. it is "better" than the other two where we have 
N 

taken the design into consideration. On the other hand, the shape of 

the sampling distribution indicates that the estimators based on SI and 

S2 give better confidence intervals for the Gini coefficient. In the 

srs-case, the observed sampling distribution are quite symmetrical even 

for small samples, see Sandström et al. (1985). 
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Figure 3.1 The approximated sampling distributions of the Gini coefficient based on 500 replicates 
of samples of size n = 300 from a parent population of the size N = 5412. 

S1: Allocation proportional 
to the number of indi­
viduals in the Swedish 
population; srs, with­
out replacement, within 
strata.' 

S2: Proportional allocation; 
srs, without replacement, 
within strata 

S3: srs, without replacement 
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4 VARIANCE ESTIMATION 

In making inference about any Gini coefficient, e.g. R or RN, we have 

to estimate its variance. Under the three approaches, summarized in 

Table 3-1, there are three,more or less different,variances to be estimated, 
2 2 . 2 

viz:., aM, aA M, and app. 

4.1 Variance Estimators 

"7. 
Under the M approach a consistent estimator aM is given by Sendler (1979). 

~2 This is a special case of our estimator a below. a 

Since the estimator of the Gini coefficient is a "complex" statistic, 

it is not possible to estimate its variance by traditional methods of 

unbiased variance estimatTon. In this case we have to rely on 

approximate variance estimation technique. In Sandström et al (1985) 

four such estimators were considered: 

i) One method uses a variance estimation formula obtained by the same procès: 

as the well-known formula for estimating the approximate variance of a 
"2 

_r_atio estimator (a ) , based on a first-order Taylor approximation. 

This estimator is proposed in Nygård and Sandström (1985a) as a rough 

estimator because the weights w, (see Section 3.1) are considered not 

sample-dependent. Sandström et al. (1985) show that cr overestimates 

the true variance by a factor of 10-360 depending on the shape of the 

parent populations» Similar results were obtained in the present 

study. 

ii)ln Nygård and Sandström (1985a) another variance estimator, based on 

the same first-order Taylor approximation as in i), was proposed. The 
~2 

Jaylor estimator (0.) takes account of the sample dependence in the 
weights w. . An explicit variance formula is given in op. cit .One disadvantage 

~2 

of a is that the general probability sampling design implies inclusion 

probabilities up to the fourth, order to be included. When n and N 

are large this estimator coincides with the third estimator, see below. 

As this estimator does not seem to have any advantages over the next 

two estimators (ef. Sandström et al. (1985)) and because we wanted to 

keep away from computational problems, this variance estimator was not 

computed in the simulation study. 
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i i i) The third method is motivated by the AM approach, and the 

resulting variance estimation formula is a consistent estimator (a ) 

of the £symptotic expression for the "AM-expected squared error" 
r " 2 c 

£.(RN"R.|) , where c-denotes expectation with respect to the assumed AM, 

for a fixed sample s and where the inclusion probabilities are 

deterministic weights. For details, see Sandström (1983) and 

Nygård and Sandström (1985a). The formula, under a fixed probability 

sample, is given in Table 4.1. 

~2 

iv) The forth method is based on a j_ackknife technique (a.). One 

observation at a time is deleted from the sample. Each time we calculate 

RN
 J , analogous to RJSJ (with the inclusion probabilities), based on 

the remaining n-1 observations and deleting the jth observation, j=1,2,..n. 

The variance estimation formula is: 

~2 "2 "2 
The estimators a , o\, and o are given for srs, without replacement, 

r t a 3 r 

in Nygård and Sandström (1985a) and in Sandström et al. (1985). 

Glasser (1962) used method ii) (a ) to estimate the variance based on 

srs with replacement and Love and Wolfson (1976) compared Glasser's 

approach to a balanced repeated replication approach in estimating the 

variance when the sampling design was more complex than srs. 

In Table k.2 we have summarized some possible choices of variance 

estimators for the three approaches summarized in Table 3.1. 
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Table 4.1 Explicit expression for the asymptotic variance estimator, 
~2 
a . 
a 
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~2 
Note: This variance estimator, G , is a consistent estimator of the variance 

a 

All partial sums are easily computed if the observations are arranged 

in nondecreasing order. 

The relation between Fj and P. in Table 3.2 is 
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Table 4.2 Some possible variance estimators in the three inference 

approaches discussed in Section 3.2. Cf. Table 3.1 
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4.2 The Monte Carlo Studies of the Variance Estimators 

In each simulation (SI, S2, and S3) we computed the variance among 

the 500 estimates RM based on a sample size of n = 300. In each 
~2 ~2 sample, we computed the variance estimators 0 , a., and 

a to study their sampling distributions and the coverage rate of 

confidence interval of the type R., + 1 .96 a.. 

The standard deviation of the 500 observed values of R.,(cr) 

with the square root of the arithmetric means of the 500 variance 

estimators are 

To compare the bias of the various estimators relative to 

a we have looked at the following data: 

"2 As is shown by the above data the estimator a is, as mentioned earlier, 
-2 r 

a very rough estimator. It overestimates a by a factor of Î0. Because 

of this we will not discuss it any further. 

The design effect, as compared with the srs-design, can be measured 

as a./o- and 0/0 , where for example a. is the jackknife 
j J,srs a a,srs' r J,srs J 

variance estimator under srs: 
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Figure 4.1 The approximated sampling distributions of d and ô., based on 500 replicates of samples 
of size n = 300 from a parent population of a the J size N = 5^12. 

Asymptotic 

Variance 

Estimator 

Jackkni fe 

Estimator 
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~2 ~2 . 
Once aqain the close resemblance in the results of a and a. is shown. 3 a j 

Both the visual display of the approximated sampling distributions 

in Figure 4.1 and the summarizing measures of these distributions in 
"2 ~2 

Table 4.3 shows that a and a, are quite similar in their performance. 
~?a J ~2 

The distribution of a is more symmetrical than that of o. and the 
~2 a J 

estimates of a. are more spread out (wider range). 

The results of S3 (srs, without replacement) are astounding: the 

distributions of the variance estimators are positively skewed and 

trimodal. This is also seen in Figure k.2 where we have plotted 

R., aqainst o in the three simulations. The same relationship holds for 
-^ a a 
a.. 
J 

Table 4.3 Coefficients of skewness and kurtosis, in the observed 

sampling distributions of 0 and 0, and the minimum 

and the maximum values of 0 and 0. 
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2 
Figure 4.2 The estimators R plotted against the variance estimators Ô ; 500 replicates of samples of 

size n = 300 from a parent population of the size N = 5412-

Interpretat ion: 1 OBSERVATION 
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The correlations between the estimator R», and the variance estimators 

are: 

"2 ~2 
The resemblance between o and a. is also seen by the correlation 

a J 
between them {SI:) 0,99» (S2:) 0.99, and (S3:) 1.00. In the same 

way the rate of coverage (nominal: 95 %) is quite similar and, as one 

can believe from the above results, the rate will be highest in S3, 

because of the skewed distribution of the variance estimators: 

Rate of Coverage (nominal: 95%) 

Variance estimator 

5. CONCLUSIONS AND SOME EMPIRICAL RESULTS 

5.1 Conclusions 

From the above results we may draw the following conclusions (in 

inference about R.,) : 
N 

i) When the sampling design is stratified random sampling we 

believe that it is better to take account of the design than just 

to use srs-metnods even if the latter gives point estimates closer to 

the true value and a rate of coverage closer to the nominal value. 

This is rested upon the distributions of the variance estimators. 

We suggest that whenever the design is more "complex" than 

srs one should take account of this in the estimation procedure. 
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iî) Of the variance estimators, a and a. seem to be quite similar, 
a J 

The observed sampling distributions of the variance estimates, suggest 
~2 ~2 ~2 

that a might be preferred to a.. The computational formula of a in 

Table k.1 may seen quite laborious, but once the income data has been 

arranged in nondecreasing order both R., and a are arrived at 

simultaneously after a single computation. 

Because we believe that in most situations it is RN that we are 

interested in the following approximated 100 (1-a) per cent confidence 

interval can be constructed (for details, see Table k.\): 

(5.D 

where z is the solution of <f>(z~/?) ~ ^>(~za/^ = 1 _ a anc4>(.) denotes 

the standard normal distribution function. 

The interval (5.1) has two interpretations depending on the choice 

of inference approach: Under FP (5.1) has the interpretation of an 

ordinary confidence interval but under AM the interpretation is of 

Royal1-type, cf. the discussion in Section 3.2. 

5.2 Some Empirical Results 

Our study is based on half the sample in the 1982 Swedish Survey 

"Income Distribution of Households". In order to estimate the Glni 

coefficient in disposable income among Swedish households in 1982 we 

used the whole sample of n = 10 23^ households. Both the asymptotic 

and the jackknife variance estimators (a2 and a2) w e r e u s e d . b u t a s 

~2 a J 
stated above, we believe that a should be preferred-.» The 

' a 

study includes both the Ginr coefficient of the disposable income/ 

household (RNh) and the disposable income/consumption unit (RNc) as 

calculated in the survey. The results are summarized in Table 5.1. 
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Table S.1 Income inequality among Swedish households in 1982 
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