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GENERALIZED LINEAR MODELING OF SAMPLE SURVEY DATA 

by 

Lennart Nordberg 





ABSTRACT 

The theme of this paper is regression analysis - extended to 

Generalized linear models (GLIMs) - of sample survey data, the 

data being obtained by a more or less complex survey design and 

possibly affected by non-response. 

The suggested approach is neither purely model based nor purely 

design based. In fact we consider, simultaneously, three sources 

of random variation, specified by a superpopulation model (a 

GLIM), the sampling design and a response model. 

Ordinary (ML-based) GLIM inference - being based on the assumption 

of independent observations - is not automatically valid in this 

situation. It is, however, shown that ordinary GLIM inference does 

apply under certain conditions. It is demonstrated - and illumi­

nated by simulations - how these conditions can be checked and met 

by incorporating variables associated with the design and the 

response pattern into the model. 

Furthermore, it is demonstrated by simulation results that ordi­

nary, unweighted GLIM inference - when valid - can be considerably 

more efficient than inference based on Horvitz-Thompson weighting. 

Kev words: Analysis of survey data, Generalized linear regression, 

superpopulation models, non-response. 
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1 Introduction 

The theme of this paper is regression analysis of sample survey 

data, the data being obtained by a more or less complex survey de­

sign and possibly affected by non-response. 

The word regression should be interpreted in a fairly wide sense 

here. We will consider generalized linear models (GLIMs), c.f. 

McCullagh & Nelder (1983), which include linear-, logistic-, pro-

bit- and Poisson regression among others. 

Smith (1981) - who considers linear regression for complex surveys 

- makes the distinction between descriptive and analytic infe­

rence, and we adhere to this terminology. 

In a descriptive inference the objective is to estimate a parame­

ter, B_ say, which is a specified function of the elements of a 

given finite population. In this approach one pays attention only 

to random variation which emanates from the sampling and the non-

response mechanism. If all the elements of the whole population 

were to respond there would be no uncertainty. A descriptive 

approach to generalized linear modeling of survey data is found in 

Binder (1983). 
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Our approach in this paper will be analytic. Then the interest fo­

cuses on the (unknown) relation between some variables y and x. 

This relation is assumed to be of interest not only as a descrip­

tion of the structure in the particular population at the time of 

the survey, but also to have a more general interpretation. 

The relation between y and x. is assumed to be expressable by a 

family of statistical distributions - usually referred to as the 

superpopulation model. This family of distributions is assumed to 

be indexed by a parameter £, and this model parameter is in the 

focus of interest in the analytic approach. Emphasis is on model 

building whereas in the descriptive approach the main problem is 

estimation of a fixed-population quantity fi. 

It should be emphasized that our approach is neither purely model 

based nor purely design based. In fact we shall consider three 

sources of random variation, specified by the superpopulation 

model, the sampling design and the response model respectively. A 

fourth relevant source of error, measurement errors, could be 

introduced, but we abstain from doing so in this paper. 

We will assume data as generated by a three step process as 

follows. 

(i) A population of N elements is generated by N independent ob­

servations from a specified family of distributions. 
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(ii) From the population generated in (i) a sample of prescribed 

size n, n<N, is drawn according to a specific sampling 

design. 

(iii) An element of the sample generated in (ii) may or may not 

respond according to a specific response model. 

A more detailed and technical specification of the above steps 

(i)-(iii) follows in Section 2 ahead. In particular we will con­

centrate on GLIM superpopulation models. 

Related approaches - although restricted to linear regression and 

without step (iii) - are found in Du Mouchel & Duncan (1983), 

Nathan & Holt (1980) and Ten Cate (1986). 

Treatment of non-response within the general framework of 

(i)-(iii) is found in Rubin (1976, 1987), Little (1982) and 

Little & Rubin (1987). 

The approach advocated in the present paper contains as special 

cases classical regression - where data are generated as indepen­

dent observations from a family of distributions - as well as the 

descriptive approach to regression, cf. Binder (1983), which 

essentially builds on sample survey theory. We may then have a way 

to bridge the gap between the two separate approaches. 
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2 Specification of superpopulation, sampling and 

response mechanisms 

N 
Let (Y.}._1 be independent random variables, taking values m 

YÇ.R, following a generalized linear model, c.f. McCullagh & Nelder 

(1983), i.e. the probability density g^ for Y^ takes the form 

(2.1) 

where l=(p0,...0m)' and 0 are unknown parameters while 8^, 

i=1,2,...,N, depends on £ through a relation of the type 

(2.2) 

N We assume that {w.}.=1 are known scale factors and that 

{x, ., k=0,1,...,m, i=1,...,N} are known covariates playing the 

role of explanatory variables. (We could also regard x as random 

and then make the inference conditioned on x.) Furthermore, we 

assume that b(-), c±(-) and f(-) are known, three times conti-

nously differentiable, functions which satisfy 

b"(-) > 0, (2.3) 

f(-) is strictly monotone, (2.4) 

<f > 0. (2.5) 
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The following relations are straightforward consequences of 

(2.1)-(2.2): 

(2.6) 

(2.7) 

Let the N Y-values generated through (2.1)-(2.2) make up a popula­

tion Qfl={i:i=1,2,...,N}. Now, a sample En of prescribed size 

n, n<N, is drawn from the elements of Q$. 

Let for i=1,2,...,N 

(2.8) 

We assume that all the relevant information about the sampling 

design is contained in a set of - possibly multidimensional -

random variables z.i, i=1,2,...,N - the design variables. 

Two extreme special cases can be noticed here. The first one 

occurs if z. can be expressed by a known function of jc (exogenous 

sampling). This implies - by assumptions made above - that z. is 

non-random and known. 
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The second case occurs if z can be expressed by a known function 

of Y (endogenous sampling). Then 2. is random since Y is random. 

Although these two cases will be covered our main interest will be 

cases where z cannot - without random error - be expressed through 

x and/or Y. 

The first and second order inclusion probabilities, being func­

tions of Z.I are defined as follows. 

(2.9) 

(2.10) 

Next we discuss the response mechanism. In order to model the res­

ponse pattern we assume a set of functions Pi(ui,a)r i=1,2,...,N, 

where a is an unknown parameter vector and u^ i=1,2,...,N is a set 

of random vectors. 

For notational convenience we introduce the following vectors for 

(2.11) 
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Let for i = 1 , 2 , . . . ,N 

(2.12) 

We assume pairwise conditionally independent responses in the 

following sense. 

(2.13) 

Furthermore, we assume that 

(2.14) 

where the response probabilities Pifuj^a) , i=1,2,...,N, are 

the functions Pjjuj^a) introduced earlier. Notice that (2.13) 

and (2.14) mean that we assume that all the relevant information 

about the response pattern which is contained in t. is in fact 

carried by u. 

Although in many applications it will be reasonable to assume that 

u can be expressed by a known function of (Y,x,z.) we will also 

cover cases where u cannot - without random error - be expressed 

through (Y,x,z.). 
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As a response model Pi(uj.,a) we may use e.g. a logistic model or a res­

ponse homogenity groups model to mention some possibilities, but 

we will not make any specific assumptions about the form of 

Pi(ai»ä) in this paper, except that it can be expressed by a para­

metric model. 

We close this section by deriving some conditional expectations 

which will be useful later. It is easy to see by (2.12) that 

Thus, by (2.14), 

(2.15) 

We assumed earlier that all the relevant information about the 

sampling mechanism is contained in z.. More specifically we make 

the following assumptions: 

(2.16) 

(2.17) 

Combination of (2.15) and (2.16) yields 

(2.18) 

Furthermore, for i=j, 



- 9 -

(2.19) 

Notice that the P's and ïï's, being functions of u and z. respecti­

vely, must generally be treated as random variables in our setup. 
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3 Unweighted estimation 

Suppose for a moment that, in the data generation process of 

Section 2, sampling is done by simple random sampling without 

replacement, with such a small (known) sampling fraction that the 

sampling, as a good approximation, can be regarded as being done 

with replacement. Furthermore, suppose that the response proba­

bilities Pi all equal a (common) positive known constant. If the 

distribution of (ri,r2,..., rjj) is unrelated to fi, then the 

Y-observations may, as a good approximation, 

be regarded as independent random variables, distributed according 

to (2.1)-(2.2). The likelihood equation for £. (conditional on 

ri,r2, ... ,r^) ) can be written on the form (notice (2.6))-. 

(3.1) 

In cases when the data may be regarded as independent observations 

- although in general non-i.i.d. due to the GLIM form - the 

following results hold under various regularity conditions (see 

e.g. Habermann (1977), Nordberg (1980) and Fahrmeir & Kaufmann 

(1985)). 

The likelihood equation has - with a probability tending to one as 

the sample size tends to infinity - one root being a consistent 

estimator of ji. (Multiple roots may exist but only one yielding 
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consistency.) This estimator is asymptotically efficient and 

asymptotically normally distributed. 

However, the line of analysis indicated above does not cover the 

situation in Section 2 where data cannot even as an approximation 

a priori be regarded as independent observations. Furthermore, it 

is obvious that, due to the random nature of r̂ , (3.1) is not in 

general the likelihood equation for j£. 

Nevertheless, as seen by Proposition 1 ahead, equation (3.1) does, 

under certain general conditions, have a consistent and normally 

distributed root. 

Before proceeding we need some further notation. It should be 

emphasized that, in the sequel, when calculating probabilities, 

expectations etc., we consider the total random variation induced 

within the framework of Section 2. 

(3.2) 

(3.3) 

(3.4) 
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Furthermore, let Vn(£) be the variance - covariance matrix (with 

respect to the total variation) of /nSn(I,X). We are now ready 

to formulate the following result on consistency and asymptotic 

normality. 

Proposition 1 : Let assumptions be as in Section 2 and let ÊQ be 

the true parameter point. Suppose that 

(3.5) 

(3.6) 

(3.7) 

If (3.5)-(3.7) as well as some additional regularity conditions 

(to be discussed later) are fulfilled then the following conclu­

sions hold: 

Equation (3.1) has - with probability tending to one 

as n->~ - exaktly one consistent root l^n^ i.e. 

(3.8) 

Furthermore, 

(3.9) 
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Remark: Conditions (3.5)-(3.7) are vital for (3.8) and (3.9) while 

the additional regularity conditions mentioned in the proposition 

are of a more technical nature such as invertibility of certain 

matrices etc. A set of such regularity conditions is specified in 

appendix where a more precise version of Proposition 1 is proved. • 

Conditions (3.5) and (3.6) state that S^fi^X) obeys the law 

of large numbers and the central limit theorem. Sufficient condi­

tions for (3.5) and (3.6) to hold will differ in appearance 

depending - among other things - on the nature of the sampling -

and response mechanisms. There is a large literature on this 

subject which we will not try to cover here. We simply assume that 

(3.5) and (3.6) are satisfied. We will, however, take a closer 

look at (3.7) and also at Vn(êo) • If Vndio) and A^J-^) coincide 

then (3.9) takes the classical form i.e. that fnknV
2(Bo) (£(n)-Êo) 

is asymptotically N(0,I). Classical asymptotic theory can then be 

applied. We will derive conditions which are sufficient for (3.7) 

and for v^j^) and A^ÊQ) to coincide. 

By applying E(-)=EE(-|i) to (3.2) and (2.18) we have 

(3.10) 

Hence (3.7) is equivalent to 

(3.11) 
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Relation (3.11) holds if ITj^ is uncorrelated with the residual 

Yi~Mj. (£<))• Another way of expressing this is that (3.11) holds if 

ïï^Pi does not carry any information on Y, not already accounted 

for by the covariates x of model (2.1)-(2.2). We will return to 

this point later but first we consider the relation between V^i^) 

and An(£o). 

As pointed out earlier, classical inference can be applied if -

in addition to (3.7) - Vn(êo) and An(fiQ) coincide. We will now de­

rive sufficient conditions for V^^IK^ËQ) . 

By (3.2) 

(3.12) 

Entry (k,JK) of Vn(êo) c a n fchus be expressed as follows 

(3.13) 
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By (2.18) and (2.19) relation (3.13) takes the form 

(3.14) 

By differentiating (3.2) and noting (3.3), (3.4), (2.6), (2.7) and 

(2.18) it is seen that entry (k,£) of A^B^,) is 

(3.15) 

Suppose now that ïï^Pj: i s uncorrelated with the residual i . e . 

(3.16) 

Then (3.11) holds and the last term of (3.14) and the first one of 

(3.15) will vanish. If, in addition to (3.16), the following 

conditions hold 

(3.17) 

(3.18) 

then it is easily seen that Vn(g0) and Ân(Êo) coincide since 

the last term of (3.15) equals the first one of (3.14) while all 

other terms of (3.14) and (3.15) disappear. 
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Hence, if (3.16)-(3.18) are fulfilled we can (under very general 

additional conditions) apply classical inference to survey data 

generated as in Section 2. 

Next we compare (3.16)-(3.18) to the more general ignorability 

conditions as discussed by Rubin (1976, 1987), Little (1982), 

Little & Rubin (1987). The essence of ignorability is as 

follows. 

- The sampling distribution of 5., conditioned on £, must not de­

pend on 1 or on y-values (of the population) which are unob­

served due to sampling or non-response. 

- The response distribution of sampled units must not depend on 1 

or on unobserved y-values. 

It is straightforward to establish (3.16)-(3.18) as consequences 

of these conditions. Hence (3.16)-(3.18) are weaker than the 

general ignorability conditions. It should be kept in mind though 

that (3.16)-(3.18) were derived under a specific class of superpo­

pulations - GLIMs - while ignorability applies to more general 

situations. 

The main advantage, however, of using (3.16)-(3.18) to check if 

classical theory applies is that (3.16)-(3.18) should be easier to 

check in practise by such devices as residual plots etc. We return 

to this in Section 6 ahead. Next we will discuss Horvitz-Thompson 

weighting applied to the framework of Section 2. 
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4 Horvitz-Thompson weighting 

Consider the function 

(4.1) 

where 8^ depends on £ through (2.2). 

F(j3,<t>) can be interpreted as a Horvitz-Thompson weighted estimator 

of the log-likelihood for the complete data (y-|,y2, • • • ,Yfl) • 

By solving 3F/9l=0 i.e. (cf. (3.1)) 

(4.2) 

for 1 we get the Horvitz-Thompson weighted ^-estimator fi^n). 

Notice that, in order to make (4.2) operational, P-̂  has been 

replaced by P.. The quantity P. is obtained by plugging a suitable 

estimator a of a into the function Pi(y_i,a) i.e. P.=Pj_(u.i,a) 

(cf. 2.14). 

In correspondence with (3.2)-(3.4) the following quantities are 

introduced. 
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(4.3) 

(4.4) 

(4.5) 

It is straightforward (by modification of Proposition 1) to show 

that conclusions (3.8) and (3.9) hold for g ^ under conditions 

that are very similar to those of Proposition 1. As seen from 

(4.3) the consistency condition 

(4.6) 

corresponding to (3.7) is not automatically fulfilled since P. is 

replaced by P.. However, (4.6) holds under mild regularity condi­

tions. A sufficient condition is (cf. (2.18)). 

(4.7) 

Condition (4.7) is - assuming that a is a good estimator of a -

milder than (3.16) or (3.11) and this is the main advantage of 

£(") as compared to â^n^. 
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The counterpart of (3.9) for £<n) is 

(4.8) 

where V (8 ) is the variance-covariance matrix of /nS (£ ,YJ. 

By expressing Vn and An in forms analogous to (3.14) and (3.15) 

it is seen that Vn and An do not coincide except in some very 

special cases. This means that likelihood ratios - based on (4.1) 

- and their associated x^-tests do not apply without extensive 

modifications, see e.g. Rao & Scott (1984), Roberts et al (1987), 

Hidiroglou & Rao (1987 a, b). 

There is, however, a way to circumvent this obstacle as suggested 

by Binder (1983). Suppose that £ is partitioned into (£-|, £2) and 

we want to test Ho:£2=0. Calculate the estimate £=(£-|, £2)
 and its 

variance D= - A~1(£)-V ( £ V A ~ 1 ( £ ) . Let C_ be the part of C which n n "• n Ä n "• 2 

corresponds to £„. Then Q̂ iôc"? % is asyfflPtot:>-cally X under H . 

It can be seen as a drawback of this procedure that the additivity 

under nested sets of models (see e.g. McCullagh & Nelder (1983), 

p. 26) which applies to the log likelihood is lost here. 
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5 Unweighted versus weighted estimation 

5.1 General remarks 

As pointed out in Section 4, £ is consistent under mild condi-

It should be emphasized though that the consistency of £ is not 

"global" but in fact conditional on the superpopulation model as 

demonstrated ahead. 

By Section 3 it is seen that, under certain conditions, £ is 

consistent, and classical inference methods do apply. However, 

these conditions are not always fulfilled and in such cases £ may 

be inconsistent. 

One objective of the simulation study presented ahead is to illu­

strate, empirically, the above results. A second one is to make 

some efficiency comparisons. Although it can be shown that, when 

classical inference applies, £ is asymptotically more efficient 

than £, it is of interest to get an idea of the magnitude of this 

efficiency gain. A third objective is to demonstrate how the con­

ditions for classical inference on £ can be met by incorporating 

design variables into the model building process. 
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5.2 A Simulation Study 

5.2.1 Background to the choice of superpopulation model 

The choice of the superpopulation model used in the simulations to 

be presented ahead was inspired by a study of structural changes 

among Swedish milk producing farms, c.f. Nordberg (1985). The aim 

of this study was to determine factors which affect the tendency 

among farmers to give up milk production. The background was that 

- due to a surplus of diary products - various means had been 

introduced by the government as to encourage farmers to diminish 

milk production. We summarize here only those parts of the study 

which are relevant in the present context. 

For each farm which - according to the Swedish Farm Register - had 

at least one and at most nine milk cows in June 1983 (roughly 

12 000 farms), it was checked whether it still had milk cows in 

June 1984. In case it did have cows a variable y was set to zero, 

otherwise y=1. A logit analysis was then performed with y as 

dependent variable. This analysis was based on the full population 

with a very small non-response rate so there was no problem here 

related to sampling or non-response. Eight explanatory factors 

were tried and the following four turned out to be the most 

"relevant". 
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- The size (S) measured as number of milk cows in 1983. S=0 if 

this number was between 4 and 9 while S=1 if the number was 

between 1 and 3. 

- Age (A) of the farmer - classified as [-49], [50-59], [60-] 

(years) and denoted by A=1, 2 and 3 respectively. 

- The type (T) of the farm where T=0 if milk production is the 

major production branch according to the Swedish Typology system 

while T=1 otherwise. 

- The region (R) where R=1 in the most productive farming areas 

in the south and the middle of the country, R=2 in the rest of 

the south and the middle, while R=3 in the north. 

In the sequel we represent R by the two dummy variables 

while A2 and A3 are defined in a completely analogous fashion. 

The following model was found to fit data well, c.f. Nordberg 

(1985). 
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P(Y=1)=exp(H)/(1+exp(H)) 

where 

(5.1) 

Table 5.1 presents P(Y=1) according to (5.1) as well as the number 

of observations, N, in the population for the different combina­

tions of the explanatory factors. 

TABLE 5.1 P(Y=1) by (5.1) and number of observations (N) in the popu­

lation for different combinations of Age, Region, Size and 

Type. 
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5.2.2 Design of the simulation experiment 

(i) Superpopulation mechanism: A population of 12 195 elements, 

divided into 36 groups was created. Each group corresponds to 

one of the 3x3x2x2 cells of Table 5.1. The number of elements 

in a particular group equals the value of N in the correspon­

ding cell of Table 5.1. In each group (cell) NK independent 

0-1 random variables ïiiÏ2» • • • »YNir ^Nk being the N-value of 

the cell) were generated by the model (5.1) 

(ii) Sampling mechanism: The population generated in (i) was then 

grouped into four strata corresponding to the combinations of 

(S,T), (0,0), (0,1), (1,0) and (1,1), i.e. the main columns 

of Table 5.1. In each stratum a sample was drawn by simple 

random sampling without replacement. The number of observa­

tions drawn in each stratum was 840, 521, 920 and 720 respec­

tively. These correspond to inclusion probabilities 10, 100, 

60 and 42 per cent respectively. Notice that the design 

vector (S, T) here is a function of the true explanatory 

vector. The reason is that we want to demonstrate the 

effects of incorporating versus deleting from the model such 

design variables which carry important information on Y. 

(iii) Response mechanism: The option of non-response was not consi­

dered in this experiment, i.e. P^=1, i=1,2,...,N. 
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(iv) Parameter estimation: A logit model was fitted to the data 

generated through (i)-(iii). Several choices of explanatory 

vector were considered as discussed ahead. The unweighted 

estimator J3 and its classical variance-covariance matrix 

1 -1 • 

- A (£) were evaluated. In particular the vector of esti­

mated standard errors S(£) (square roots of the diagonal 
1 -1 

elements of - A ) was calculated. Finally the 

Horvitz-Thompson weighted £ and Ppop, the latter being the 

MLE based on the full population, were evaluated. 

(v) Replications: The above steps (i)-(iv) were repeated 500 

times. The means - over the 500 replications - of £, £, £p0p 

and o(£), denoted MEAN(£), MEAN(£) etc., were calculated. In 

addition, the standard deviations (over the 500 replications) 

denoted STD(£) etc. were calculated. 

5.2.3 Results 

Suppose that the chosen explanatory vector includes Region and Age 

only. The results of the simulations in this case are presented in 

Table 5.2. A comparison of the £-estimators of Table 5.2 to the 

true £ (see (5.1)) shows that all three estimators, including 

£p0p, are biased. The main reason, of course, is that Size and 

Type, which both have very strong effects on Y, are not included 

in the model. 
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The unweighted £ has - in addition to this "model bias" - also as 

strong "design-bias", as seen by comparing MEAN(£) to MEAN(fip0p). 

Notice that £ lacks the latter type of bias. It might then be 

argued that jij. is preferable to £ in the present situation. 

However, it is possible to get rid of the design bias and much of 

the model bias simultaneously as seen by the following argument. 

The design-bias of j3 indicates that ïï carries relevant information 

about y which has not been accounted for by R and A. 

The stratification discussed earlier - Section 5.2.2 (ii) - implies 

that ïï=Y0
+ïlS+'Y2T+f3ST f°r s o m e "iO'^1'^2'^3- Now» if s and T 

are included in the model building process we can expect the model 

bias (due to the missing variables S and T) and the design bias 

(due to varying ïï) to disappear simultaneously. 

Tables 5.3 and 5.4 support this conclusion. Table 5.4 presents the 

case where the explanatory vector contains all main effects of 

R,A,S and T as well as all first order interactions involving S 

and T. In table 5.3 the explanatory vector contains only the most 

significant variables, i.e. S,T,A3 and SXA3. 
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It is also seen from Tables 5.3 and 5.4 that 

- MEAN(3)s!STD(£) which means that the classical variance estimator 

is approximately unbiased. 

- £ is considerably more efficient than fi. 

TABLE 5.2 Explanatory vector contains R and A only. 

TABLE 5.3 Explanatory vector contains the most significant variables 

only. 
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TABLE 5.4 Explanatory vector contains all main effects and S- and 

T-interactions. 
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6 Concluding discussion 

As pointed out earlier, the main consistency condition (3.11) for 

1 holds if n^Pi does not carry any information on Y, not already 

accounted for by the model. By this fact - and with the simulation 

results above in mind - we are led to the following procedure, pre­

viously suggested in a special case by DuMouchel & Duncan (1983). 

Extend the explanatory vector x. by bringing in IT.P. and its in-

teractions Tf.P.x.., j=1,...,m, together with x.-[ as additional 

variables. (We use the convention x0£l1, the constant term corre­

sponding to the intercept). Then test model (2.1)-(2.2) against the 

extended model (using classical methods, i.e. performing as if 

data were independent observations). If the extended model does 

not significantly improve the fit, then this suggests that (3.11) 

is reasonbly satisfied and that unweighted estimation will be con­

sistent (provided of course, that the other conditions of Proposi­

tion 1 hold). On the other hand, if the extended model signifi­

cantly improves the fit then this suggests that there is useful 

information in the design or response model which may be used to 

improve model (2.1)-(2.2). By bringing variables associated with 

ÏÏP - such as S and T in the simulation example - into the model 

building process it is possible to remove the design bias and much 

of the model bias simultaneously. 
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However, sometimes the residual information carried by ÏÏP cannot, 

for one reason or another, be utilized. 

An obvious case is endogenous sampling where the sampling is based 

on y itself. In such a case Horvitz-Thompson weighting is usually 

the proper procedure. 

There may also be cases where the variables involved in ÏÏP should 

not, for "subject matter reasons", be included in the model. For 

instance, suppose that y is income and that sampling is based on 

last year's paid income tax. If the latter variable is not of 

interest as explanatory variable although correlated with the re­

sidual, then, again, Horvitz-Thompson weighting may be recommen­

ded. 

However, we believe - with experience from Statistics Sweden in 

mind - that often enough, model improvement by including variables 

associated with TIP (such as S and T in the simulation example) is 

possible and indeed worthwhile. 

To make sure that classical inference applies we must also check 

the variance conditions (3.17) and (3.18) in the model building 

process outlined above. Condition (3.17) can be checked by resid­

ual analysis. Prevalent methods for residual analysis with special 

reference to GLIMs are reviewed in McCullagh & Nelder (1983). 
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Condition (3.18) seems at first to be more complex than (3.17). 

However, suppose that (3.16) (which should hold if (3.11) holds 

but which could also be checked by residual analysis) and (3.17) 

hold and that the GLIM framework as specified in Section 2 applies, 

in particular 

(6.1) 

Then (3.18) appears to be quite harmless while (3.16) and (3.17) 

are the more crucial conditions. 

There are certainly situations where (6.1) would be in doubt. 

There may for instance be cluster effects in the population in the 

sense that neighbors are "more alike" than non-neighbors, e.g. 

reading ability among classmates due to common factors such as the 

same teacher etc. Similar cluster effects can also arise from 

measurement errors due to systematic interviewer effects. These 

problems are not primarily caused by the sampling mechanism and 

they would not go away even if we were to sample the whole popula­

tion. Horvitz-Thompson weighting is not a solution here. The 

proper way - in our view - to deal with such deviations from (6.1) 

is to find a reasonable model specification - perhaps a nested 

variance component model - which incorporates these cluster 

effects. This search for a proper model may very well end outside 

the GLIM class. However, if the GLIMs apply then the model build­

ing procedure as outlined above can be of great value. 
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APPENDIX 

Let assumptions and notation be as in Section 1-3. Notice that 

E(-) and P(-) below are supposed to take account of all the random 

variation induced by the set up in Section 2. 

Theorem: Let Sc be t n e t r u e parameter point and consider the 

following conditions 

(i) 

(ii) There is a X>0 and an no>0 such that the smallest eigen­

value of An(fio)>X>0 for n>nQ t 

(iii) 

(iv) For some 5o>0 there is for every e>0 a Ce<» and an 

ne<~ such that 

(v) 
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(vi) All components of V^l^) are uniformly bounded for n>nQ. 

(vii) There is a A">0 and an no>0 such that the smallest eigenvalue 

(a) If conditions (i)-(iv) are fulfilled then with a probability 

tending to one as the sample size n tends to infinity equa­

tion (3.1) has exactly one consistent root g ^ i.e. 

!( n ) J L ->l 0. 

(b) If conditions (i)-(vii) are fulfilled then 

This theorem and its proof are quite similar to Theorem 1 in Nord­

berg (1980). Since the latter does not apply directly to the 

situation treated in this paper various modifications have been 

made so as to cover the present situation. The main ingredient of 

the proof is a version of the implicit function theorem. See also 

Foutz (1977) for similar ideas. Foutz treats a broad class of 

models but confines himself to i.i.d observations. We will use the 

following version of the implicit function theorem (and also prove 

it for completeness). 

be a sequence of three times differentiable functions from Rm to 

Rm. 



- A.3 -

(A1) 

Furthermore, suppose that for some 6o>0 and some G<~ 

(A2) 

Then there is a 5-| >0 such that the restriction of gn(u), 

n>n0, to d(a,5i) is one-to-one. 

Furthermore, if 0<5<ö-j and zed(gn(a), A6/2) then there is 

exactly one ued(â»ô) such that gn(u)=£, n>n0. 

Proof of lemma: Let u' and u"ed(a,60) and suppose that a'=u". 

By (A2) we have for n>n0 

(A3) 

where for some C<« 

But due to (A2) the following relation holds for some C'<» 

(A4) 
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and thus by (A1) 

(A5) 

(A6) 

Then the following relation holds as soon as u' and u"ed(â»61): 

(A7) 

We have thus proved that if u,'#u." then gn(u'Mgndi"), which means 

that if z.ed(gn(a),A5/2) where 0<5<5-| then there is at most one 

ued(a,6) such that gn(u)=2.. 

We will now prove that if z.ed(gn(a), Â6/2) where 0<6<5-| then there 

is exactly one ued{a, 5) such that gn(u.)=z. Consider the function 

hn(M)
=|gn(ll)~£|^ for Ued(âro). Since hn(u) is defined on a closed 

set it has a minimum at u, say, and û satisfies the equation 

Thus 
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Therefore 

We have then arrived at a contradiction unless gn(£)=£. This 

completes the proof of the existence and uniqueness of a U.ed(a.,6) 

such that gn(!i)ed(gn(a), A6/2). 

Proof of theorem: Let - Sn(0,X) correspond to gn(]i), £ and £<, 

correspond to u. and a respectively. 

Suppose that the smallest eigenvalue of Dn(fi,X.)>X'>0, n>no (A8) 

(A9) 

(A10) 

where 60,5 and TIQ are defined in the proof of the lemma. 
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If (A8)-(A10) hold then, due to the lemma, there is exactly 

one root fi^eddîo.ô) of equation (3.1). Now (ii) and (iii) imply 

that (A8) is true with a probability tending to one as n->» and the 

same conclusion about (A9) follows from (iv). Finally, the proba­

bility that (A10) is true converges to one as n—>•• by condition 

(i). Thus (A8)-(A10) hold true simultaneously with a probability 

tending to one as n->» and this implies conclusion (a) of the 

theorem. 

Consider j£(n) appearing in (a). It is seen from (A7) that for 

some C <•» 

and this relation combined with conditions (v) and (vi) yields for 

some C"<~ 

(A11) 

By conclusion (a) of the theorem and (A11) we have 

(A12) 

Taylor-expansion of Sn(£,YJ around ÊQ (note that Sn(l(
n),Y)=0) 

yields 

(A13) 
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where 

(A14) 

Relation (A14) follows from condition (iv) and (A12). 

Condition ( i i i ) and (A11) yields 

(A15) 

By condition (v) 

This relation, condition (vii), (A14) and (A15) imply that 

which completes the proof of the theorem. 
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