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ABSTRACT

Classical seasonal ARIMA models and their state-space representation are
reviewed. The modified Kalman filter and modified fixed point smoothing
algorithms using partially improper prior distributions are shown. The adaptation
of these techniques to data which are subject to correlated survey error is given.
We discuss likelihood maximization, smoothing methods and confidence interval
estimation. Some of the algorithms needed to perform the computations are

deseribed.
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State-space models.
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1. Introduction

Survey organizations, both governmental and non-governmental, conduet surveys
with similar data items on repeated occasions. As a result, estimates for a
characteristic of interest are available over a number of time periods. This can
lead to methods and analyses which are generally not available for single cross-

sectional surveys.

We denote the true underlying value of a population characteristic by 04 at
time t. Generally, this would be a mean, proportion, total or ratio. In the case
of a sample survey, the true underlying value cannot be directly observed.
Instead, we have a survey estimate, yt. Sometimes, we can have a vector of
survey estimates, each with the same mean. For example, in the case of a
rotating panel survey with no rotation group bias we have estimates ylt’ Yois

LI 4 ’ y
gt
general, we denote by Y the vector of survey estimates.

each with mean By where g is the number of rotation groups. In

Usually the survey estimates are related over time. This relationship can be
separated into two main components. The component usually considered by the
data producers (the survey organization) is the relationship of the sampling error,
denoted by et, over time. If the et's are correlated, then the past data can be
used in the estimate for the current occasion. This can reduce the sampling
error of the estimate, compared with the sampling error of the estimate which

ignores the previous data.

The data users (including some users in the survey organization) are more
interested, though, in the relationship of the underlying process {et} over time.
The common practice for these users is to ignore the sampling error and to fit
models to the data as if these data are observed without error. In this paper we
discuss a method for incorporating these survey errors into certain models. In
particular, we concentrate on the case where the underlying model is a seasonal
ARIMA model and the survey errors can be represented by an ARMA process up to
a multiplicative factor. This is an extension of the models discussed in Binder
and Dick (1988) and Binder and Hidiroglou (1988).
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An additional benefit is also available to the data producers by assuming such
models for the underlying process. We have pointed out that estimates can be
improved by taking account of the structure of the sampling error over time.
Further improvements can also be achieved by incorporating the assumptions of
the underlying model for the et's. We refer to this as data smoothing.
However, the improvements tend to be small when the survey error is small
relative to the errors of the assumed model. Therefore, such a procedure is not
generally recommended, unless the survey errors are moderate, such as would be

the case for small area estimation.

A general framework for this process was given by Jones (1980) as follows. Let
0, = (61, B9 «oes et)' be the vector of underlying population values which
we want to estimate. We assume that 0, is multivariate normal with mean uy
and covariance Vt. This is the assumed model for the underlying population
process. This formulation would not be appropriate in the case of non-stationary
ARIMA models.

The survey observations are given by the vector Yt’ where

Yt = Xt o, + e (1.1)
and e, is a multivariate normal vector of survey errors with mean zero and
covariance Ut’ The matrix, Xt, is usually a matrix of 0's and l's linking the
expected values of the survey estimates to the underlying population values.
Here we assume that the survey samples are sufficiently large that the normal
approximation to the survey sampling error can be used. The normality
assumptions are not necessary though, as the resulting estimators will be
minimum mean squared error if we assume the same structure for the means and

covariances, without any additional distributional assumptions.

Now, using conditional arguments, the conditional expectation of 0, given Yt is

-1

] ' -1,-1 ' -1
E(61¥,) = my + (X Up™ X + Vi) ™0 X UET (Y - X wy), (1.2)

with conditional variance matrix given by
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-1

Uy

_ oy -1,-1

Var(etlYt) = (Xt Xy + Vi )y . (1.3)
We note that if V,El is relatively small, so that the variance of the model for 0y
is large, then (1.2) and (1.3) reduce to the minimum variance linear unbiased

estimators given by Gurney and Daly (1965).

However, expressions (1.2) and (1.3) are often impractical to apply directly, since
the matrices to invert have the same dimensionality as the vector et. Also, the
matrix Vt will often depend on unknown parameters which must be estimated.
In this article we will assume that 0, follows an ARIMA process with some
unknown parameters. We will also assume that the survey errors can be
described by an ARMA process up to a multiplicative factor. It will be assumed
that the parameters of this survey error process can be estimated from the data
using design-based methods. The details of this estimation will not be given

here.

In Section 2 we describe how ARIMA models can be formulated using a state-
space approach. This is particularly useful for formulating the likelihood
function and its derivatives. In general, we use the marginal likelihood approach
given by Kohn and Ansley (1986).

In Section 3 we describe our model within the state-space structure and discuss
the estimation of the parameters. This is an extension of the models in Binder
and Dick (1988) which consider only ARMA models. In Section 4 we detail an
algorithm for performing the computations. Section 5 discusses future research.

2. Autoregressive Integrated Moving Average Models
and its State-Space Representation

Before describing the complete model for our problem in Section 3, we review
ARIMA models and a state-space representation for this model. We also review
the modified Kalman filter given by Kohn and Ansley (1986) and the fixed point
smoothing algorithm. In Section 3 we formulate our complete model within the
state-space framework. We closely follow the formulation and the marginal
likelihood approach in Ansley and Kohn (1985) and Kohn and Ansley (1986).



2.1 ARIMA Models

An ARMA (p,q) model for the random variables 815 85 oes O is defined by

Bt - ulet’l - see ~ Q.p t-p = et - 81 Et_l - eee ~ Sq t_q, (2.1)

2
where {et} are independent N(0,0 ). Defining B as the backshift operator,

so that Bmet = 8, _p and similarly Bmst = €t expression (2.1) can be written

more compactly as

a(B)Gt = B(B)Et, (2.2)

where a(B) =1 - aB - ... - apo and 8(B) = 1-618 - eee - Bqu. For
stationarity it is assumed that the roots of the polynomial, a(B), are all
outside the unit circle. The ARIMA (p,d,q) model is an ARMA (p,q) model
defined on vdet, where v = 1-B, the differencing operator. Thus, the ARIMA
(p,d,q) modelis

a(B)vdet = 8(B)e,. (2.3)

For example, for an ARIMA (1,1,1) model, expression (2.3) is
(1 - aB)(1-B) 8, = (1-8B) £

By formally multiplying out the polynomial a(B)vd, we see that (2.3) has the
same structure as (2.2) except that some roots of the resulting polynomial are on
the unit cirele. The seasonal ARIMA (p,d,q) (P,D,Q)S model is given by

A(8%) a(B) 72 v¢ 6, = v(B%) 8(B) ¢,- (2.4)

where A(B) l—xlB S eee = hp BP,

v(B) l-le SRR 8{ and

1-85,

Us

The value of the seasonal factor, S, corresponds to the periodicity of the series;
for example s=12 with monthly data, $=4 with quarterly data. For example, for
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an ARIMA (1, 1, 1)(1, 1, 0)4 model, expression (2.4) is
(1-38%) (1-aB) (1-8%) (1-8) o, = (1-8B) ¢,.

Again, we see that (2.4) has the same structural form as (2.2). The complication
introduced by the non-stationarity of (2.3) or (2.4) is that we must use a modified
Kalman Filter which carries a component corresponding to an improper

distribution.

2.2 State-Space Models

We now describe a general state-space model. In Section 2.6 we show how the
ARIMA model can be structured into a state-space form. In Section 3, the

models we use can also be structured into the same general state-space form.

We start by defining random vectors, called state vectors, ZO’ 21, 22, ey
each of dimension r. These state vectors are not directly observable in most

cases. Instead the observations are given by

Yg = ht zt; t=1, 2, <., (2.5)

where ht is a known r-dimensional vector. The initial conditions are that 20 is

multivariate normal with mean

m(010) = my(010), (2.6)

and variance matrix

V(0103k) = kV,(010) + V,(0i0), 2.7)

Without loss of generality, we will assume that mO(O!O) = 0. It will be assumed
that k is large, so that (2.7) is the covariance matrix for a partially diffuse

distribution.

The transition equation is given by

Zt+1 = th + Get+1, (2.8)

where F isan r by r known matrix, @ is an r by n known matrix and €4 is
a multivariate normal n-dimensional veetor with zero mean and diagonal
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covariance matrix U. Note that the models could be extended so that F and G

depend on t, but we do not use this in this article.

2.3 Modified Kalman Filter

Because the initial conditions represent a partially diffuse distribution, the usual
Kalman filter is not appropriate. See Anderson and Moore (1979) for the usual
Kalman filter. We give here the modified filter as described by Ansley and Kohn
(1985). We have adapted these to handle the case of a vector-values €49 rather
than the one-dimensional case. Readers who wish to skip the detailed formulae

may continue with Section 2.4.

We denote the conditional mean of z, given Yis Yps o0 ¥, by m(tit;k) and
its conditional variance by V(tit;k). We allow for missing y-values.

The recursions are given as follows. We define
m(t+litsk) = my(t+lit) + 0 (K1), (2.9

where

m(t+11t) = Fmg(tity (2.10)

if Yiel is not missing, we define

8pa1 = Yool - Mpyq Mp(t+lit) (2.11)
and
V(t+11t5k) = kVp(EHLIE) + Vo(tlit) + O (k7D),
where
Vj(t+11t) = PV (tIt) F (2.13)
and

Vo(t+lit) = Fug(tit) F + cue ; (2.14)



if Yiel is not missing, we define

vi(t+l) = b Vi (t+Lit) by (2.15)

t+1
and
vo(t+1) = h

(t+11t) h (2.16)

t+1 vO t+1°

We note that when y is not missing, a is a normal random variable
t+l t+1

which, conditional on yl, ooy yt, has mean zero and variance given by

kv (t+1) + vg(t+1) + 0 (K1), 2.17)

Finally, the updating formulas given observation Yi4] 2reas follows:
m(t+11t+15k) = mo(t+litel) + O (k1) (2.18)
and V(tHLIt+13K) = KV (tHLIEeD) + Vp(t+litsl) + 0 (K1), (2.19)

where, (i) for Yisel missing,

my(t+11t+l) = my(t+lit), (2.20)
Vi(t+11t+l) = v, (t+11t), (2.21)
Vo(t+litel) = Vg(t+lit); (2.22)

(ii) for Yp41 Ot missing and vl(t+1) = 0,
mo(t+1|t+1) = no(t+1|t) + Vo(t+llt) ht+1 at+1/v0(t+1), (2.23)

Vo(t+litsl) = Vg(t+lit) - Vo(t+l1t) by g b Vo(t+1it) vg(t+l);  (2.24)
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(iii) for Vsl not missing and vl(t+1) > 0.

mo(t+llt+1) mo(t+1|t) + Vl(t+1|t) hy 4 at+l/v1(t+1) (2.25)

vl(t+1|t+1)

Vi (t+11t) - Vy(t+11t) by o h t+1 Vi(t+Lit) /vy (1) g 96y

Vo(t+1|t+1) = vo(t+1|t) + vl(t+1|t) ht+1 t+1 1(t+1|t) v (t+1)/v (t+1)
- Vl(t+1ft) ho, b t+1 0(t+lit)/v1(t+1)
- Vo(t+1lt) heg b t+1 v (t+1/t)/v1(t+1) (2.27)

For details of the proofs of these recursions, see Kohn and Ansley (1986). We
note that when y, , is not missing and vl(t+1) > 0, the rank of Vl(t+llt+1)
is less than the rank of Vl(t+1lt), since V (t+1|t+1) ht+1 0, but
t+1V1(t+1|t) ht+1 # 0. Therefore, if the rank of VI(OIO) is R, then the
rank of Vl(tlt) will be zero after R non-missing values. At this point, we are
certain that vl(T) = 0 for all T>t.

The recursions given by (2.9) to (2.27) yield mo(rlt) . Vl(rlt) and Vo(rlt) for
1=t or t=t+l, and t=1, 2, ..., T. These will prove useful for obtaining the

marginal likelihood function in Section 2.5.

2.4 Modified Fixed Point Smoothing Algorithm

In Section (2.3) we obtained the conditional mean and variance of the state
vector at time t given the data up to time t. For some purposes, though, we
would like to have the conditional mean and variance given all the data,
including observations which occur after time t. We denote this mean and
variance by m(t|T;k) and V(<I1T;k) for T>t. To obtain these, we apply (2.9)
to (2.27) to an augmented state-space model.

* ' 1
In particular, we let z, = (zt, zT)',



and h: = (h;:, 0')'. Here Ir isthe r by r identity matrix. The state-
space model is given by (2.5) and (2.8) where z,,
*

F, G and ht are replaced by
2y, F*, G* and h;’ respectively. We denote Cov(zt, Z 1¥(s +ees ys) by

C(tarissk) = kCy (t,t18) + Cy(t,cls) + 0 (KTD). (2.28)

The detailed recursions are given by (2.29) to (2.52). Some readers may wish
to skip to Section 2.5.

m(xit3k) = my(cic) + 0 (k) (2.29)
V(xit3k) = kVy (1) + Vy(xin) + O (K1), (2.30)
€ eaele) = Vy(el0) (2.31)
and Coleatin) = Vg(cia), (2.32)

where Vl(rlr) and Vo(rlr) are obtained from the modified Kalman filter of

Section 2.3.

Now,

C(t+1,c1t3K) = kCy(t+,c1t) + Colt+l,oit) + 0 (K1), (2.33)
where

C,(t+,x1t) = FCy(t,c1t)
and Co(tHlatit) = FCy(t,clt). (2.34)

The updating equations become

m(xit+13k) = my(cit+1) + O (k7)) (2.35)

C(t+1,tit+13k)

KCy(t+1,71t41) + Cy(t+1,eit+l) + O 1y (.36
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V(rit+l3k) = kVy(c1t+1) + V(xit+l) + O 1 (2.37)

where, (i) for Yisl missing

(2.38)

mo(r|t+1) = mo(rlt)
C(t+l,71t+l) = Cy(t+l,rIt) (2.39)
Co(t+1,r|t+1) = Co(t+1,r|t) (2.40)
Vl(r|t+1) = Vl(rlt) (2.41)
Vo(r|t+1) = Vo(rlt); (2.42)

(ii) for Y41 not missing and vl(t+1) =0

my(c1t+1) = mo(cit) + Co(t+l,cit) hy, ay, /vp(t+l) (2.43)
Cl(t+1,r|t+l) = Cl(t+l,1|t) (2.44)

Co(t+l,it+l) = Co(t+l,ait) - Vo(t+lit)hy, by, Co(tHL,x1t) /vg(tHl) (2.45)
V1(1|t+1) = vl(Tlt) (2.46)

! 2.
Volelt+l) = Vg(clt) - Cy(t+l,rit)hy,qhe, Colt+l,it)/vp(tel); 247
(iii) for Y441 not missing and vl(t+1) >0

my(cIt+1) = my(cit) + Ci(t+1,rlt) heyy ep /vy (E+) (2.48)

1
Cy(t+1,it+1) = € (t+1,x1t) - Vy(t+lit)hy, by, €y (t+1,t1t) /vy (£41)(2.49)

' 2
Co(t+1,r|t+1) = Co(t+1,tlt) + Vl(t+1|t)ht+1ht+lcl(t+1,r|t)v0(t+1)/v1(t+1)

Cl(t+1,r|t)/v1(t+1) (2.50)

]
- Vo(t+llt) hes1 ht+1
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Vi(eltel) = Vy(cit) - € (t+1,it)h, b €y (t+1,Tit) /vy (t+1)  (2.51)

t+1 t+1
Vo(rit+l) = Vo(xit) + € (t+1,xit)h, by € (b+1,T1t)vg(t+1) /vy (t+1)
- Ci(t+1,r|t) h,p b t+1 (t+1,rlt)/v (t+1)
- Coltel,eit) by b C(tLait)/vy(t+]).  (@252)

We note that in the fixed point smoothing algorithm, if we are only interested in
a linear combination of z, say g'zT for some fixed vector g, the
computations are reduced, since we only need to carry Cl(s,r It)g,
CO(S,rIt)g, g'Vl(rlt)g and g'VO(rit)g through the recursions, where s=t
or s=t+1. These results generalize slightly the modified fixed point smoothing
algorithm in Kohn and Ansley (1986), where only y, = h; z for missing y-

values were of interest.

2.5 Marginal Likelihood Function

In Section 2.2 we obtained recursions for the mean and variance of _yt given the
- 3 3 ]
non-missing values of Yis eoes Yi1e We found that a = ¥y - ht mo(tlt-l)

given the non-missing values of Yis oe0s Y1 is normally distributed with

-1 .
mean O (k ~) and variance kvl(t) + vo(t) *o (k‘l). Therefore, for any

given k, the density function for {yt} is f(y;k) where

log(27) - 1og {kvl(t) + vo(t)}

Njr—

log f(ysk) = }I-
t

a, / {kv)(t) + vp(t)}] + ok’ ly, @53

N =

and the summation is taken over the non-missing y-values.

However, as k+» this becomes an improper density function. To remedy this,

we consider a marginal density function which does not depend on k.
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The starting conditions for the state-space model were that z, was normal with
mean zero and variance le(OIO) + VO(OIO), where the rank of Vl(OIO) is R.

This is equivalent to assuming

ZO =An+ o, (2.54)

where A isan r by R fixed matrix, n is an R-dimensional N(O,kIR) random

variable, where IR is the R by R identity matrix, and w is an r-dimensional

N(O,W) random variable, independent of n.

The density function for z, is

F(zg3k) = (21)772 1kAn" + WiTF expl- % 26(kAA' + u)'120}- (2.55)

Consider now
R/2

Tim k f(zo;k). (2.56)
ks
We have
Tim kR72 jkma' + Wit - it A wla
k+w
and
Tim zy(kAA + W)z, = zgw ! - wla Wl 2 @se)

k+o

Now the quadratie form given by the right hand side of (2.58) is the same as for

the density of
ET RS S |

“r - A(AWA) AN Zy, (2.59)
which is independent of n and independent of A'H'l
the density function in (2.56) is proportional to the singular normal density
function for the random variable given by (2.59). We use this marginal density
function which does not depend on the value of k. The interpretation is that our
120, so that the initial condition is that z,
has a singular multivariate normal distribution.

20. Therefore the limit of

L3 . . ' -
inferences are conditional on A W
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To obtain the marginal likelihood for all the data, we take

1im K¥2 £(y5k), (2.60)

where f(y;k) is given in (Z.Sésfmand we normalize expression (2.60) to a density

function. The logarithm of the resulting density function is

u(y) = - 3 1 log{2avg(t)} - £ § a,/vy(t), (2.61)
t t

where the summation is over the non-missing y-values. Suppose now that 2(y)
depends on a vector of parameter y. Taking derivatives with respectto y, we
have

L _ -1,1 t avo(t) ay
3y E[vo(t)] [5{\,—073 -1} = - 5l (2.62)
where, from (2.11) we have
a, {amo(tlt-l)} (2.63)
o T ey e
We also have
322 1 2 -1 avo(t) avo(t) .
- E T = ? z Vo(t) { 3y Ay
(av)(av)
o1 23 2d,
+ z[vo(t)l GrHsh - (2.64)

The maximum likelihood estimates for y are obtained when expression (2.62) is
zero. The asymptotic variance of this estimate is given by inverting the matrix
given by (2.64).

2.6 State-Space Representation for ARIMA Models

In Sections 2.2 to 2.5, we presented results for general state-space models. In
order to implement these for our application, we show how ARIMA models
presented in Section 2.1 can be represented in this form. We will also develop
the initial conditions, as given by Ansley and Kohn (1985).
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Consider the ARIMA (p*,d,q*) (P,D,Q)S given by

A(8%) a*(B) vy v9 0, = v(B%) 8¥(B) ¢, (2.65)

2
where €19 €ps +e+s €y 8re independent N(O,0 ). We define

a(B) = A(Bs)a*(B) which is of degree p = p* + sP.

We also define g(B) = v(BS)B*(B) which is of degree q = q* + sQ.  We let
A(B) = ngd which is of degree R = d + sD. Finally we let a*(B) = a(B)a(B)
which is of degree S = p+R. Therefore the model (2.65) may be written as

a(B)A(B)et = (s(B)e:t (2.66)
*
or a (B)et = B(B)et (2.67)
where a(B) = 1-apB - ... - ofP (2.68)
- R
a(B) =1 - AlB = ... - ApB (2.69)
B(B) = 1 - B].B = eee = Bqu (2.?0)
and a’(8) = 1 - ajB - ... - a8, (2.71)

For example, for an ARIMA (1,1,1) (1,1,0)4 model given by

(1 -28H1 - o)1 - 8H( - ) o, = (1 - 8"B) <y,

we have

a(B) = 1 - o*B - ABY + a*\B°.

4

a(B) =1-8-8%+8°

and  a*(B) = 1 - (1+a*)B + a*B - (1+1)BY + (1+a*)(1+1)B° - a*(1+1)85

+ 288 - 2 (1+4a*)B? + o*810,

Note that p=5, g=1, R=5 and S=10.
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We now define z, = (th’ cees Zrt)" the state vector. Let r = max(S,q+l).

If S<q+l, we define a§+1 = ce. = a: = 0. If S>q+l, we define

6q+1 T e.. = Br-l = 0. We let
8¢ €t
Zt = Al Bt_l + A2 et_l . (2-72)
%¢-r+l “t-r+2
L ] L ]
where
1 0 0 ...0 0
* * * *
AL =10 a, a, d..1 s (2.73)
* * *
0] a3 a, ar 0
* 0
0 ar 0 LI N ] O J
an r by [max(p,1)+R] matrix, and
[0 0 o0 ... © 0o |
Ap = |81 B2 B3 cr Brp Byl (2.79)
‘82 '83 '84 . -Br—l 0
-Br—l 0 O e 0 0 J

an r by (r-1) matrix.
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Now for ht = (1,0, ... 0)',

-, .
ay 1 0...0
*

F = a, 0 1...0 (2.75)
*
a.; 0 0...1
*
a. 0 0...0

i ! o pe
and G = (1, =B1s =Bos ey 'Br-l) we have 8, = ht z, satisfies model
(2.67) when the state vectors given by (2.72) satisfy the transition equation (2.8).
This representation for model (2.67) was given by Harvey and Phillips (1979).

To complete the specification of the state-space formulation, we need initial
conditions. Taking model (2.66), we let A(B)et = Uy, so that

c:(B)ut = B(B)et. (2.76)

We assume that this ARMA (p,q) model for {ut} is stationary. The following,
given by Ansley and Kohn (1985), specifies the initial conditions for z,. Note
that mO(OIO) = 0, so we need to specify Vl(OIO) and VO(OIO) of (2.7).

. - ]
Consider the vector 6_ = (60, B_1s +ees 6_S+1) . Let
] ]
n = (e_p, 8 p_1s see s 8_g,1) - Wedenote u_ = (ug, u_y, ..., u_p+1) .
We assume n is N(O, kIR) and u_ is N(0, o? Vu), independent of n.

Expressing n and u_ as a function of 6_, we obtain

Tl =Moe (2.77)

where M isa [max(p,l) + R] - square matrix. This matrix is the identity
matrix if R=0; otherwise it is
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.
1 —Al -4, . -Ap 0 .. O
0 1 -8y .ev -8p 4 -8p eee O
0 O 0 A -4 ees =A
M= | - - ___ Rptl_ " Rp#2 2" "R | (2.78)
0 IR

For example, when A(B) = (1-84)(1—8), and p=5 asin the
ARIMA (1,1,1)(1,1,0)4 example, we have

- -

1-1 0 0-1 1 0O0O0O0

0 1-1 00 -1 10O00O0

0 01-1 0 0-1100

0 001-1 0o0-110

0 o001 -1 00-11

M R I T B T I A .

0 00001 00O0TUO

0 000OOjO0 1 0O0TUDO

0 000O0O|O0O0O100O0

0 00000 OOCT11O

L0 0 00 0|0 OCOUO1
Therefore,
-1 Y-
8 =M (2.79)
n
Since 5 = A1 o_ + AZ €, (2.80)
where e_ = (so, E_1s s e-r+2)l if r 3 2 and . is the null vector if
r=1, we have
-1 (Y-
zy = A1 M + AZ € . (2.81)
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This may be written as

Z0 = Kl u + K2n + AZ € (2.82)

where K1 is the first max(p,1) columns of All"f'1 and K2 is the last R
columns of AlM'l. Therefore, the variance of zj is le(OIO) + VO(OIO),

where

V,(010) = K, K, (2.83)

and !

i 1 | '
Vg(010) = o2(K V. Ky + Ky Cyp Ay + Ay Cue Ky + Ay A, (2.84)

2
where the matrix CUE is the covariance between U and ¢_ and o Vu is the

covariance matrix for u _.
In Section 4 we describe a method for obtaining Vu and CUE'

A simple example is given now to show how these computations are carried
out. Consider the ARIMA (1,1,1) model given by

(1 - o*B)(1-B) 0, = (l-s*B)et

Therefore, afB) =1 - o*B
8(B) = 1-B
8(B) = 1-8"B
a*(8) = 1 - (1 + o*)B + o*B7,

so that p=1, gq=1, R=1, S=2 and r=2. We have
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1+t 1
F =
~a* 0
1
G =
*
-8
and
1 -1
M=
01
Therefore,
1 1
AN = s
0 -a
so that

_ (1 _ 1
Kl—[O} and KZ—[_G*}

Using the methods described in Section 4, we find

Ce =111

and
vu

[ v,

U

where v = (1 - 20*8*)/{1—(0*)2}.

Therefore,

V,(010) = .

-t (a%)
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2
VO(OIO) =g 2]

This completes the specification of the ARIMA models in state-space form. In
the next section we show how this can be extended to the case where the

observations are subject to survey error.

3. ARIMA Models with Observations Subject to Survey Error

3.1 ARMA Models for Survey Error

When a time series {et} which follows an ARIMA process is observed exactly,
the likelihood function for the unknown parametors can be derived using the
state-space formulation given in Section 2. Recursive relations for the
derivatives of the likelihood function can also be obtained using methods given in

Section 4.

However, when the observed time series is the result of a series of sample
surveys, the survey sampling error should be taken into account when deriving
the likelihood function. The actual structure of the survey error will depend on
the sample design and the population characteristics. We let Yy T et + e, for
t=1, ..., T be the observed series where et is the survey sampling error. The
simplest case is where the surveys are non-overlapping with small sampling

fractions so that the et's are approximately independent.

In a rotating panel survey, the et's will be correlated. Suppose there are (
panels and one is dropped and replaced by a new independent panel on each
occasion. The panels rotate so that an entering panel leaves the survey after q
time periods. Assuming small sampling fractions, this implies that the
correlation between e, and ey iszerofor s > t + q. If the correlations are
constant, this implies that k,c et is a pure moving average process, ARMA
(0,q). Here, kt can vary to reflect different variances for each point in time,
although the autocorrelations are assumed constant.
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If on each occasion a random set of units is dropped, it may be reasonable to
assume that e, or at least a multiple of ey given by kt €4s is first order
autogressive, ARMA (1,0). This implies that the correlation between kt ey

. S
and k is a” for some a.

t+s Ct+s
We see, therefore, that it can often be assumed that kt et is an ARMA
process. It may be possible to assume other structures which admit a state-
space form and what follows could be modified to satisfy that structure. We also
assume that the parameters of the state-space model can be estimated using
design-based methods. This is not necessarily straight-forward in general, and
more research into estimating these parameters is needed. However, here we

assume that these parameters are known.

3.2 The Data Model

The complete model we wish to consider, therefore, is the case where {et} is
an ARIMA process and the survey errors, {et}, follow an ARMA process. Using
the modified Kalman filters, we will develop the marginal likelihood function.
Maximizing this function with respect to the unknown parameters yields
parameter estimates. In this way, we can estimate the parameters of an ARIMA

model in the presence of survey errors.

In traditional ARIMA modelling with no survey error, the series is differenced
using A(B) so that the derived series is a stationary ARMA process. However,
in our application, differencing the survey estimates would complicate the
covariance structure of the survey errors. The approach given here is easier to
implement and missing y-values can be handled within the same framework. In

Section 4 we introduce regression terms into the model as well.

As in Section 2, we let Bt can be described by the ARIMA model:
a(B)A(B)et = B(B)et, (3.1)

where a(B) =1 - alB - ees - upo, (3.2)
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8(B) =1 - 8B - ... - 887 (3.3)
a(B) =1 - AlB - eee - ARBR (3.4)
and the et's are independent N(0,02).
We now assume kt ey follows an ARMA (m,n) model
8(B) (kye,) = ¥(B)n,
m
where ¢(B) =1 - ¢18 - eee = ¢mB
(3.5)
¥(B) = 1-vB - ... - \van (3.6)
and the nt‘s are N(0,t?). The observations are given by
Yp = 04 * &y, for t=1, ..., T. 3.7
This model can now be put into state-space form.
We let
*
a (B) = a(B)a(B)
=1-a,8 *g$ 3.8
- - al = eee ~ as 9 ( - )

where S = p+R. We let ry = max(S, q+1), ro = max(m, n+l) andr = ritroe
We let h1 = (1, 0, ..., 0)' be an rl-dimensional vector,

-1

Mot = (kt » 0, «e.y 0)' bean r,-dimensional vector and ht = (hi, hét)'.

2t
We let F1 be the r1 by r matrix given by
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- -
3 1 0...0
F *
1= 13 0 1...0], (3.9)
¥ 0 0...1
a .o
l"l-l
¥ 0 0...0
a cee
"
where, if S<r1, then a*s+1 = ie. = a:l = 0. We let F2 be the rs by s
matrix given by
(s, 1 0...0
F2= 6o 0 1...01, (3.10)
¢ 0 0...0
rz-l
¢ 0 0...0
"2
where, if m<r then Ol = oce T ¢r2 = 0. The rxr matrix F is given by
F1 0
F = . (3.11)
0 F2

We let Gl by the rl—dimensional vector given by

Gl = (1, -81, LI Y ‘Brl_l)l’ Where, if q < Tl-l, then
Bq+1 = L. = B
G2 = (1, - Vi eees '“’rz-l)l’ where, if n <r2-1, then

= 0. We let G, be the r,-dimensional vector given by
rl-l 2 2

’”n+1 R ‘brz__l = 0. The matrix G is an r by 2 matrix given by
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Gl 0
Finally, letting
a2 0
U= . (3.13)
0 t?
completes the specification of the transition equation (2.8).
For the initial state vector, we let mO(OIO) = 0. We let
Vl’l(OIO) 0
Vl(OIO) = 3.14)
0 0

where V1 1(OIO) isan ry by r, matrix derived analogously to (2.83). We let

v o(010) 0

VO(OIO) = . 3.15)
0 V2 0(0|0)

where V; c)(OtO) isan rybyr, matrix derived analogously to (2.84), and
9

VZ 0(0 10) is also derived analogously to (2.84), using the parameters

¢1’ LU Y ¢m, lbl, * o0y wn and TZ.

This completes the specification of the data model in state-space form. From
this, using the modified Kalman Filter, the marginal likelihood function given by

(2.61) can be derived.

3.3 Data Smoothing

Our observations consist of Yy = et + ey, where ey is the survey sampling
error, for t=1, ..., T. The population characteristics of interest are
B1s <o 81 Once all the parameters of the state-space model have been
estimated, we can use the modified fixed point smoothing algorithm to obtain

E(QTLYI, essy yT), fOl‘ T<T-
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In particular, for the state space model of Section 3.2, with state vectors
1 i ]
Zyy ey Zys We have 6. =9 Z, where g = (hl' 0, ..., 0) . Using the

modified fixed point smoothing algorithm of Section 2.4, we can obtain

' -1
E(erlyl, cens yT;k) =g mo(rlT) +0 (k) (3.16)
and
' ' -1
V(e _1¥ys «-0s ¥p3k) = kg Vi (tIT)g + g Vy(cIT)g + O (k7). (3.17)
We now extend this to the estimation of change, 6T -6, for t>uw. From

Section 2.4, starting at t=w and continuing to t=t, we obtain
¢ t _1
E(er-ewlyl, cees yT;k) =g lllo(tlr) -g mo(mlr) + 0 (k7), (3.18)

var(e -8 1yys ««.s ¥ 3k) = kig V{(zit)g + g Vi(wlt)g - 29 C;(r,wiT)g]

+ g'VO(rlr)g + g'VO(mlr)g - ZQ'CO(T,wIT)g +0 (k-l) (3.19)

al'ld COV(ZT, GT - ew'ylg ecey yT;k)

= k[Vl(rlr)g - Cl(r,wlt)gl

+ Vy(r11)g - Cylraulp)g + O (K1), (3.20)

The quantities given by expressions (3.18) to (3.20) can then be used in the
modified fixed point smoothing algorithm, using er—ew as the fixed point, so

that the state-space model is

= + R (3.21)
6 -8, 01 8~ 8, 0 N4l
with observations
i zt+1
Yie1 T (ht+l’ 0) s (3.22)
e -6
T w

for t = t, t+l, ..., T-1.
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This procedure could be generalized to obtain the conditional mean and
variance of any linear combination 2181 + 9.2 By e + 201 for fixed values of
21, ceny ZT' In this case the state-vector used in place of (3.21) is

(z£+1, 2y 0+ ..o ¥ ltet)' and the last row and column of the conditional
variance matrix must be updated analogously to expressions (3.19) and (3.20).

3.4 Confidence Intervals

In the model of Section 3.2, the unknown parameters are Gps ooes °p’ 81,
...y B8_and o2 In fact, for the more general seasonal model given by

q

A(B%) a(B) a(B) o, = v(8%) 8(B) ¢, (3.23)
where A(B) =1 - xlB - . - xPBP (3.24)

a(B) = 1 - ulB T apo (3.25)

v(B) =1 - vB - ... - »QBQ (3.26)

=1 - - - q

8(B) = 1 818 BqB (3.27)
and A(B) = vg vd, (3.28)
the unknown parameters are 1' = ()‘1’ ooy xp, Aps seesy up, Vis eees “Q’

Bys +evs sq. o).

To obtain the maximum likelihood estimates, y, for the parameters, v,
it is necessary to solve the likelihood equations given by (2.62). Asymptotically,
; - vy will be approximately multivariate normal with covariance matrix, Vr,
given by inverting the matrix given by (2.64). By substituting parameters
estimates into (2.64), we can obtain confidence intervals for components of vy.

Hypothesis testing can also be performed.

In order to obtain the derivative of the likelihood function and the Fisher
information matrix, given by expressions (2.62) and (2.64), it is necessary to
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compute aat/ay and avo(t)/ay. Since a, and VO(t) are obtained recursively
from the modified Kalman filter, these same recursions can be used to obtain the

required derivatives. For example, expression (2.14) is
1
Vo(t+11t) = FVO(tIt)F’ + GUG .

Differentiating with respect to a. gives

i
av, (t+11t) . av(tit) '
= | Ryt e 2 — | F
a; 3(1,i 0 301

F
+ Vg (tit) [;T]] , (3.29)
since aG/aai = 0 and aU/aai = (.

In addition to the confidence intervals for the unknown parameters, we also
would like to have a confidence interval for our estimate of 9T given Yis «os

28 If all of the parameters are known, we have the variance given by

g'VO(tIT)g, where o _ = g'zr. This assumes that Vl(T) = 0. However, this
does not include the sampling variance due to estimating the parameters, y.

Denoting by m.(t1T) the estimate of m,(tIT) at y = y, we take a Taylor
™ Mo

series expansion of ﬁo(r IT) to obtain

am.(t1T) ,\ -
__M_Uav_} (yv=y) +0 Il y-y II (3.30)

ﬁo(rlT) 2 mo(tIT) + [

Since y is a consistent estimator for y, we have

0, - 9 m(xiT) =

amo(rIT)

3 } (y=v) + 0 Il v=v 1. (3.31)

g [z -my(riT)] - 9'{

Therefore
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El{o_-g my(xIT)} |

Y

amo(rlT) amo(rlT)
vr 3

2 glvo(rlT)g + g[ 3y —————} g. (3.32)

To estimate g' [amo(rIT/ay], we use the recursions given in the modified fixed

point smoothing algorithm to obtain the required derivatives.

3.5 Likelihood Maximization

In Section 4 we provide some details for the computation of the marginal
likelihood function and its derivatives with respect to the unknown parameters,
y. From this we can compute 2(y;y), the logarithm of the marginal likelihood
function, given by (2.61), as well as 3e(y;y)/3y and

J=—E(:za—3§%m}. (3.33)

A number of routines for maximizing a function are possible. We suggest the
Davidon-Fletcher-Power method, described in, for example, Dennis and Schnabel
(1983). Assume that y isa c-dimensional vector. For example, for model
(3.23), ¢ = P+Q+p+q+l. The algorithm is now described.

STEP 1: Start with an initial value, 7(0). See Note 1 below.

Let gy = a¢(y; Y(O))/a‘r.

STEP 2:  Let H(O) = - J, where J as given by (3.34) is computed at Y(O).
STEP 3: Perform steps4to6for i =1, 2, ..., C+l.
STEP 4:  Compute &, = - H(1-1) 9(1-1).

STEP 5:¢  Compute m, to maximize z(y;y(i'l) +m, 61), where my is a
scalar. See Note 2 below. Set



and

STEP 6:  Test for convergence. See Note 3 below. If convergence has been
achieved, end the algorithm.

STEP 7:  Perform Steps 8 and 9 for =1, ..., c. If i = c+l, let

Y(O) = Y(C+1), 9y = 9.4 @ndgoto Step 2.

STEP 9: Compute

' (i-1) ' oy(i-1)
NS VR Ei S H 52 £y M

= i 1) - —3-1) .
i1 H 9i_1 E; H &

Go to Step 3.

Note 1

Starting points can often be difficult. For a problem where ¢ is large, it may
help to reduce the dimensionality of the problem by setting some of the higher-
order autogressive or moving average parameters to zero. This is known as
masking. Then after convergence (with a weaker convergence criterion), restart
with more dimensions, where the starting values are zero for the previously
masked parameters, and using the converged values from the previous iterations.

Note 2

Step 5 is a one dimensional maximization problem. Ideally, if H(i'l) is the
true Hessian matrix and the function is quadratie, then the function is
maximized at mi=1 We suggest the following procedure. Compute the function

at m(o) =1, m(l) = km(o) and at m(z) = m(z)/k where k 1s 2/3, say. Let
the functlon values be fo, fl and f2 respectlvely. Also let f be the
function value at my = 0.
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Case (i):

*
When fo is the largest of fo, fl’ f"2 and f , fit a quadratic equation

through mge), mgl) and mgz); maximize that quadratic at m§3) and
compute the function value, f3 at m1(3). Use m, to be that value for

which the maximum of fo and f3 is achieved.

Case (ii):

*
When fl is the largest of fO’ fl’ f2 and f , perform the following

in order:

1. Set m§2) to m1§0) and fz to fo.

(0) (1)
2. Set m1. to mi and fO to fl'

3. Compute mgl) = kmgo), compute its funection value which is defined
as the new f 1 and check which case now occurs.

Case (iii):
*
When f2 is the largest of fO’ fl’ f2 and f , perform the following in

order:

(1) (0)
1. Set ms to mi and fl to fo.

(0) (2)
2. Set m,l to m1 and fO to f2.

3. Compute mgz) = mgo)/k, compute its function value which is defined

as the new f 2 and check which case now occurs.

Case (iv):

* *
When f is the largest of fO’ fl’ f2 and f , perform the following
in order:



-31-

(2) (1)
1. Set m. to ms and f2 to fl'

0) = kmgz) and set fo to its function value.

2. Compute mg j

3. Compute mgl) = kmgo), compute its function value which is defined

as the new f 1 and check which case now oceurs.
When setting the mi—values, checks should be made to ensure that the
mi-values are not too large so as to overstep the parameter space. Useful

checks are Ik1|<1, la,ild, ,Vi'd’ |31l<1 and o2 > O.

Repeat the procedure until Case (i) occurs.

The maximum of the quadratic function through mgo) , mgl) and m$2) is
given by
2 0),2 0 1),?
@ o, Fofm i) - (@D
TR R TG QR QI RTH O QY
Note 3

A number of tests for convergence are available. We suggest the following. We

denote gi = (gil, coey g1C)| and G_i = (61'1’ eoey sic)'.

The procedure is deemed to have converged if one of the following occurs:

(1)
19:5 ¥ !
max{——j-'l——i———} is small, say 1077

s

i st

ms 16,1 -7
or max {‘_Ti-;_} is small, say 10
j !

J le

The program should also abort if there have been a large number of iterations,

say more than 100c.
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4. Computations
4.1 The Model
In this seetion we give the detailed algorithms to compute the marginal

likelihood function and its derivatives with respect to the parameters. The

assumed model for the observations, Yo voes Yo is as follows:

A(B%) o*(B) VE 79 0y = v(B%) 3*(B)te (4.1)
¢(B)(ke,) = v(B) ny (4.2)
Yp = 84 t &y, (4.3)
where A(B) =1 - A B-...- XPBP (4.4)
u*(B) =1 - aI B - ... - a;Bp (4.5)
v(B) =1 - vy B- ... - vQBQ (4.6)
* - _ * _ _ * q
8°(B) = 1 - 8] B - ... - 838 (4.7)
#(8) =1 -6, B- ... -¢8" (4.8)
¥(B) =1 - v B-...-y8", (4.9)

{st} are independent N(0,02), {nt} are independent N(0,t2) and {et} and
{nt} are independent of each other. For further generality, we will also add a

regression component to the observations, so that
]

where b isan L by 1 vector.

The following are assumed known: {¢1}, {“’1}’ {kt}’ {xt}, and t2. Missing
y-values are permitted.
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The regression component in (4.10) can be handled two ways. One way would
be to let { Y¢ - xé b} be our observations in the likelihood function. When
maximizing the likelihood, we would need to add a term for aat/ab in (2.62).
An alternative would be to add b to the state vector. We would have

bt+1 = bt' (4.11)

The advantage of this approach is that the state-space formulation can be
modified to also include stochastic regression coefficients, so that the transition

equation becomes
bt+1 = bt + H £t+1’ (4.12)
where Et +1 is multivariate normal with mean zero and a diagonal covariance

matrix. We do not pursue this here.

For model (4.11), where the first L components of the state vector

correspond to b, we have ht in Section 3.2 replaced by

(X hps hop) (4.13)

The initial conditions are the Var(b) = kI, so that the modified Kalman filter is
still appropriate. Initially, we have b is independent of zy. The model

therefore is:

at t=0
bo I 0 00 1
Vari " = kg v (010)| * |o v (010)] *© (k) (4.14)
| o 1 0
b 1, ol[b 0
O IR (4.15)
th+1 2t
1 t ] bt
and Yy = (xt, ht) z, . (4.16)

where Zz,, VI(OIO), VO(OIO), F, 6 and ht are all given in Section 3.2.
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4.2 Polynomial Algorithms

The following algorithms are used for multiplication of polynomials.

algorithms are needed in Section 4.3.

Algorithm POLYMULT (a, b)

Consider two polynomials

= Y
Pl(x) =1 - 8y X - ... - apx

q
1-b1x—....—bx

and Pz(x) q

The arguments of the algorithm are a = (al, vees ap)I and
b= (bl’ cees bq) '. The function POLYMULT (a,b) returns the value

c = (cl, cees cp+q)" where

[Pl(x)][Pz(x)] =1 - €l X = et = Cp xP*a,

Algorithm DPLYMLTA (a, b)

These

(4.17)

(4.18)

(4.19)

Given the input parameters as in POLYMULT, this function return a (p+q) by
p matrix of derivatives of the result of POLYMULT (a,b) with respect to a.

If c is given by expansion (4.19), we have

Ci= 1 iF =)

-b, if i=j+k for k=1, ..., Q.

i

k

Algorithm POLYPOWR (a, n)

By repeated application of POLYMULT, the algorithm POLYPOWR (a,n)

computes the coefficients of [Pl(x)]n, where Pl(x) is given by (4.17).



-35 -

4.3 Initialization Algorithms

The following algorithms are used to set up the initial conditions for the
state-space model.

Algorithm CUE (a, b, @)

This algorithm is used to compute the components of CUE in (2.84).
Suppose we have an ARIMA process

a(B) c(B)et = b(B)e:t (4.20)

where a(B) =1-2aB- ... - apo (4.21)
= R

c(B) =1 - €B - eer - cqB (4.22)
= q

b(B) —l—blB- e -qu , (4.23)

where c(B) is the differencing term, so that all the roots of c(B) are on the
unit circle. The {et} are independent N(0,0?).

The function CUE(a,b,C) returnsvalues dy, ..., d,. where
r = max(p+R-1, gq+1) and

02 d1- = Cov(ut, et_1+1), (4.24)
where u, = C(B)et.
The d‘l 's are derived by multiplying
a(B) uy = b(B) et (4.25)
by € i+l and taking expectations. The computations are
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dy =3, d; ( +3,dy 5+ ..o 3y 4dy - b, 4 for §=2, ..., v,  (4.27)

where b = ...=Db =0 if r > gq+l.

q+l r-1

Algorithms DCUEA (a,b,c) and DCUEB (a,b,c)

The functions DCUEA (a,b,c) and DCUEB (a,b,c) compute the derivatives
of CUE (a,b,c) withrespectto a and b, respectively. The results have r
rows, and p columns and ¢ columns, respectively, where
r = max(p+R-1, g+1). From (4.26) and (4.27) we have

ad 3d; 4 ady

52, - YU oan + ... G153t di—j , for i>1 and j<i; (4.28)
J J J

ad 3d; 4 3dy

5. - 1 5p et Y341 35, , for i>1 and j<i-1l; (4.29)
J J J

ad; di_q ad;

= & - + co0 + a k- 1 fOl' i>1. (4030)

3b1-1 1 ab_i_l 1“'1 Bbi_l ’ ’

ad;

-— =0 otherwise. (4.31)

abj

Algorithm VU (a,b)
Using the model (4.25), the function VU(a,b) computes the vector

vl, v2, cevy Vp+1 where

of vy = Cov(ue, Uy 4.4).

Multiplying expression (4.25) by Ui 541 and taking expectations yields the
following system of equations.



Vpel T 1Vp T Vpg T oeee - 3pVp = - bpd1 - eee - br-ldr-p' (4.33)

where qu,_1 = .. = br-—l = 0 if r>q+l, and dl’ cens dr is the result of
CUE.

Algorithms OVUA (a,b) and DVUB (a,b)

The functions DVUA (a,b) and DVUB (a,b) compute the derivatives of
VUu(a,b) with respect to @ and b respectively. The resuits have p+1 rows,
and p columns and ¢ columns, respectively. The system of equations (4.33) may

be written as
Dv = e (4.34)

where D is the (p+l) by (p+l) matrix on the left hand side of (4.33) and e s
the (p+1)-dimensional column vector on the right hand side. We therefore have

V. _ -1|se aD
sa; =0 [sa; ~ GGag) (4.33)
i i i
and
av -1 je
il (Ei.), (4.36)

To compute 3e/ 3, and Je/ ab1 we need the results of DCUEA and DCUEB.
Note that 3D/ 3a; does not depend on the value of a, only on its
dimensionality.



- 38 -

We have, for i>1,

e, ad ad.. .
i 1 r-i+l
— =-b, s ===~ ... -b, 4 —, (4.37)
aaj i-1 aaj r-1 aaj
e, ad ad_, .
i 1 r-i+l
By "7 PieLapy T T Peel Taby T Ygie (4.38)
The expressions for ael/ 3a j and ael/ ab j can be derived analogously.
Algorithm INITV (a,b,c)
For model (4.20), the function INITV (a,b,C) returnsa 2r byr matrix

where r = max{(p+R, q+1). The first r rows of the result correspond to
Vl(OIO) in (2.83), and the last r rows correspond to VO(OIO) in (2.84) for

g2=1.

The algorithm proceeds by constructing the matrix M from (2.78) and Al and
A2 from (2.73) and (2.74). Note that A1 contains a;, ey a;+R whieh is
obtained from POLYMULT (a,c). The matrix Vu in (2.84) is given by

Vl VZ LI vmax(p,l)

V = vy Vi v (4.39)

vmax(p,l) Vp-l i

where {v 1} is the solution to (4.34).

The matrix cUE in (2.84) is given by

dy dy ... d
Coe = [0 dp «-- di,
0 0 ... dr-max(p,l{
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where {di} is the result of CUE(a,b,c). Matrices V,(010) and V,(010) are
then computed from (2.83) and (2.84) for o2=1,

Algorithms DINITVA (a,b,c) and DINITVB (a,b,c)

The results of DINITVA (a,b,c) and DINITVB (a,b,c) area 2rbyrbyp
array and a 2r by r by q array, respectively, corresponding to the derivatives of
the result of INITV (a,b,c) withrespectto a and b. Letting K = AlM'l, we

have
i [( J(“*)} (4.41)

where 33/2a is the result of DPLYMLTA (a,C). From (4.41) we obtain 2K, /22,
and aKz/aai, being the first max(p,l) columns and the last R columns of
3K/ 3a, respectively. The expressions for the derivatives of V'_l and CUE can be
obtained from DVUA(a,b), DVUB(a,b), DCUEA(a,b,c) and DCUEB(a,b,c)
applied to (4.39) and (4.40).

Thus, we have

aV,(010) 3K 3K
1 _ 2, ! a2y
aa, B aa,] K2 + Kz(aa.) s (4.42)
1 1 i
aVl(OIO)
b, -0 (4.43)
i
av (0|0) akK V . 3K
0 _ 1 1
7, '(anVK1+K1 7, l(1“'(1"[ )
aK
UE
)CUE , I‘1(a ) A,
C aK
3 UE,' ' ' 1,
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2V (010) V. CuE 3A

Lk (U 3 UEy ,' 2y
=, - Ml) K %1 (3B, ) Ay + K Gy (g7
3A C
2 ] 1 a UE ] ]
+ (SB;] Coe K1 # Az(aB;“) Ky
BAZ ] aAZ '
+ (Ei-) A2 + Az(ST:'i') . (4.45)

Algorithm SETUP (A, a, v, B, &, ¥, 0%, 12, S, d, D, L)

Consider now the model given by (4.1) to (4.10), including the regression
coefficients, b. SETUP returnsa (2r+l) by r matrix, where

r = max(sP + p + sD + d, sQ + g+l)
+ max(m, n+l) + L (4.46)

The first row of the result is mO(OIO) = 0,

The next r rows correspond to Vl(OIO) for the r-dimensional state vector

and the last r-rows correspond to VO(O 10).

The state vector is made up of three parts. The first L components
correspond to the regression coefficients, b. The next max(sP + p + sD + d,
sQ + g+1) components correspond to the ARIMA model for {et} given by (4.1)
and the last max(m, n+l) components correspond to the ARMA model for the
{et} given by (4.2).

The algorithm SETUP proceeds as follows.

1. Let A* = (x’l*, cees x;P) be defined as
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0 otherwise.

1

¥Q

0 otherwise.

Let v* = (0, 0, ..., 0, 1) an s-dimensional vector.

S

2. Let a be the result of POLYMULT (x*, a);let b be the result
POLYMULT (v*, 8); let C be the result of

POLYMULT (POLYPOWR(7;, D), POLYPOWR (1,d).

3. Compute INITV (a, b, c). Let the result be

V1.1
V0,1

Compute INITV (e, ¥, null vector). Let the result be

0,2

of
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4. The (2r + 1) by r matrix result of SETUP is:

-

r0 0

I 0

V1.1

0
0
o?V

. (4.47)

o 0O o0 O O o

0,1
0 w2V

©C O o o o

0,2 ]

Algorithm DSETUP (A, a, v, B, &, ¥, 0%, 12, 5, d, D, L)

Algorithm DSETUP computes the derivatives of the result of SETUP with
respect to the unknown parameters, A, a, v, 8, and o?. The result is a
(2r+1) by r by (P+p +Q+ g+ 1) array. To compute this, we need:
3a/3a given by DPLYMLTA (a, x*), 3a/ar given by every S-th column of
DPLYMLTA (A*, a), ab/ag given by DPLYMLTA (8, v*) and 3ab/av  given by
every s-th column of DPLYMLTA (v*, B8).

Computing the results of DINITVA (a,b,c) and DINITVB (a,b,c) we obtain

vy ) (avl 1)(22)

A 3a ’‘‘aa

3V 4 ) (av1 1)(22)

Ja dd Ja

3(o® Vg 1) _ z(avo 1)(22
ax ¢ 2a ‘\aa
a(oz vo 1) - 2(3V0 1 (8_(;
g g 2a ’\3a

8(02 VO 1] _ BVO 1

v 9 b

ao? V
aB

1)
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a(cz VO 1)
—_—— L v
'k 0,1

All other derivatives of (4.47) will respect to the unknown parameters are

zero.

4.4 Likelihood Function Algorithms

The algorithm to compute m(010) and V(010) and their derivatives is given
by SETUP and DSETUP in Section 4.3. The model is completed as follows.
We let F be the r by r matrix

IL 0 O
F=10 F1 o |, (4.47)
0O o F2
L -

where r is given (4.46), F1 and FZ are given by (3.9) and (3.10). Welet G
be the r by 2 matrix

0 0
G = Gl o i, (4.48)
where Gl = (1, -bl, crey = bq+sQ)| for b being the result of

POLYMULT(\»*,B), and G2 = (1, - Ugs oees wn)'. Finally, we let
I t _1
ht = (xt, 1, ..., O, kt s 0y coey 0). (4.49)

The modified Kalman filter recursions were given in section (2.3) so we will
not give details here.

The derivatives will also be required. In terms of storage requirements, it is
only necessary to keep the most recent version of m and V. The {at} and

{vo(t)} and its derivatives will be needed for all t such that vl(t) = 0.

To facilitate the process, it is worthwhile to have algorithms FMULT(x) and
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DFMULTA(x) which compute the results of Fx, (aFx)/ax and (aFx)/3a,

where X is an r-dimensional vector.

Finally, algorithms should be set up to compute the marginal log-likelihood
funetioning (2.61), its derivatives (2.62) and the information matrix (2.64).

4.5 Other Algorithms

The details of the Davidon-Fletcher-Powell algorithm are given in
Section 3.5. Computations for fixed point smoothing are given in Section 3.3
and confidence intervals are computed as in Section 3.4. It should be noted
that the addition of the regression coefficients to the model does not change

the general discussion of those sections.

5. FURTHER RESEARCH

In this paper we have given a detailed discussion of methods to incorporate
survey errors in ARIMA modelling. Other models which can be formulated

within the state-space framework could use a similar approach.

A suggestion was given in Section 3.5 for maximizing the likelihood funection
but research into alternatives would be useful. Also the confidence intervals in
Section 3.4 used asymptotic approximations whose validity could be checked by

simulations for finite samples.

It was suggested in this paper that the survey errors can often be
approximated by an ARMA process, at least up to a multiplicative constant.
Methods for estimating these parameters from various survey designs have not
been well developed. Also the confidence intervals have ignored the variation
due to the estimation of the survey error variances. This topic deserves further

study.
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