

R & D Report 1988:3. Base Operators as a tool for systems development / Bo Sundgren.

Digitaliserad av Statistiska centralbyrån (SCB) 2016.

urn:nbn:se:scb-1988-X101OP8803

INLEDNING

TILL

R & D report : research, methods, development / Statistics Sweden. – Stockholm :

Statistiska centralbyrån, 1988-2004. – Nr. 1988:1-2004:2.

Häri ingår Abstracts : sammanfattningar av metodrapporter från SCB med egen

numrering.

Föregångare:

Metodinformation : preliminär rapport från Statistiska centralbyrån. – Stockholm :

Statistiska centralbyrån. – 1984-1986. – Nr 1984:1-1986:8.

U/ADB / Statistics Sweden. – Stockholm : Statistiska centralbyrån, 1986-1987. – Nr E24-

E26

R & D report : research, methods, development, U/STM / Statistics Sweden. – Stockholm :

Statistiska centralbyrån, 1987. – Nr 29-41.

Efterföljare:

Research and development : methodology reports from Statistics Sweden. – Stockholm :

Statistiska centralbyrån. – 2006-. – Nr 2006:1-.

Base Operators as a Tool for

Systems Development

Bo Sundgren

R&D Report
Statistics Sweden

Research - Methods - Development
1988:3

Published June, 1988
Printer STATISTICS SWEDEN, Dept of Research

and Development, EDP Systems Unit
Publisher Staffan Wahlström

Questions answered by Bo Sundgren

(c) 1988, Statistiska centralbyrån

ISSN 0283-8680
Printed in Sweden
Garnisonstryckeriet, Stockholm 1988

STATISTICS SWEDEN
Bo Sundgren 1988-04-26

BASE OPERATORS AS A TOOL FOR SYSTEMS DEVELOPMENT

Schematically, the design of a system for the process­
ing of the data that have been collected in a statisti­
cal survey may be structured into three steps:

1. design of the input data structures

2. design of the output data structures

3. design of the input—>output transformation process
structure

Ideally, step 2 should precede step 1, since the input
data and input data structures should be determined by
the output data and output data structures demanded by
the users of the statistical survey. However, in prac­
tice it is not uncommon that one has already designed
the questionnaire for collecting the input data and
even carried out the full scale data collection, before
one really starts thinking about the output in terms of
tabulation plans, etc.

1 Design of the input data structures

The design of input data structures proceeds in two
steps :

1. design of an infological object system model for the
input data

2. transformation of the object system model into a
flat file structure

1.1 Design of an object system model

Given an existing questionnaire, and maybe even an
existing data collection, the design of an object
system model will become a kind of reconstruction of
something that should ideally have been constructed
before the design and construction of the question­
naire. Thus the object system model will be based upon

1

an a retroactive analysis of the input data and the
forms for collecting the input data.

On the other hand, if a proper infological analysis has
taken place before the design and construction of the
questionnaire, we will use the object system model that
has already been developed, with possible modifica­
tions, reflecting later changes in the design.

Example: A Household Survey

In a household oriented survey, like a labour force
survey, there are two obvious objects: households, HH,
and individual persons, PERS. In addition, there may be
important subcategories, like the sub-object type of
unemployed persons, UNEMPL. There will be a total one-
to-many relationship between households and persons,
and a partial one-to-one relationship between persons
and unemployed persons. For each one of the objects
there will be a set of variables, like HH: id, region;
PERS: id, age, sex, status_of_the_person_within_the_-
household; UNEMPL: id, reason_for_unemployment,
length_of_unemployment. This object system model may be
visualized in the following way:

1.2 Design of the file structure

Any object system model may be transformed into a
structure of flat files by means of the following
transformation rules:

Rule 1: object type —> flat file;

Rule 2: many-to-many object relation —> flat file;

2

Rule 3: many-to-one object relation — > foreign key;

In the household survey example we will get:

HH --> HH(hid, region) according to Rule 1;

PERS — > PERS(pid, age, sex, status, hid») according to
Rule 1&3;

UNEMPL — > UNEMPL(pid«, reason, length) according to
Rule 1&3;

Note: primary key, foreign key •;

2 Design of the output data structures

A tabulation plan may be a good starting point for the
design of the output-oriented file structure of a
statistical data processing system. However, such a
listing of tables to be produced does not usually
possess the necessary degree of precision and unam-
biguity. For example, have a look at the following
tabulation request:

"The population of Zimbabwe by region, size of house­
hold, and by age and sex of the head of household."

So-called alfa-beta-gamma-(cxBy) -analysis may be used
for clarify-ing the different interpretation alterna­
tives of such a request, and for making a final deci­
sion about precisely which output is actually demanded
by the user who has made the request.

2.1 Alfa-beta-gamma-analysis of the demanded output

An alfa-beta-gamma-analysis follows the pattern:

o(: for <object type> with <property>

13: give <list of statistical variables>

y: by. <list of variables >

In our example we may get:

3

ex: for PERS with

B: give count

îf: by region, size_of_hh, agegroup_of_head, sex_of_head

Note: denotes any property held by all objects in
<object type>

2.2 Analysis of derived variables

If we compare the variables appearing in the alfa-beta-
gamma-analysis of the demanded output with the vari­
ables in the input-based model of the object system, we
will find that some of the former have to be derived,
and fortunately can be derived, from the latter. Thus:

- agegroup = g(age); where g denotes a function that
classifies, or groups, the values of a variable

- region(PERS) = HH.region;

- size_of_hh(HH) = PERS.count;

- size_of_hh(PERS) = HH.size_of_hh = HH.PERS.count;

- HEAD(HH) = PERS(with status = 1) ; note: derivation of
object

- sex_of_head(HH) = sex(HEAD(HH)) =
= PERS(with status = l).sex;

- sex_of_head(PERS) = HH.PERS(with status = l).sex;

- agegroup_of_head(PERS) = HH.PERS(with status =1).
g(age);

The definitions of derived variables may be included as
a fourth component, delta (5)/ in the alfa-beta-gamma-
pattern. For example, in our example we may state:

« : for PERS with

B: give count

fr: by. region, size_of_hh, agegroup_of_head, sex_of_head

5: where region = HH.region,

4

size_of_hh = HH.PERS.count,
sex_of_head = HH.PERS(with status = l).sex,
agegroup_of_head = HH.PERS(with status = 1) .

g(age)

or alternatively:

: for PERS with

B: give count

: by region, size_of_hh, agegroup_of_head, sex_of_head

: where region = HH.region,
size_of_hh = HH.PERS.count,
sex_of_head = HEAD.sex,
agegroup_of_head = HEAD.g(age),
HEAD - HH.PERS(with status = 1)

2.3 Finding the target file

Having done the alfa-beta-gamma-analysis we may rela­
tive easily specify the target file, that is, the file
from which a particular aggregation/tabulation can
easily be made. Like the input files, the target file
should be a flat file. In our case it is obvious that
the most suitable flat file for an aggregation re­
sulting in the demanded result would be a PERS file, or
more precisely the following one:

PERSO = PERSO(region, size_of_hh, agegroup_of_head,
sex_of_head)

where the derived variables are defined as above. Note
that the target file need not necessarily contain an
identifier. Thus duplicates may appear, and should be
counted as different objects.

3 Design of the input—>output transformation

In some situations the target file will simply be one
of the flat files in the input structure. Then no
input—>output transformation at all will be needed.
We just have to specify the appropriate aggregation/-
tabulation.

However, in most cases some kind of non-trivial trans­
formations between the input-oriented and the output-
oriented file structures have to take place. The base
operator approach will then offer a systematical way

5

of finding and describing the logically necessary-
steps. The actual implementation of the transformation
steps may be in terms of the existing BOS, the base
operator package developed by the UN/ECE Statistical
Computing Project (SCP), but other popular software
products for data manipulation, like SAS and EASY-
TRIEVE, may also be used.

In our example the following sequence of base operators
will do the job:

1. aggregate PERS by hid count = size_of_hh giving HH1;

2. join HH, HH1 where hid = hid giving HH2;

3. select PERS where status = 1 giving HEADS;

4. define HEADS set agegroup = ... giving HEADS1;

5. project PERS over hid giving PERS1;

6. join HH2, PERS1 where hid = hid giving PERS2;

7. project HEADS1 over hid, sex, agegroup giving
HEADS2;

8. join HEADS2, PERS2 where hid = hid giving PERSO;

9. aggregate PERSO by region, size_of_hh, agegroup, sex
giving TAB;

The chain of base operators may also be represented as
a flow of movements in the visualization of the object
system model :

4 Some improvements of the proposed methodology

The solution presented above is relatively straight­
forward and easy to understand, although the requested
table is a rather complex one. The solution also has
the advantage that it can be implemented at once, since

6

it complies 100% with the syntax of the existing soft­
ware - the Base Operator System (BOS) developed by the
Joint Group on Statistical Data Base Management within
the UN/ECE Statistical Computing Project.

However, a critical observer may make some objections
to the solution presented above:

1. It consists of a large number of steps, and it is
not obvious how and why one has arrived at this
particular solution rather than some logically
equivalent solution that would also solve the prob­
lem.

2. The process of solving the problems seems to be
unstructured in the sense that one goes from the
problem specification to the detailed solution in
one step.

3. It may be easy to make small errors when writing the
base operator statements.

Here are some proposals for improving these matters:

1. Before writing a sequence of statements on the base
operator level, make an explicit outline of the
strategy to be followed in the transformation pro­
cess. The strategy should consist of a small number
of major steps, each major step should be broken
down into (sub)steps, etc, until one reaches the
level of individual base operators.

2. Even though the Base Operator System automatically
produces the record descriptions of the output
files, it could be practical, in order to avoid
errors during the design process, to state expli­
citly (and redundantly) the columns of the output
relations.

3. Projections are usually rather trivial operations
with the aim of reducing unnecessarily large volumes
of data. By "infixing" them as substatements within
other base operator statements, or by implying them
by explicitly leaving out certain columns in the
output descriptions mentioned in the previous propo­
sal, one could reduce the number of steps, and put
more concentrated attention on the more important
steps in the transformation.

If we take these proposals into account, an alternative
solution to our example problem might be as follows.

Transformation strategy:

A. Create the household-related variables, and adjoin

7

them to the persons.

B. Create the head_of_household-related variables and
adjoin them to the persons.

C. Aggregate the persons.

Specification of Step A:

Al • aggregate PERS by hid count = size_of_hh
giving HHl(hid, size_of_hh) ;

A2. join HH, HH1 where hid = hid
giving HH2(hid, region, size_of_hh);

A3, join HH2, PERS(p_id, hid») where hid = hid
giving PERSl(pid, hida, region, size_of_hh) ;

Note. Substep A3 contains an "infixed" projection of
PERS.

Specification of Step B:

Bl. select PERS where status = 1
giving HEADS(pida, age, sex, status = 1,

hid»);

B2. define HEADS set agegroup = ...
giving HEADSl(hid«, agegroup, sex);

B3. join HEADS1, PERS1 where hid = hid
giving PERSOfpid, region, size_of_hh,

agegroup = agegroup_of_head,
sex = sex_of_head);

Note 1. Substeps B2 and B3 contain implied projections.

Note 2. In substep Bl' we make a conceptual shift of the
primary key from pid to hid. This reflects our inten­
tion to adjoin, in substep B3, the data of heads_of_-
households to the data about person via the common hid
column, rather than via the common pid column. Actual­
ly, this corresponds conceptually to a two-step join
via households. An alternative, and maybe more string­
ent way of modelling this would be possible if the base
operator set contained a more generalized aggregation
operator, which would move selected heads_of_household
data from the (sorted) person file to an (aggregated)
household file. It could look like this:

"aggregate PERS by hid retrieve age, sex

where status = 1 giving HH3(hid, age, sex)"

The typical characteristic of such a generalized agg-

8

regation operator would be that it would always pro­
duce, from each successive group of rows identified by
the "by clause", one single row in the output relation.
Thus in our case it must be assumed that there is only
one member of each household that has "status = 1".
Otherwize the operator would have to be defined so as
to retrieve the requested data from one of the "compe­
ting" heads_of_house-hold, probably the first one
located.

Note 3. In substep B3 we have renamed some columns in
the output. This syntax cannot be used in the present
implementation of the base operators, but there is a
special rename base operator. In order to make the
systems design easy to understand, it is important to
choose informative names of columns, and to change them
appropriately when they are adjoined to other relation,
if it is necessary to avoid confusion and misinterpre­
tation.

Note 4. In substep B3 the pid column could have been
projected away from the output, since it is will not be
needed in the subsequent aggregation process in step
C. We have kept it mainly for the sake of clarity, to
remind us that it is person records that are going to
be counted.

Specification of Step C:

CI. aggregate PERSO by region, size_of_hh,
agegroup_of_head, sex_of_head
count = population

giving TAB(region, size of_hh,
agegroup_of_head, sex_of_head,

population);

Note. The gamma-variables of the request become the
primary key of the aggregated file. The final editing
and layout of the actual table to be presented to the
user is, at least at present, outside the scope of the
base operator approach.

5 Possible usage of the base operator approach in
the development of generalized software

So far we have discussed the possibilities of using the
base operator approach as a tool in the development of
application systems. However, one could also consider
the usage of the base operator approach in the develop­
ment of generalized software. This has been discussed
from time to time within the framework of the UN/ECE
Statistical Computing Project (SCP). Naturally, these
discussions started within the Joint Group on Statisti­
cal Data Base Management, since it was within this

9

group that the design and development of an actual
piece of software, the Base Operator System (BOS),
based on the base operator philosophy, was initiated
and carried out. BOS is an extension of the relational
algebra for statistical purposes. Like the relational
algebra it primarily aims at covering basic data mani­
pulation operations, and it could serve as the data
base management component of a generalized software
system for the processing of statistical surveys.

The member countries of the Joint Group on Statistical
Data Base Management regarded the development of the
Base Operator System as a great success, not least as a
contribution to the difficult problem of how to design
generalized software. Thus besides developing a useful
piece of software, the Joint Group also developed what
seemed to be an interesting and successful design
technique for generalized software development in
general. Since several of the member countries of the
Joint Group on Statistical Data Base Management also
happened to be members of other Joint Groups of the
SCP, which were also developing generalized software,
the question was asked whether the seemingly successful
base operator approach could not be generalized and
applied also in the work of these other Joint Groups -
notably in the Data Editing Joint Group, and in the
Joint Group on Tabulation (INTERTAB). After some rounds
of discussions the answer seems to be a unanimous "yes,
probably" and "let's try it".

What would be the advantages of using the base operator
approach more widely in the development of generalized
software for the processing of statistical surveys? One
major advantage is that the base operator approach
leads to a natural breakdown of any proposed piece of
software into elementary, well-defined functions. For
example, each base operator in the now existing BOS
corresponds to an elementary, well-defined function for
data manipulation. Since data manipulation functions
are somehow parts of all systems for the processing of
statistical surveys, the likelihood is very high that
these operators, which have already been designed,
developed, and implemented, could also be used as
components in other packages, also in software systems
whose primary aim is something else than pure and
simple data manipulation. Such a discovery may save a
lot of reinventions of wheels.

It is also likely that other functions in a statistical
data processing system than pure data manipulation
could also be designed and developed in analogy with
the base operators in BOS. One important aspect of the
base operator approach is that the base operators form
an algebra: they use and produce entities of the same
kind, relations and/or flat files, which means that
they can be combined arbitrarily. Thus on the basis of

10

only a small set of well chosen base operators, one may-
form an endless number of different software systems,
for a large variety of purposes.

A consequence of the modularity, based on functionali­
ty, and the combinability implied by the base operator
approach, is that the development of new software
products will be simpler and less expensive. Since the
basic design strategy and methodology will already
exist, and be well established, the systems design and
the planning of the programming activities will be much
simplified, and since many modules will already exist,
and can be taken "off the shelf", the actual construc­
tion (that is programming) work will also be less
resource-consuming. The software products will be
easier to maintain, since they will to a large extent
consist of the same, standardized components. This
should also lead to improvements in software quality.

But what happens if a designer of a new software pro­
duct is not satisfied with some existing base operator?
Maybe the technical efficiency is not sufficient for
the new purposes. Such a discovery may lead to the
decision that a new version of the base operator has to
be developed. When this development has taken place,
the improvement will automatically be made available to
all other software products using this function. Be­
cause of the modularity, based on functionality, and
combinability of the components, a replacement of one
component will not affect the others.

The benefits of the base operator approach require
strict adherence to some simple but important design
principles and standards. However, if one sticks to
these common principles, one will also achieve a drama­
tical increase in the integratability of different
software products. The principles mentioned above will
ensure that the resulting software products will have a
truly open architecture, a characteristic which is
unforunately very uncommon in contemporary commercial
software products. Today's software packages are still
very monolitic. They usually do not lend themselves to
easy and effiecient integration with other software
products, an understandable consequence of the hard
competition in the commercial world. Unfortunately, in
this particular case, the competition does not seem
tolead to the best result from the users' point of
view.

Talking about the interests of the users, one may ask
whether the base operator approach does not lead to too
much standardization. However, sometimes standardiza­
tion on some simple, basic principles, some elementary
components, and some internal interfaces, in the end
seems to result in a higher degree of flexibility on
the level which is of primary interest to the user. We

11

have already discussed how it could be a rather limited
and easy task to optimize some component or other, if
this turn out to be essential for the total efficiency
of the system. If different categories of users need
different versions of some component, the different
version could easily be shifted in and out without
affecting the other components or the architecture of
the system as a whole.

One of the most important concerns of the users is of
course the end-user interface. Here again one may ask
whether the base operator approach will not put too
much of a strait-jacket on the designer of a particular
software product. It is true, of course, that the base
operators must follow a rather strictly defined syntax.
However, there may be variations even within this
strict framework, and, maybe more importantly, due to
the openness of the architecture, it will be very easy
to combine the standardized base operator approach with
highly tailor-made user interfaces, or interfaces
complying to interfaces/syntaxes which are already
well-known to the users in a particular organization.

6 An example: generalized software for data editing

With a software product for data editing one should
first of all be able to make different types of check­
ing of the data:

- validity checks
- logical checks / consistency checks
- plausibility checks

When the checking leads to detection of possible er­
rors, the data could either be automatically corrected,
imputed, or they could be listed or displayed to a
person, whether or not, and if so, how, the data should
be changed. The correction could take place interac­
tively or in batch mode. In both cases the corrected
data should normally be rechecked, which may lead to
another round of correction, etc.

It is relatively easy to see how some important func­
tions of the data editing process could be expressed in
terms of already existing base operators or minor
generalizations of existing base operators. For examp­
le, many checking operations can be expressed in terms
°f define and select operators. The define operator can
be used for setting a Boolean variable to "true" or
"false" (or 1 or 0), depending on a condition that is
expressed in terms of the variables represented in the
file under consideration. Since the editing of a sta­
tistical file often involves a great number of checks,
it may be practical to have a generalized define that

12

we may call multidefine where we could specify all the
checks at once. Such an operator is already available
in the present BOS in the shape of a macro. One could
even go one step further and define a special edit-
define that would not require explicit mentioning of
the Boolean variables; it would be sufficient just to
mention the error conditions (or correctness condi­
tions, if one wants the checks to be formulated in that
way). Each condition would have to have a name, though,
so that it can be referred to later in the process.

Rules for automatic correction, or imputation, could
also be specified with the define base operator. How­
ever, in this case the define operator should be defin­
ed in such a way as to give a new value to an existing
variable, rather than creating a new one. Maybe we
could call this a redefine operation.

If a human is involved in the correction process,
either in batch mode or interactively, the variables to
be corrected will be redefined on the basis of explicit
values rather than expressions, as in the case of
automatic correction.

The operations that we have mentioned so far are, in
principle, all that is necessary for the editing pro­
cess, as long as we are working with a single flat file
or relation. In a statistical office maybe 90% of all
editing is of this character. However, there are also
some important, more complex situations. The most
important one has to do with so-called checking between
files. For example, let us assume that we have carried
out a household survey. Some of the collected data will
then concern the household as a whole, whereas others
will concern individual members of the household. When
put into a relational data base, such data will be
split into two files or more: at least one file about
households, and at least one file about persons; cf the
example which was used in earlier sections of this
paper. Many of the checks to be made during the editing
of this data base will also be related either to house­
holds or to persons. Such checks can be handled as
discussed above. However, there may also be checks
that relate to a combination of household data and
person data, for example so-called structural checks.
This is an example of "checking between files". The
files involved in such checking are usually hierarchi­
cally related to each other, on two or more levels,
but more complex "many-to-many" situations are also
possible, at least theoretically.

In order to be able to carry out "checking between
files" one must obviously somehow bring together data
from two or more files. This can always be done by
means of the join base operator, which is applied one
or more times, until one has obtained a target file

13

that contains all the data necessary for the editing
operations (cf the discussion of target files earlier
in this paper). But all the problems are not solved
yet. Very often it is not sufficient to inspect the
target file row by row. If the target file has an
inherent hierarchical structure (like in the house­
hold/person example), it may be necessary to look at
the file partition by partition, where a partion is
defined by a partitioning key, having one component
from each level in the hierarchy. In the household/per­
son example a partition would consist of rows belonging
to the same household. When a partition of data is
presented to a user, redundancies should, of course, be
suppressed.

One problem which may not be so difficult as it may
seem is the problem of bringing corrections "back" from
the target file to the files which are permanently
stored in the data base. If the base operator approach
is used consistently, it will always be possible to
tell the origin of each item of data in the target
file. In a sense this means that the seguence of base
operators leading from the data base to the target file
is inverted. For inversions to be possible, it is
essential that metadata are properly maintained, as
they should be in a base operator system.

Sometimes it may be practical not to carry out all
editing on the final target file, but to perform each
check on an original or intermediary file which is as
normalized as possible with regard to the condition
that is to be checked. Thus in our example, checks
concerning individual persons only, could be made on
the PERSON file, checks concerning households only,
could be made on the HOUSEHOLD file, and only checks
concerning combinations of households and persons would
have to be made on the final target file, resulting
from a join between PERSON and HOUSEHOLD.

The scheme may be summarized in a slightly more general
way like this:

op INFILE_A <param expr> giving FILE_A1;

/some editing will possibly be done on Al, and the
resulting cor-rections will be brought back to infile
A/

op INFILE_B <param expr> giving FILE_B1;

/some editing will possibly be done on Bl, and the
resulting corrections will be brought back to infile
B/

join FILE_A1, FILE_B1 <param expr> giving FILE_A2;

14

op FILE_A2 <param expr> giving TARGET_A3;

/remaining editing will take place on the target file
A3, and the corrections will be brought back to infiles
A and B/

Note, "op" represents an arbitrary combination of unary
base operators to be performed on the file under con­
sideration; "<param expr>" represents the parametrical
information conveyed by the subclauses in the respec­
tive base operator statements.

15

	R & D Report 1988:3. Base operators as a tool for systems development
	Inledning

	R & D Report 1988:3. Base operators as a tool for systems development
	1 Design of the input data structures
	1.1 Design of an object system model
	1.2 Design of the file structure

	2 Design of the output data structures
	2.1 Alfa-beta-gamma-analysis of the demanded output
	2.2 Analysis of derived variables
	2.3 Finding the target file

	3 Design of the input—>output transformation
	4 Some improvements of the proposed methodology
	5 Possible usage of the base operator approach in the development of generalized software
	6 An example: generalized software for data editing
	Publikationslista

