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CROSS-CLASSIFIED SAMPLING FOR THE CONSUMER PRICE INDEX 

by Esbjörn Ohlsson 

Department of Enterprise Statistics 

Statistics Sweden 

ABSTRACT. The Swedish Consumer Price Index utilizes several two-

dimensional samples, each of which is the cross-classification of 

a sample of outlets (shops, etc.) and items (products). Such a 

sampling procedure is called Cross-classified sampling in the pa­

per. We are interested in the problem of deriving the variance of 

an estimator based on a cross-classified sample; in particular we 

want a variance formula for the CPI. 

In the first part of the paper we give a general decomposition of 

the variance and some results which simplify variance calculations 

in cases with stratification and/or sampling with probabilities 

proportional to size. In the second part, we illustrate how the 

general results can be applied to derive a variance formula for 

the CPI. 

Keywords: Cross-classified sampling, two-dimensional sampling, pps 

sampling, variance estimation, Consumer Price Index. 
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CROSS-CLASSIFIED SAMPLING FOR THE CONSUMER PRICE INDEX 

0. INTRODUCTION AND OUTLINE OF THE PAPER 

Large parts of the Swedish Consumer Price Index (CPI) are based on 

price quotations from two-dimensional samples, each of which is the 

cross-classification of a sample of outlets (shops, restaurants, 

etc.) and a sample of items (products). In the sequel, such a 

procedure for sampling from a two-dimensional population will be 

called Cross-Classified Sampling (CCS). In this paper we first 

deal with the general problem of deriving the variance of an esti­

mator based on a Cross-classified sample. The general results are 

then used to obtain a formula for the sampling variance of a "sub-

index" of the CPI. Such formulas are important both for allocation 

purposes and for assessing the accuracy of the (estimated) CPI. 

Many papers on two-dimensional sampling are concerned with the 

problem of sampling an area (plane sampling). Quenouille (1949) 

deals with two-dimensional samples which are obtained by using 

stratified simple random sampling or equal probability systematic 

sampling in each dimension at a time; variances are derived under 

a superpopulation model. In the terminology of Quenouille, CCS can 

be described as the case with aligned samples in both dimensions. 

For recent references extending the work of Quenouille, see Iachan 

(1982), who gives a review of papers on two-dimensional systematic 

sampling, and Ripley (1981), who discusses plane sampling. Other 

papers on two-dimensional sampling discuss how to sample among the 

cells in the crossing of two stratifications. This leads to "latin 

square" type samples, in which each one-dimensional population 

unit is represented exactly once; for an overview and references, 

see Cochran (1978). As far as we can see, the papers in the men­

tioned areas can not be used to solve the CCS variance problem. 
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In the particular case where the samples in both dimensions of the 

CCS procedure are drawn by simple random sampling without replace­

ment, the variance of the sample mean can be obtained from the re­

sults in Vos (1964). To the best of our knowledge, variance formu­

las for CCS with more complicated one-dimensional sampling proce­

dures, are not available in the literature. 

The problem of estimating the sampling variance of a CPI has 

received quite some interest during the last years. An early refe­

rence is Banerjee (1956), who addresses the problem of optimal al­

location of the item sample. Recent papers include Valliant (1991) 

on the United States CPI; the two-dimensional CPI sample in the US 

is, however, a two-stage sample and not a CCS. Balk & Kersten 

(1986) and Biggeri & Giommi (1987) use balanced half-samples and 

similar methods to estimate the variance due to the use of weights 

from a household expenditure survey. The (one-dimensional) varian­

ce due to the sampling of outlets in the Swedish CPI, conditioning 

on the item sample and making the samplifying assumption of with 

replacement sampling was computed by Andersson, Forsman & Wretman 

(1987). For further references on the problem of estimating the 

CPI variance, we refer to the mentioned papers. The connection 

between the CPI samples and the two-dimensional sampling procedu­

res discussed in Vos (1964) was first noted by Dalen (1991a). This 

observation was the starting point for the present work. 

The paper is divided into parts A and B. In part A we give some 

general results on the variance for estimators based on Cross-clas­

sified sampling: In section 1 we define Cross-classified sampling 

and give a basic decomposition of the variance. In section 2 we 

give a result which simplifies the calculations when we have stra­

tified samples. In section 3 we discuss pps sampling and the Hor-

vitz-Thompson estimator in the CCS case. In part B of the paper, 

consisting of sections 4-7, we show how the theoretical results of 

part A can be used to derive a variance formula for an index, such 

as a CPI. The type of index under consideration is defined in sec­

tion 4. The variance formula is presented in section 5 and proved 

in section 6. Section 7 contains a simulation study on CPI data. 
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PART A. 

GENERAL RESULTS ON THE VARIANCE IN CROSS-CLASSIFIED SAMPLING (CCS) 

1. DEFINITION OF CCS AND A VARIANCE DECOMPOSITION 

We consider a two-dimensional population with M-N units, arranged 

in a matrix with N rows and M columns. For each population unit we 

have a value of our target variable y, these values form the mat­

rix {y. .; i=l,2,...,N; j=l,2 M}. A survey is carried out with 

the object of estimating the population total 

(1.1) 

R C 
To this end, a random sample S of rows and a random sample S of 
columns are drawn. The sampling procedures for rows and columns 

R r 
are assumed to be independent; in all other respects S and S are 

arbitrary here. 

Definition 1.1. A cross-classified sample S from a two-

dimensional population, indexed by {(i,j)} is the cross-
R C R C 

classification of S and S , i.e. S={(i,j): ieS , J€S }, were 
R C 
S and S are independent samples from the rows and columns, 
respectively. 

On the basis of the y-values for the units in the sample S, we 

form some estimator Y of Y. The problem we shall focus on in this 

paper is the derivation of an explicit formula for V(Y). 

We shall now present a decomposition of V(Y), which will be useful 

in the further derivations. Let E denote conditional expectation, 
R R C R 

given the outcome of S . By the independence of S and S , E is 
simply the expectation over column samples. Conditional expecta-

C C 
tion given S is denoted E , while E is overall expectation. For 
variances we analogously define V , V and V. 

Let 

(1.2) 
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Y will be called the row estimator of Y. The reason for this Is 
R̂ AR 

that Y depends solely on the outcome of the row sample: Y is an 

estimator which could be used if the columns were completely enu-

merated. Similarly, Y is the column estimator of Y. If Y is un­

biased, then so are obviously both the row and column estimator. 

Theorem 1.1. The variance of an estimator Y, which is based 

on a cross-classified sample, can be decomposed as follows, 

(1.3) 

where 

(1.4) 

VR will be called the row variance, VC the column variance and VRC 

the row and column interaction variance. Before proving the the­

orem we shall illustrate it in a simple example. 

Example 1.1. Suppose that S is a simple random sample drawn with-

out replacement (srswor) and having size n, and that S is an 

srswor of size m. Let 

(1.5) 

(1.6) 

The conventional unbiased estimator of Y is given by 

(1.7) 

In this case the row and column estimators are readily found as 

(1.8) 

Furthermore, let 

(1.9) 
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The variance of Y in (1.7) is given by (1.3) and 

(1.10) 

(1.11) 

(1.12) 

Note the similarity between the variances in (1.9) and the mean 

sums of squares in a two-way analysis of variance table. This is 

one reason for using the terminology "row, column and interaction 

variance". 

In section 3 it will be indicated how (1.10)-(1.12) can be derived 

from Theorem 3.1 there. The expression for V(Y) in the srswor case 

can alternatively be derived by using the results in Vos (1964, 

"Method C.l"). Note that Vos (1964) can not be used to cover more 
R C 

general sampling procedures S and S ; the need for a generaliza­
tion from srswor to pps and stratified samples was the starting 
point for the work reported here. • 

Proof of Theorem 1.1. Let Z = Y-^-Y0, so that 

(1.13) 

It is sufficient to prove that Y , Y and Z are mutually uncorre-
R C lated. From the independence between S and S it follows that 

C(YR,YC)=0. Furthermore, 

(1.14) 

Let u = E(Y). From (1.2) we get 

(1.15) 

R̂ ^ ""R 

By taking expectations in (1.15) we find that C(Y ,Y-Y^)=0; to­
gether with (1.14) this yields C(Y ,Z)=0, as desired. By symmetry, 
we also have C(Y ,Z)=0, which concludes the proof. B 

Remark 1.2. From (1.2)-(1.4), the well-known identity 

V(Y) = V[ER(Y)] + EtV^Y)] , (1.16) 

and its counterpart with R replaced by C, we get the following 
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scheme 

(1.17) 

By combining (1.17) and (1.3) we can get other decompositions of 

V(Y), e.g. 

(1.18) 

In the present paper, however, we will not use any other decompo­

sition than (1.3). • 

2. CROSS-CLASSIFIED SAMPLING AND STRATIFICATION 

If we did impose an ordinary two-way stratification on our two-

dimensional population, sampling independently in each cell, then 

the results of the preceding section could, of course, be used 

inside each cell, and V(Y) could be found by simply adding the 

cell variances. In the CPI case (and possibly others), however, 

the rows and columns are separately stratified. The cross-classi­

fication of these stratifications yield cells in which the samples 

are actually dependent. In this section we will discuss how to 

derive variances with the latter type of stratification. 

Let us assume, then, that the rows are divided into G strata of 
p 

sizes N , N , . . . , N . As usual, S is the union of independent 
1 2 U 

samples from each of the strata. Similarly, the columns are divi-
R C 

ded into H strata of sizes M., M„,..., M S and S are still 
1 2 H 

assumed to be independent, and Theorem 1.1 is still valid. 

By crossing the row-stratification and the column-stratification 

we get a division of the population into G-H cells. Let Y , denote 
gh 

the population total of the y's in cell (g,h), for g=l,2,...,G; 

h=l,2,...,H. Then Y in (1.1) can be rewritten 

(2.1) 
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We shall assume that the estimator of Y is composed of some esti­
mators Y , of the cell totals Y ,_, i.e. 

gh gh' 

(2.2) 

Y is assumed to be computed from the sampled units in cell (g,h) 

only. In other respects, the Y 's are arbitrary. Note that a pair 

of Y 's are not independent if they are from the same row or the 

same column. Hence, V(Y) can not simply be calculated as the sum 

of the V(Y h)'s, as with ordinary two-way stratification. On the 

contrary, we have to add a number of covariance terms to the sum, 

making variance estimation very cumbersome in practice. However, 

invoking the decomposition of Theorem 1.1 makes the situation much 

simpler, as we shall now see. 

Introduce the within-cell row and column estimators 

(2.3) 

The within row stratum g (column stratum h) estimators are 

defined as follows 

(2.4) 

Trivially, we have the following relations 

(2.5) 

The within row stratum g (column stratum h) variance is defined as 

(2.6) 

We also define the within cell (g,h) interaction as 

(2.7) 
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Theorem 2.1. Suppose we have a CCS procedure where the row 

and column samples are separately stratified. Then the vari­

ance of an estimator Y, based on the CCS sample and structur­

ed as in (2.2), is given by 

(2.8) 

where VR, VC and VRC are defined in (1.4) and can be expanded 

as 

(2.9) 

(2.10) 

Since VR and VC in (1.4) do depend only on ordinary "one-dimen­

sional" samples, it should be no surprise that they can be expan­

ded as simply as in (2.9). The significance of the theorem lies in 

the fact that VRC can be equally simply expanded (without any 

covariance terms). We find that the decomposition of Theorem 1.1 

provides us with means of making the variance calculations with 

these dependent cells almost as simple as in the independent case. 

Proof of Theorem 2.1. (2.8) follows directly from Theorem 1.1. 

(2.9) is an immediate consequence of the independence between the 

samples in different row (column) strata, and (1.4), (2.5) and 

(2.6). 

It remains to show that VRC, as defined in (1.4), can be 

expressed as in (2.10). To this end, let u. ,=E(Y , ) and 
'gh gh 

(2.11) 

Note that E(Z ,_)=0. From (1.4), (2.2) and (2.5) we see that 

(2.12) 

We must show that the right-hand sides in (2.12) and (2.10) are 

equal. By definition (2.7), VRC =V(Z ,) and it is sufficient to 
gh gh 

show that the Z 's are mutually uncorrelated. By the independence 
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of the sampling in different rows and column strata it is imme­

diate that 

(2.13) 

We next turn to the case when g=g' and h^h'. By the independence 
R C C ~R AR 

between S and S , we have E (Y ,)=E(Y ,)=U , , which together with 
gh gh 'gh' 

C " the second equality in (2.3) yields that E (Z ,)=0. By the inde-

pendence of the samples in the column strata h and h' , we have 

(2.14) 

By taking expectations in (2.14), we conclude that 

(2.15) 

The case with g^g' and h=h' follows by symmetry. The proof of 

Theorem 2.1 is complete. • 

3. CROSS-CLASSIFIED SAMPLING AND THE HORVITZ-THOMPSON ESTIMATOR 

Here we shall discuss the special case when Y is the so called 

Horvitz-Thompson estimator. In doing so, we go back to the unstra-

tified situation. For the one-dimensional inclusion probabilities 

we use the following notation, for any i,i',j,j', 

(3.1) 

where P denotes probability. 

R C 
By the independence of S and S , the two-dimensional inclusion 

probabilities are just products of the one-dimensional ones. Hen­

ce, the well-known, unbiased Horvitz-Thompson estimator takes the 

following form in the case of Cross-classified sampling, 

(3.2) 

9 



The estimators in (1.2) take the form, in the notation of (1.5), 

(3.3) 

Note that Y is the Horvitz-Thompson estimator of Y when the 

columns are completely enumerated, and vice versa for Y . 

Of course, the usual one-dimensional expressions for the variance 

of a Horvitz-Thompson estimator, in terms of inclusion probabili­

ties, extend immediately to the two-dimensional case. However, we 

are interested in expressions for VR, VC and VRC in the decomposi­

tion of Theorem 1.1. The main reason for this is that we want to 

use these expressions in conjunction with the results on stratifi­

cation in Theorem 2.1. The next theorem presents such expressions. 

Theorem 3.1. The variance of the Horvitz-Thompson estimator 

in (3.2), based on a cross-classified sample, is given by 

(1.3) and 

(3.4) 

(3.5) 

(3.6) 

Proof. The formulas for VR and VC follow from well-known results 

on the one-dimensional Horvitz-Thompson estimator, see e.g. Brewer 

& Hanif (1983, p.7), and we turn to VRC. Let IR and IC be indica-
R C 

tors of the events that i€S and ieS , respectively. Then by 

(1.1), (1.5), (3.2) and (3.3) 

(3.7) 

Furthermore, since Y, Y and Y all have expectation Y in this 

case, we have 

10 



(3.8) 

By inserting (3.7) into the right-hand side of (3.8) we find 

(3.9) 

Next note that 

(3.10) 

By taking term-wise expectations in (3.9), using the independence 
R C 

between S and S and (3.10) we finally get (3.6), which ends the 

proof. • 

Remark 3.1. If we have separate stratification in each dimension, 

as described in section 2, we can use (3.6) to compute VRC inside 

each cell of the crossing of the two stratifications. By Theorem 

2.1 the "overall VRC" is found by simply adding up the within-cell 

VRC ,'s. VR and VC are one-dimensional, stratified quantities 
gh 

which can be handled as usual. • 

Example 3.1. Consider the case of example 1.1, where both S and 

S are drawn by srswor, of sizes n and m, respectively. Then 

the inclusion probabilities are well known, yielding 

(3.11) 

By inserting (3.11) into (3.4)-(3.6) we obtain, after quite some 

algebra, the expressions for VR, VC and VRC given in (1.10)-(1.12). 

• 
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PART B. APPLICATION TO THE CONSUMER PRICE INDEX 

4. THE DEFINITION OF THE INDEX AND ITS ESTIMATOR 

In this part of the paper we shall Illustrate how the results in 

part A can be applied to a CPI which is based on CCS samples. 

While the intention of Part A was to work out exact results, we 

will use some simplifying approximations here in Part B. 

We start by defining the (theoretical) index, called I, which is 

the target for cur sampling and estimation procedure. Then we will 

define its estimator I. The Swedish CPI is a composition of seve­

ral "sub-indexes" which use different types of sampling and index 

calculation. The definition of I :'I ) chosen here is a generaliza­

tion of some of the most importing such sub-indexes. Our object is 

neither to give as general results as possible, nor to give an 

exact and technically detailed description of the variance calcu­

lations in the Swedish CPI, but rather to illustrate how the re­

sults in part A can be used. 

Iho population is two-dimensional with outlets (e.g. shops, res­

taurants) as rows, and items (products) as cciumns. Both the out­

lets and the items are stratified (by type of retail trade and 

item similarity, respectively). The cell ig.hj Is the crossing of 

cuMet stratum g and item stratum h. Let v , be a weight of the 
gh 

cell fin the Swedish CPI, v , Is the turnover for the items in 
gh 

group h traded in the outlets of type g). The weights are normali­

zed so that 
(4.1) 

The overall index I is assumed to be a weighted average of some cell 

indexes I , , 
gh 

(4.2) 

We next give the structure of the I 's. Let f. . be some function 
gh ij 

of the price of item i in outlet j at one or several points in 

time and let g. . be another such function; cf. Example 4.1 below. 
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Introduce the indicator 

( 1 if j is traded in i 
(4.3) 

0 else 

For each i, let w. be a (marginal) weight of outlet i, and for 
C X 

each j, let w. be a (marginal) weight of item j. We define I as 

the ratio 

(4.4) 

Here ieg indicates that the summation is restricted to the i's in 

stratum g, and likewise for ieh. Of course, the functions f. . and 
il 

R C 
g. . may include some weights - the marginal weights w. w. are 
ij i J 

given explicitly in (4.4) only to simplify some of the following 

formulas. Next let 

(4.5) 

As in section 2, the cell totals of the y's and x's are denoted by 

Y , and X . , i.e. 
gh gh 

(4.6) 

Now I , in (4.4) can be written as 
gh 

(4.7) 

This completes the general definition of I; we next look at some 

special cases. 

Example 4.1. Suppose the index is a measure changes in prices from 

time 0 to time 1. Let p. . be the price of j in i at time t; t=0,l. 
1 1J 0 

Upon putting f. .=p. . and g. .=p. ., I , becomes a (weighted) ratio H F ij iJ iJ iJ gh 1 0 

of mean prices. If instead we let f. .=p. ./p. . and g. . = 1, then I , 
^ ij ij ij ij gh 

becomes a (weighted) mean of price ratios. In the Swedish CPI we 

put 

13 



(4.8) 

See Dalen (1991a) for the reasons for using (4.8) and the weight­

ing structure of (4.4). 

As indicated by these examples, by choosing f. . and g. . properly, 

we can make (4.4) or (4.7) cover many common index formulas, with 

a notable exception for the geometric mean of price ratios. • 

In order to get an estimate I of the index defined above, we use 

price quotations (or rather f. . and g. .) from a cross-classified 
ij ij 

sample, as described in section 1, with separate stratifications 

of outlets and items, as described in section 2. 

We shall assume that while the prices (f ' s and g's) and indicators 
R C 

1. . are known only for the sample, the weights w. and w. are known 
ij H i J R 

for the entire population. In outlet stratum g, the sample S is 
o 

assumed to be drawn with probabilities proportional to the w., 

i.e., for some predetermined sample size n 

(4.9) 

where 

(4.10) 

C 
In item stratum h, the sample S is drawn with probabilities 

(4.11) 

where 

(4.12) 

for some sample size m . Here we must assume that the quantities 

on the right-hand side in (4.9) and (4.11) do not exceed 1. In 

practice this is achieved by forming separate strata for large 

units, in which one makes a complete enumerations of the units. 

Taking care of such strata is a straight-forward task, but it 

makes the formulas rather involved. For simplicity we will assume 

14 



that no large unit strata are necessary. 

The Horvitz-Thompson estimator of Y . is, by (3.2), (4.5), (4.9) 

and (4.11), 

(4.13) 

X is given by (4.13) with f replaced by g. As an estimator of 

the ratio in (4.7) we take the ratio of the Horvitz-Thompson esti­

mators, 

(4.14) 

Note that I is "self-weighting"; this property is lost by the 

introduction of large unit strata, though. Finally our estimated 

CPI is, by (4.2), 

(4.15) 

5. THE VARIANCE OF THE INDEX 

We search for an expression for V(I); in doing so we must specify 

which sampling procedures are used to generate samples with inclu­

sion probabilities as in (4.9) and (4.11). In large parts of the 

Swedish CPI, Random systematic sampling and/or Sequential Poisson 

sampling are used. For a description of Random systematic sampling 

and ordinary Poisson sampling, see e.g. Brewer & Hanif (1983, p.22 

and 82); for a description of Sequential Poisson sampling see 

Ohlsson (1990). We shall assume that Random systematic (pps) samp­

ling has been used. The necessary alterations to treat a situation 

with (ordinary) Poisson sampling are indicated in Appendix 1; the 

formulas for Poisson sampling can be used as approximations in the 

case with Sequential Poisson sampling, see Ohlsson (1990). 
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As usual when estimating a ratio, I is not in general unbiased. 

Hence, we rather look for an expression for the mean square error 

of I, MSE(I), than for V(I). By a standard Taylor series lineari­

zation argument, I is approximately unbiased though, and the simu­

lation results in section 7 indicate that the bias may be negli­

gible, compared to the variance. Hence we will set V(I) ~ MSEC I) 

below. 

Before presenting the formula for V(I), we introduce some further 

notation. For ieg and jeh, let 

(5.1) 

and put 

(5.2) 

(5.3) 

Recalling the definition of X in (4.6), set 

(5.4) 

Finally, let 

(5.5) 

Proposition 5.1. The variance of the index I can he 

approximated as follows 

(5.6) 

where 

(5.7) 

and 

(5.8) 
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and 

(5.9) 

Proposition 5.1 is proved in section 6. 

The second approximation in (5.6) is partly due to another use of 

the standard type linearization for the ratio estimator, see (6.1) 

below, and partly due to the use of approximations for the second 

order inclusion probabilities re. . of Random systematic sampling, 

see (6.5). VR might be called the "outlet variance", VC the "item 

variance" while VRC is "outlet and item interaction". 

Variance estimators based on slightly altered versions of (5.7)-

(5.9) have been used to evaluate the precision of the Swedish CPI, 

see Dalen (1991b). Another important issue is the allocation of 

data capture resources to the outlet and item sample and between 

the strata in each dimension. Though explicit formulas for optimal 

allocation are hard to obtain, the variance formulas in Proposi­

tion 5.1 have been used for substantial improvement of the alloca­

tion of the Swedish CPI. 

The term VRC in (5.9) does not have the interaction structure one 

might expect from (1.9) and the fact that srswor is a particular 

case of Random systematic sampling. Presumably, this is caused by 

the rough approximation of the n. .'s. Suppose, however, that the 
R C 

finite population corrections 1- (n -l)p. and 1- (m -Dp. are all 
g i g J 

close to 1, and hence can be omitted. Then it is readily seen that 

VRC can be rewritten as 
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(5.10) 

Here 

(5.11) 

e is inserted into (5.10) only to reveal the similarities be­

tween (5.10) and (1.9). 

6. PROOF OF PROPOSITION 5.1 

In the proof of Proposition 5.1, we shall use the linear approxi­

mation 

(6.1) 

which is of a type frequently used in the literature (see e.g. 

Cochran 1977, p. 31). (6.1) can be shown to yield the same approx­

imation as a first-order Taylor series approximation; we omit the 

proof of this fact. 

Set 

(6.2) 

and note that, by (4.7) and (4.8) the cell total of the z. .'s is 

(6.3) 

Let Z , be the Horvitz-Thompson estimator of Z , , defined as in 
gh ^ gh 

(3.2), but with y. . replaced by z. .. By (4.9), (4.11), (5.1) and 
ij ij 

(5.4) 
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(6.43 

Z is defined from Z , as in (2.2). From (4.13) and its analogue 
gh 

for X, we see that (6.1) can be rewritten 

(6.5) 

As a further preparation for the proof of Proposition 5.1 we shall 

specialize the results of section 3 to the case where the row and 

column samples are both drawn by Random systematic (pps) sampling. 

In doing so, we return to the unstratified case for a while. Con­

nor (1966) supplied exact expressions for the second-order inclu­

sion probabilities for this procedure. These expressions are, 

however, unmanageable in practice. We shall use an approximation 

due to Hartley & Rao (1962), motivated by an asymptotic result 

(where N-x» in such a way that (n/N)->0, according to Brewer & Ha-

nif, 1983, p.14). For simplicity, we omit all terms except the 

first one in this approximation, and get 

(6.6) 

Here n is the (fixed) size of the row sample S and m is the size 

of the column sample S . The A quantities in (3.1) become 

(6.7) 
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R C Lemma 6.1. Let both S and S be drawn by Random systematic 

(pps) sampling. Let Z be the Horvitz-Thompson estimator in 

(3.2) involving a variable z with population total Z=0. Then 

an approximation for V(Z) is given by V(Z) = VR+VC+VRC, where 

(6.8) 

(6.9) 

(6.10) 

This lemma is applicable to any ratio estimator, not just I, after 

the usual linearization. Note that (6.8) and (6.9) are basically 

two versions of the well-known variance formula for (one-dimen­

sional) Random systematic sampling, see Brewer & Hanif (1983, 

formula 1.8.4). Lemma 6.1 is proved by inserting (6.7) into (3.4)-

(3.6) and using the fact that Z=0. We omit the proof, which is 

straight-forward, but quite involved. 

In Appendix 1 we give the analogue of Lemma 6.1 in the case where 

the row and column samples are drawn by Poisson sampling. We are 

now prepared to complete the proof of Proposition 5.1. 

Proof of Proposition 5.1. Our starting point is (6.5). By Theorem 

2.1, V(Z) = VR + VC + VRC, with VR and VC as in (2.9). By (2.10), 

VRC is found by adding up the VRC 's computed inside each cell. 

The "unstratified" Lemma 6.1 is applicable inside each cell. Note 

that, by (6.2) and (5.1)-(5.5) 
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(6.11) 

By inserting these expressions into (6.10), and using (4.9), 

(4.11) and (5.5), we arrive at the desired formula (5.9) for VRC. 

We next turn to VR. By taking expectation over the column sample 

in (6.4) we get 

(6.12) 

and, in a notation analogous to (2.4) and (2.3) 

(6.13) 

Let 

(6.14) 

~R ~ 
Next note that 2 is the Horvitz-Thompson estimator of the z-

g-
total over row stratum g; note also that this total equals 0. Now, 

~R 
we can find V(Z _) by applying the well-known approximation formu-

la for the variance in one-dimensional Random systematic sampling, 

see e.g. formula (1.8.4) in Brewer & Hanif (1983). Equivalently we 

can use (6.8) with z replaced by z. By using the following version 

of (2.9) 

(6.15) 

and recalling (4.9) and (5.5), we get (5.7). 

Finally, formula (5.8) for VC follows by symmetry. This completes 

the proof of Proposition 5.1. m 
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7. A SIMULATION STUDY 

In this section we report on a simulation study which was carried 

out in order to get some indication of the accuracy of the approx­

imations involved in Proposition 5.1. Specifically, the approxima­

tions are 

(a) Assuming I to be approximately unbiased; this is the first ~ 

of (5.6) and (6.1). 

(b) The linearization of the ratio in (6.1). 

(c) The approximation of the second-order inclusion probabilities 

in (6.6). 

In the results in Table 7.2 below, the approximation in (a) and 

the combined effect of (b) and (c), can be checked, for two 

particular populations. 

For the sake of simplicity, the study is restricted to the case 

without stratification. The data were price quotations for Decem­

ber 1989 and December 1990 from the Swedish CPI. The items consi­

dered were different kinds of meat. The outlets were two popula­

tions of supermarkets, corresponding to two different chains of 

retailers. The weights were the actual weights in the CPI, i.e. 

outlet weights from the business register and item weights from 

retailers lists. It should be noted that we actually used the CPI 

sample of oulets and items as our sampling frame in the study. 

Further specifications for the populations are given in Table 7.1. 

Table 7.1. Population specifications. 

These are the net populations after a few units have been excluded 

in order to make all desired probabilities less than 1, cf. the 

discussion following (4.11). An empty cell corresponds to a pair 

(outlet,item) for which there is no price to be observed (1. .=0). 
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The index formula used was (4.4) in conjunction with (4.8). The 

simulations were made with the SAS system, version 6.04, on an IBM 

PC. In particular, we used the random number generator inherent in 

the SAS system. The number of iterations was considered sufficient 

when, at most, the last digit in the results below was effected by 

adding 500 more iterations. In the following table the indexes 
2 

have been multiplied by 100 (variances by 100 ). 

Table 7.2. Results of the simulation. 

The first conclusion is that the bias is negligible for population 

2 and almost négligeable for population 1. Considering the small 

sample sizes in these cases, as compared with the real CPI case, 

these results supports the belief that the bias of I can be neg­

lected. Secondly, the approximate variances computed from Proposi­

tion 5.1 perform quite well in this case. 
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APPENDIX 1. CROSS CLASSIFIED POISSON SAMPLES 

Samples for the Swedish CPI are drawn either by Random systematic 

sampling or by an alteration of Poisson sampling called Sequential 

Poisson sampling, see Ohlsson (1990). For ordinary Poisson samp­

ling, the derivations of the variance of I in (4.14) are quite 

similar to those made for Random systematic in section 6. We shall 

only give the required analogue of Lemma 6.1 here. 

If the row and column samples are both drawn by Poisson sampling, 

we have 

(Al.l) 

yielding 

(A1.2) 

By inserting (A1.2) into (3.4)-(3.6) we readily get the following 

result. 

~ R C 
Lemma A.1. Let Z be as in Lemma 6.1. When both S and S are 
drawn with Poisson sampling, then V(Z) = VR + VC + VRC, where 

(A1.3) 

(A1.4) 

(A1.5) 
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