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TIME SERIES MODELLING AND SMOOTHING 

METHODS FOR SAMPLE SURVEYS 

by 

David A. Binder 
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ABSTRACT 

Classical seasonal ARIMA models and their state-space representation are 

reviewed. The modified Kalman filter and modified fixed point smoothing 

algorithms using partially improper prior distributions are shown. The adaptation 

of these techniques to data which are subject to correlated survey error is given. 

We discuss likelihood maximization, smoothing methods and confidence interval 

estimation. Some of the algorithms needed to perform the computations are 

described. 

Keywords: ARIMA models; Confidence intervals; Correlated survey errors; 

State-space models. 

ACKNOWLEDGEMENTS 

The author is grateful to Statistics Sweden for supporting this research. 





CONTENTS 

Page 

1. Introduction 1 

2. Integrated Autoregressive Moving Average Models and 

Their State-Space Representation 3 

2.1 ARIMA Models 4 

2.2 State-Space Models 5 

2.3 Modified Kalman Filter 6 

2.4 Modified Fixed Point Smoothing Algorithm 8 

2.5 Marginal Likelihood Function 11 

2.6 State-Space Representation for ARIMA Models 13 

3. ARIMA Models with Observations Subject to Survey Error 20 

3.1 ARMA Models for Survey Error 20 

3.2 The Data Model 21 

3.3 Data Smoothing 24 

3.4 Confidence Intervals 26 

3.5 Likelihood Maximization 28 

4. Computations 32 

4.1 The Model 32 

4.2 Polynomial Algorithms 34 

4.3 Initialization Algorithms 35 

4.4 Likelihood Function Algorithms 43 

4.5 Other Algorithms 44 

5. Further Research 44 





1. Introduction 

Survey organizations, both governmental and non-governmental, conduct surveys 

with similar data items on repeated occasions. As a result, estimates for a 

characteristic of interest are available over a number of time periods. This can 

lead to methods and analyses which are generally not available for single cross-

sectional surveys. 

We denote the true underlying value of a population characteristic by 9. at 

time t . Generally, this would be a mean, proportion, total or ratio. In the case 

of a sample survey, the true underlying value cannot be directly observed. 

Instead, we have a survey estimate, y .̂. Sometimes, we can have a vector of 

survey estimates, each with the same mean. For example, in the case of a 

rotating panel survey with no rotation group bias we have estimates y , . , y~ t , 

. . . , y t each with mean Q., where g is the number of rotation groups. In 

general, we denote by y. the vector of survey estimates. 

Usually the survey estimates are related over time. This relationship can be 

separated into two main components. The component usually considered by the 

data producers (the survey organization) is the relationship of the sampling error, 

denoted by e t , over time. If the eJs are correlated, then the past data can be 

used in the estimate for the current occasion. This can reduce the sampling 

error of the estimate, compared with the sampling error of the estimate which 

ignores the previous data. 

The data users (including some users in the survey organization) are more 

interested, though, in the relationship of the underlying process {e.} over time. 

The common practice for these users is to ignore the sampling error and to fit 

models to the data as if these data are observed without error. In this paper we 

discuss a method for incorporating these survey errors into certain models. In 

particular, we concentrate on the case where the underlying model is a seasonal 

ARIMA model and the survey errors can be represented by an ARMA process up to 

a multiplicative factor. This is an extension of the models discussed in Binder 

and Dick (1988) and Binder and Hidiroglou (1988). 
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An additional benefit is also available to the data producers by assuming such 

models for the underlying process. We have pointed out that estimates can be 

improved by taking account of the structure of the sampling error over time. 

Further improvements can also be achieved by incorporating the assumptions of 

the underlying model for the 9.'s. We refer to this as data smoothing. 

However, the improvements tend to be small when the survey error is small 

relative to the errors of the assumed model. Therefore, such a procedure is not 

generally recommended, unless the survey errors are moderate, such as would be 

the case for small area estimation. 

A general framework for this process was given by Jones (1980) as follows. Let 

e t = ( 8 i , 9 j > , . . . , 9 t ) be the vector of underlying population values which 

we want to estimate. We assume that e. is multivariate normal with mean y. 

and covariance V.. This is the assumed model for the underlying population 

process. This formulation would not be appropriate in the case of non-stationary 

ARIMA models. 

The survey observations are given by the vector Y., where 

(1.1) 

and e. is a multivariate normal vector of survey errors with mean zero and 

covariance IL. The matrix, X., is usually a matrix of O's and l's linking the 

expected values of the survey estimates to the underlying population values. 

Here we assume that the survey samples are sufficiently large that the normal 

approximation to the survey sampling error can be used. The normality 

assumptions are not necessary though, as the resulting estimators will be 

minimum mean squared error if we assume the same structure for the means and 

covariances, without any additional distributional assumptions. 

Now, using conditional arguments, the conditional expectation of e. given Y. is 

(1.2) 

with conditional variance matrix given by 
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(1.3) 

We note that if VI is relatively small, so that the variance of the model for e. 

is large, then (1.2) and (1.3) reduce to the minimum variance linear unbiased 

estimators given by Gurney and Daly (1965). 

However, expressions (1.2) and (1.3) are often impractical to apply directly, since 

the matrices to invert have the same dimensionality as the vector e,.. Also, the 

matrix V. will often depend on unknown parameters which must be estimated. 

In this article we will assume that e. follows an ARIMA process with some 

unknown parameters. We will also assume that the survey errors can be 

described by an ARMA process up to a multiplicative factor. It will be assumed 

that the parameters of this survey error process can be estimated from the data 

using design-based methods. The details of this estimation will not be given 

here. 

In Section 2 we describe how ARIMA models can be formulated using a state-

space approach. This is particularly useful for formulating the likelihood 

function and its derivatives. In general, we use the marginal likelihood approach 

given by Kohn and Ansley (1986). 

In Section 3 we describe our model within the state-space structure and discuss 

the estimation of the parameters. This is an extension of the models in Binder 

and Dick (1988) which consider only ARMA models. In Section 4 we detail an 

algorithm for performing the computations. Section 5 discusses future research. 

2. Autoregressive Integrated Moving Average Models 
and its State-Space Representation 

Before describing the complete model for our problem in Section 3, we review 

ARIMA models and a state-space representation for this model. We also review 

the modified Kalman filter given by Kohn and Ansley (1986) and the fixed point 

smoothing algorithm. In Section 3 we formulate our complete model within the 

state-space framework. We closely follow the formulation and the marginal 

likelihood approach in Ansley and Kohn (1985) and Kohn and Ansley (1986). 
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2.1 ARIMA Models 

An ARMA (p,q) model for the random variables 9 , , Q9, . . . , 8T is defined by 

(2.1) 

where {et} are independent N(0,a ). Defining B as the backshift operator, 

so that B e. = 9^ and similarly B ê . = e. , expression (2.1) can be written 

more compactly as 

(2.2) 

where a(B) = 1 - c^B - . . . - a BH and 6(B) = 1-e^ - . . . - 8 BH. For 

stationarity it is assumed that the roots of the polynomial, <x(B), are all 

outside the unit circle. The ARIMA (p,d,q) model is an ARMA (p,q) model 

defined on v 8., where 7 = 1-B, the differencing operator. Thus, the ARIMA 

(p,d,q) model is 

(2.3) 

For example, for an ARIMA (1,1,1) model, expression (2.3) is 

(1 - aB)(l-B) e t = (1-BB) e t . 

By formally multiplying out the polynomial a(B)v , we see that (2.3) has the 

same structure as (2.2) except that some roots of the resulting polynomial are on 

the unit circle. The seasonal ARIMA (p,d,q)(P,D,Q) model is given by 

(2.4) 

where 

and 

The value of the seasonal factor, s, corresponds to the periodicity of the series; 

for example s=12 with monthly data, s=4 with quarterly data. For example, for 
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an ARIMA (1 , 1, 1 ) (1 , 1, 0 ) . model, expression (2.4) is 

( l -XB4)( l-aB)(l-84)( l -B) 9 t = (1-eB) e t . 

Again, we see that (2.4) has the same structural form as (2.2). The complication 

introduced by the non-stationarity of (2.3) or (2.4) is that we must use a modified 

Kalman Filter which carries a component corresponding to an improper 

distribution. 

2.2 State-Space Models 

We now describe a general state-space model. In Section 2.6 we show how the 

ARIMA model can be structured into a state-space form. In Section 3, the 

models we use can also be structured into the same general state-space form. 

We start by defining random vectors, called state vectors, ZQ, Z< , Zp, . . . . 

each of dimension r. These state vectors are not directly observable in most 

cases. Instead the observations are given by 

(2.5) 

where ht is a known r-dimensional vector. The initial conditions are that ZQ is 

multivariate normal with mean 

(2.6) 

and variance matrix 

(2.7) 

Without loss of generality, we will assume that mQ(0|0) = 0. It will be assumed 

that k is large, so that (2.7) is the covariance matrix for a partially diffuse 

distribution. 

The transition equation is given by 

(2.8) 

where F is an r by r known matrix, G is an r by n known matrix and e^ is 

a multivariate normal n-dimensional vector with zero mean and diagonal 
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covariance matrix U. Note that the models could be extended so that F and G 

depend on t , but we do not use this in this article. 

2.3 Modified Kalman Filter 

Because the initial conditions represent a partially diffuse distribution, the usual 

Kalman filter is not appropriate. See Anderson and Moore (1979) for the usual 

Kalman filter. We give here the modified filter as described by Ansley and Kohn 

(1985). We have adapted these to handle the case of a vector-values e t , rather 

than the one-dimensional case. Readers who wish to skip the detailed formulae 

may continue with Section 2.4. 

We denote the conditional mean of z t given y-,, y ? , . . . y by ra(tlT;k) and 

i t s conditional variance by V(tlx;k). We allow for missing y-values. 

The recursions are given as follows. We define 

(2.9) 

where 

(2.10) 

if y t + i is not missing, we define 

(2.11) 

and 

where 

(2.13) 

and 

(2.14) 
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if y t + i is not missing, we define 

(2.15) 

and 

(2.16) 

We note that when y. , is not missing, a. , is a normal random variable 

which, conditional on y.., . . . , y . , has mean zero and variance given by 

(2.17) 

Finally, the updating formulas given observation y. . are as follows: 

(2.18) 

and (2.19) 

where, (i) for y t + , missing, 

(2.20) 

(2.21) 

(2.22) 

for not missing and 

(2.23) 

(2.24) 
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for not missing and 

(2.25) 

(2.26) 

(2.27) 

For details of the proofs of these recursions, see Kohn and Ansley (1986). We 

note that when y. . is not missing and v , ( t+ l ) > 0, the rank of iMt+ l l t+ l ) 

is less than the rank of V ^ t + l l t ) , since V,( t+l | t+ l ) h . + 1 = 0, but 

h ^ j V ^ t + H t ) h t + 1 f 0. Therefore, if the rank of V^OlO) is R, then the 

rank of V, ( t i t ) will be zero after R non-missing values. At this point, we are 

certain that v,(T) = 0 for all T>t. 

The recursions given by (2.9) to (2.27) yield nu(T | t ) , V^-rlt) and V^x l t ) for 

x=t or T=t+1, and t = l , 2, . . . , T. These will prove useful for obtaining the 

marginal likelihood function in Section 2.5. 

2.4 Modified Fixed Point Smoothing Algorithm 

In Section (2.3) we obtained the conditional mean and variance of the state 

vector at time t given the data up to time t . For some purposes, though, we 

would like to have the conditional mean and variance given all the data, 

including observations which occur after time t . We denote this mean and 

variance by m(tlT;k) and V(rlT;k) for T>T. To obtain these, we apply (2.9) 

to (2.27) to an augmented state-space model. 

In particular, we let 
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•jt I I I 

and h.. = (Iv, 0 ) . Here I is the r by r identity matrix. The state-

space model is given by (2.5) and (2.8) where z . , F, G and \ are replaced by 
* * * * 

z t , F , G and ht , respectively. We denote Cov(z., z^ly^, . . . , y$) by 
(2.28) 

The detailed recursions are given by (2.29) to (2.52). Some readers may wish 

to skip to Section 2.5. 

(2.29) 

(2.30) 

(2.31) 

and (2.32) 

where V , ( T | T ) and V Q (TIT) are obtained from the modified Kalman filter of 

Section 2.3. 

Now, 

(2.33) 

where 

and (2.34) 

The updating equations become 

(2.35) 

(2.36) 
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(2.37) 

where, (i) for y. , missing 
(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(ii) for y. , not missing and v , ( t+ l ) = 0 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(in) for y. + . not missing and 

(2.48) 

(2.49) 

(2.50) 
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(2.51) 

(2.52) 

We note that in the fixed point smoothing algorithm, if we are only interested in 

a linear combination of z , say g z for some fixed vector g, the 

computations are reduced, since we only need to carry C-. ( s , - r | t )g , 

CQ(s , t | t )g , g V-. (T I t )g and g V 0 ( r | t )g through the recursions, where S=t 

or s=t+l. These results generalize slightly the modified fixed point smoothing 

algorithm in Kohn and Ansley (1986), where only y = h z for missing y-

values were of interest. 

2.5 Marginal Likelihood Function 

In Section 2.2 we obtained recursions for the mean and variance of y. given the 

non-missing values of y-., . . . , y t , . We found that a = y _ n ' m n ( t l t - l ) 
L U l» yJ 

given the non-missing values of y ^ . . . , y ^ is n o p m a l l y d i s t r i b u t e d w i t h 

mean O (k"1) and variance k v ^ t ) + vQ(t) + Q ( | ( - 1 ) # T h e r e f o r e > f o r a n y 

given k, the density function for {yA is f(y;k) where 

(2.53) 

and the summation is taken over the non-missing y-values. 

However, as k this becomes an improper density function. To remedy this, 

we consider a marginal density function which does not depend on k. 
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The starting conditions for the state-space model were that ZQ was normal with 

mean zero and variance kV-. (OlO) + VQ(0|0), where the rank of V^(010) is R. 

This is equivalent to assuming 

(2.54) 

where A is an r by R fixed matrix, n is an R-dimensional N(0,kl„) random 

variable, where IR is the R by R identity matrix, and u is an r-dimensional 

N(0,W) random variable, independent of n-

The density function for zQ is 

(2.55) 

Consider now 

(2.56) 

We have 

and 

(2.58) 

Now the quadratic form given by the right hand side of (2.58) is the same as for 

the density of 

(2.59) 

which is independent of n and independent of A!»!" ZQ. Therefore the limit of 

the density function in (2.56) is proportional to the singular normal density 

function for the random variable given by (2.59). We use this marginal density 

function which does not depend on the value of k. The interpretation is that our 

inferences are conditional on AW" zQ, so that the initial condition is that ZQ 

has a singular multivariate normal distribution. 
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To obtain the marginal likelihood for all the data, we take 

(2.60) 

where f (y;k) is given in (2.53)t°and we normalize expression (2.60) to a density 

function. The logarithm of the resulting density function is 

(2.61) 

where the summation is over the non-missing y-values. Suppose now that i(y) 

depends on a vector of parameter y Taking derivatives with respect to y> we 

have 

(2.62) 

where, from (2.11) we have 

(2.63) 

We also have 

(2.64) 

The maximum likelihood estimates for y are obtained when expression (2.62) is 

zero. The asymptotic variance of this estimate is given by inverting the matrix 

given by (2.64). 

2.6 State-Space Representation for ARIMA Models 

In Sections 2.2 to 2.5, we presented results for general state-space models. In 

order to implement these for our application, we show how ARIMA models 

presented in Section 2.1 can be represented in this form. We will also develop 

the initial conditions, as given by Ansley and Kohn (1985). 
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Consider the ARIMA (p*,d,q*)(P,D,Q)s given by 

(2.65) 

where e , , e,,, •••» e-r are independent N(0,a ). We define 

a(B) = x(BS)a*(B) which is of degree p = p* + sP. 

We also define e(B) = v(BS)e*(B) which is of degree q = q* + sQ. We let 

A(B) = v|jvd which is of degree R = d + sD. Finally we let a*(B) = a(B)A(B) 

which is of degree S = p+R. Therefore the model (2.65) may be written as 

(2.66) 

or (2.67) 

where (2.68) 

(2.69) 

(2.70) 

and (2.71) 

For example, for an ARIMA ( 1 , 1 , 1 ) ( 1 , 1 , 0 ) . model given by 

we have 

and 

Note that p=5, q=l, R=5 and S=10. 
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We now define z. = (Zit> •••» z r t ) , the state vector. Let r = max(S,q+l). 
If S<q+1, we define a^+, = . . . = a = 0. If S>q+1, we define 
8q+l = ••• = 6 r - l = °' We l e t 

(2.72) 

where 

(2.73) 

an r by [max(p,l)+R] matrix, and 

(2.74) 

an r by (r-1) matrix. 
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Now for h t = (1 ,0 , . . . 0 ) ' , 

(2.75) 

and G = ( 1 , -&•,, -By,, . . . , -8„ i) we have 6. = h. z. satisfies model 

(2.67) when the state vectors given by (2.72) satisfy the transition equation (2.8). 

This representation for model (2.67) was given by Harvey and Phillips (1979). 

To complete the specification of the state-space formulation, we need initial 

conditions. Taking model (2.66), we let A(B)ef = u., so that 

(2.76) 

We assume that this ARMA (p,q) model for {u.} is stationary. The following, 

given by Ansley and Kohn (1985), specifies the initial conditions for zQ. Note 

that m0(0|0) = 0, so we need to specify V^OlO) and VQ(0|0) of (2.7). 

Consider the vector 9_ = (8Q, 8 , , . . . , 9 <. •.) . Let 

1 = (9_p» e _p_l ' ••• » 8-S+l^' W e d e n o t e u - = (uo» u_i» •••• u - p + l ) ' ' 

We assume t) 1s N(0, kID) and U_ is N(0, a2 V,,), independent of n. 
K U 

Expressing n and u_ as a function of 9_, we obtain 

(2.77) 

where M is a [max(p,l) + R] - square matrix. This matrix is the identity 

matrix if R=0; otherwise it is 
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(2.78) 

For example, when A(B) = (1-B )(1-B), and p=5 as in the 

ARIMA ( l , l , l ) ( l , l , 0 ) d example, we have 

Therefore, 

(2.79) 

Since (2.80) 

where e_ = (eQ, e «, . . . , e_r+o) ' if ^ j 2 and e_ is the null vector if 

r=l, we have 

(2.81) 
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This may be written as 

(2.82) 

where K, is the first max(p,l) columns of A,M~ and K2 is the last R 

columns of A,M . Therefore, the variance of zQ is kV^OlO) + VQ(0|0), 

where 

(2.83) 

and 
(2.84) 

where the matrix Cyr- is the covariance between U and e and o V is the 

covariance matrix for U . 

In Section 4 we describe a method for obtaining V and C.,p. 

A simple example is given now to show how these computations are carried 

out. Consider the ARIMA (1,1,1) model given by 

Therefore, 

so that p=l, q=l, R=l, S=2 and r=2. We have 
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and 

Therefore, 

so that 

and 

Using the methods described in Section 4, we find 

and 

where v = (1 - 2 o V ) / { ! - ( < * ) 2 } . 

Therefore, 
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This completes the specification of the ARIMA models in state-space form. In 

the next section we show how this can be extended to the case where the 

observations are subject to survey error. 

3. ARIMA Models with Observations Subject to Survey Error 

3.1 ARMA Models for Survey Error 

When a time series {e.} which follows an ARIMA process is observed exactly, 

the likelihood function for the unknown parametors can be derived using the 

state-space formulation given in Section 2. Recursive relations for the 

derivatives of the likelihood function can also be obtained using methods given in 

Section 4. 

However, when the observed time series is the result of a series of sample 

surveys, the survey sampling error should be taken into account when deriving 

the likelihood function. The actual structure of the survey error will depend on 

the sample design and the population characteristics. We let y t = 8 t + e t for 

t = l , . . . , T be the observed series where et. is the survey sampling error. The 

simplest case is where the surveys are non-overlapping with small sampling 

fractions so that the e.'s are approximately independent. 

In a rotating panel survey, the e.'s will be correlated. Suppose there are q 

panels and one is dropped and replaced by a new independent panel on each 

occasion. The panels rotate so that an entering panel leaves the survey after q 

time periods. Assuming small sampling fractions, this implies that the 

correlation between e. and e„ is zero for s > t + q. If the correlations are 
t s ^ 

constant, this implies that kfc e t is a pure moving average process, ARMA 

(0,q) . Here, k. can vary to reflect different variances for each point in time, 

although the autocorrelations are assumed constant. 
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If on each occasion a random set of units is dropped, it may be reasonable to 

assume that e., or at least a multiple of e . , given by k. e . , is first order 

autogressive, ARMA (1,0) . This implies that the correlation between k. e, 

and k. e. is a for some a. 

We see, therefore, that it can often be assumed that k. e. is an ARMA 

process. It may be possible to assume other structures which admit a state-

space form and what follows could be modified to satisfy that structure. We also 

assume that the parameters of the state-space model can be estimated using 

design-based methods. This is not necessarily straight-forward in general, and 

more research into estimating these parameters is needed. However, here we 

assume that these parameters are known. 

3.2 The Data Model 

The complete model we wish to consider, therefore, is the case where {e.} is 

an ARIMA process and the survey errors, {ef}, follow an ARMA process. Using 

the modified Kalman filters, we will develop the marginal likelihood function. 

Maximizing this function with respect to the unknown parameters yields 

parameter estimates. In this way, we can estimate the parameters of an ARIMA 

model in the presence of survey errors. 

In traditional ARIMA modelling with no survey error, the series is differenced 

using A(8) so that the derived series is a stationary ARMA process. However, 

in our application, differencing the survey estimates would complicate the 

covariance structure of the survey errors. The approach given here is easier to 

implement and missing y-values can be handled within the same framework. In 

Section 4 we introduce regression terms into the model as well. 

As in Section 2, we let 9 t can be described by the ARIMA model: 

(3.1) 

where (3.2) 
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(3.3) 

(3.4) 

and the E.'S are independent N(0,o2). 

We now assume k. e. follows an ARMA (m,n) model 

where 
(3.5) 

(3.6) 

and the r\Js are N ( 0 , T 2 ) . The observations are given by 

(3.7) 

This model can now be put into state-space form. 

We let 

(3.8) 

where S = p+R. We let r , = max(S, q+1), r„ = max(m, n+1) and r = h ,+r2 . 

We let h, = ( 1 , 0, . . . , 0) bean r,-dimensional vector, 

h ? t = (k7 , 0, . . . , 0) bean r «-dimensional vector and h. = (h , , hpt) • 

We let F, be the r , by r , matrix given by 
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(3.9) 

where, if S<r„ then a*s+, = . . . = a* = 0. We let F~ be the r„ by r~ 

matrix given by 

(3.10) 

where, if IIKT^, then A « = . . . = A = 0 . The rxr matrix F is given by 

(3.11) 

We let G, by the r<-dimensional vector given by 

Ĝ  = ( 1 , - 8 p . . . , - s r _ j ) ' , where, if q < r ^ - l , then 

B . i = . . . = 8 i = 0. We let Gp be the r^-dimensional vector given by 

G« = ( 1 , - <l>i, . . . , -4» i) , where, if n <r»-l» then 

4» I = . . . = 4» , = 0. The matrix G is an r by 2 matrix given by 
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(3.12) 

Finally, letting 

(3.13) 

completes the specification of the transition equation (2.8). 

For the initial state vector, we let nu(0|0) = 0. We let 

3.14) 

where V1 -, (010) isan r , by r , matrix derived analogously to (2.83). We let 

3.15) 

where V\ Q(010) isan r , by r , matrix derived analogously to (2.84), and 

Vp Q(0 10) is also derived analogously to (2.84), using the parameters 

4>i » • • • » <l>„ a n d x 2 . 

This completes the specification of the data model in state-space form. From 

this, using the modified Kalman Filter, the marginal likelihood function given by 

(2.61) can be derived. 

3.3 Data Smoothing 

Our observations consist of y. = 9. + e . , where e t is the survey sampling 

error, for t = l , . . . . T. The population characteristics of interest are 

9«, . . . , 9j . Once all the parameters of the state-space model have been 

estimated, we can use the modified fixed point smoothing algorithm to obtain 

E(9Tly l f . . . , yT) , for x<T. 
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In particular, for the state space model of Section 3.2, with state vectors 
i i i 

Z p . . . . Zp we have 9 = g z , where g = (h , , 0, . . . , 0) . Using the 
modified fixed point smoothing algorithm of Section 2.4, we can obtain 

(3.16) 

and 

(3.17) 

We now extend this to the estimation of change, 8 - 9 for TXD. From 
T O ) 

Section 2.4, starting at t=w and continuing to t=x, we obtain 

(3.18) 

(3.19) 

and 

(3.20) 

The quantities given by expressions (3.18) to (3.20) can then be used in the 

modified fixed point smoothing algorithm, using 9 - 9 as the fixed point, so 

that the state-space model is 

(3.21) 

with observations 

(3.22) 

for 
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This procedure could be generalized to obtain the conditional mean and 

variance of any linear combination l,Q, + l~ 8? + ... + &j9j for fixed values of 

i , , . . . , l-r. In this case the state-vector used in place of (3.21) is 

(z. p l-, 8, + — + lt90 and t n e a s t r o w and c o l u m n of t n e conditional 
variance matrix must be updated analogously to expressions (3.19) and (3.20). 

3.4 Confidence Intervals 

In the model of Section 3.2, the unknown parameters are a , , . . . , a , B-i, 

. . . , 6 and a2. In fact, for the more general seasonal model given by 

(3.23) 

where (3.24) 

(3.25) 

(3.26) 

(3.27) 

and (3.28) 

the unknown parameters are 

To obtain the maximum likelihood estimates, y, for the parameters, Y» 

it is necessary to solve the likelihood equations given by (2.62). Asymptotically, 

Y - y will be approximately multivariate normal with covariance matrix, V , 

given by inverting the matrix given by (2.64). By substituting parameters 

estimates into (2.64), we can obtain confidence intervals for components of Y« 

Hypothesis testing can also be performed. 

In order to obtain the derivative of the likelihood function and the Fisher 

information matrix, given by expressions (2.62) and (2.64), it is necessary to 
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compute aa./3y and 3vQ(t)/3y. Since a. and vQ(t) are obtained recursively 

from the modified Kalman filter, these same recursions can be used to obtain the 

required derivatives. For example, expression (2.14) is 

Differentiating with respect to a. gives 

(3.29) 

since and 

In addition to the confidence intervals for the unknown parameters, we also 

would like to have a confidence interval for our estimate of 9 given y , , . . . , 

yT. If all of the parameters are known, we have the variance given by 

g'V0(-r|T)g, where 9 = g z . This assumes that v.(T) = 0. However, this 

does not include the sampling variance due to estimating the parameters, y. 

Denoting by nuf-clT) the estimate of nt^-riT) at y = y, we take a Taylor 

series expansion of nL(x IT) to obtain 

(3.30) 

Since y is a consistent estimator for y, we have 

(3.31) 

Therefore 
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(3.32) 

To estimate g [anu^xlT/ay], we use the recursions given in the modified fixed 

point smoothing algorithm to obtain the required derivatives. 

3.5 Likelihood Maximization 

In Section 4 we provide some details for the computation of the marginal 

likelihood function and its derivatives with respect to the unknown parameters, 

Y. From this we can compute 8.(y;y), the logarithm of the marginal likelihood 

function, given by (2.61), as well as 3fc(y;y)/3y and 

(3.33) 

A number of routines for maximizing a function are possible. We suggest the 

Davidon-Fletcher-Power method, described in, for example, Dennis and Schnabel 

(1983). Assume that y is a c-dimensional vector. For example, for model 

(3.23), C = P+Q+p+q+1. The algorithm is now described. 

STEP 1: Start with an initial value, y • See Note 1 below. 

STEP 2: Let H' ' = - J, where J as given by (3.34) is computed at y^ ' . 

STEP 3: Perform steps 4 to 6 for i = 1, 2, . . . , c+1. 

STEP 4: Compute «, = - H^1-1^ g^1"1^. 

STEP 5: Compute m. to maximize fc(y;y^ ' + m. « . ) , where m̂  is a 

scalar. See Note 2 below. Set 
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and 

STEP 6: Test for convergence. See Note 3 below. If convergence has been 

achieved, end the algorithm. 

STEP 7: Perform Steps 8 and 9 for 1=1, . . . , c. If i = C+l, let 

T( ) = Y(c+ ) , g0 = g c + 1 and go to Step 2. 

STEP 8: Let ç. = g. - g ^ . 

STEP 9: Compute 

Go to Step 3. 

Note 1 

Starting points can often be difficult. For a problem where c is large, it may 

help to reduce the dimensionality of the problem by setting some of the higher-

order autogressive or moving average parameters to zero. This is known as 

masking. Then after convergence (with a weaker convergence criterion), restart 

with more dimensions, where the starting values are zero for the previously 

masked parameters, and using the converged values from the previous iterations. 

Note 2 

Step 5 is a one dimensional maximization problem. Ideally, if Ĥ  ~ ' is the 

true Hessian matrix and the function is quadratic, then the function is 

maximized at m.=l. We suggest the following procedure. Compute the function 

at mj°) = 1, mj1) = kmj0^ and at mj2 = m|2Vk where k is 2/3, say. Let 

the function values be fQ, fi and f« respectively. Also let f be the 

function value at m. = 0. 
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Case (i); 

When f~ is the largest of fn, f -,, f? and f , fit a quadratic equation 

through m) , m> ' and m) ' ; maximize that quadratic at m> ' and 

(3) compute the function value, f̂  at mi ' .Use m. to be that value for 

which the maximum of f„ and f̂  is achieved. 

Case (ii): 
* 

When f, is the largest of fn, f,t f~ and f , perform the following 

in order: 

3. Compute m> ' = km; ' , compute its function value which is defined 

as the new f •. and check which case now occurs. 

Case (iii): 
* 

When f? is the largest of f̂ , f•., f~ and f , perform the following in 

order: 

3. Compute nu ' = m> ' /k, compute its function value which is defined 

as the new f « and check which case now occurs. 

Case (iv); 
* * 

When f is the largest of fQ, f,, f~ and f , perform the following 
in order: 
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1. Set mi ' to mj ' and f2 to f j . 

2. Compute mj ' = kmi ' and set fQ to its function value. 

3. Compute mj ' = kmj ' , compute its function value which is defined 

as the new f -, and check which case now occurs. 

When setting the m.-values, checks should be made to ensure that the 

m.-values are not too large so as to overstep the parameter space. Useful 

checks are U . | < 1 , lo. I<1, lv. I<1, I8.jl<l and a2 > 0. 

Repeat the procedure until Case (i) occurs. 

The maximum of the quadratic function through m\ , mi ' and m\ ' is 

given by 

(3.34) 

Note 3 

A number of tests for convergence are available. We suggest the following. We 

denote g i = ( g ^ , . . . . g 1 c ) ' and «i = ( « ^ 6 i C ) , # 

The procedure is deemed to have converged if one of the following occurs: 

The program should also abort if there have been a large number of iterations, 

say more than 100c. 
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4. Computations 

4.1 The Model 

In this section we give the detailed algorithms to compute the marginal 

likelihood function and its derivatives with respect to the parameters. The 

assumed model for the observations, y^, . . . , yT , is as follows: 

(4.1) 

(4.2) 

(4.3) 

where (4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

{eA are independent N(0,a2) , {n.} are independent N ( 0 , T 2 ) and {e^} and 

{TU} are independent of each other. For further generality, we will also add a 

regression component to the observations, so that 

(4.10) 

where b is an L by 1 vector. 

The following are assumed known: {•..}, { $ } , {•<.}» (xf}» an< x2. Missing 
y-values are permitted. 
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The regression component in (4.10) can be handled two ways. One way would 

be to let {y^ - x. b} be our observations in the likelihood function. When 

maximizing the likelihood, we would need to add a term for aa./3b in (2.62). 

An alternative would be to add b to the state vector. We would have 

(4.11) 

The advantage of this approach is that the state-space formulation can be 

modified to also include stochastic regression coefficients, so that the transition 

equation becomes 

(4.12) 

where ç. , is multivariate normal with mean zero and a diagonal covariance 

matrix. We do not pursue this here. 

For model (4.11), where the first L components of the state vector 

correspond to b, we have h^ in Section 3.2 replaced by 

(4.13) 

The initial conditions are the Var(b) = kl, so that the modified Kalman filter is 

still appropriate. Initially, we have b is independent of z0. The model 

therefore is: 

at t=0 

(4.14) 

(4.15) 

and (4.16) 

where zQ, V^OlO), VQ(0|0), F, G and ht are all given in Section 3.2. 
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4.2 Polynomial Algorithms 

The following algorithms are used for multiplication of polynomials. These 

algorithms are needed in Section 4.3. 

Algorithm PQLYMULT (a, b) 

Consider two polynomials 

(4.17) 

and (4.18) 

The arguments of the algorithm are a = (a, a ) and 

b = ( b p . . . , b ) ' . The function POLYMULT (a,b) returns the value 

C = (Cp . . . . c )', where 

(4.19) 

Algorithm DPLYMLTA (a . b) 

Given the input parameters as in POLYMULT, this function return a (p+q) by 

p matrix of derivatives of the result of POLYMULT (a,b) with respect to a. 

If c is given by expansion (4.19), we have 

Algorithm POLYPOWR (a, n) 

By repeated application of POLYMULT, the algorithm POLYPOWR (a,n) 

computes the coefficients of [P , (x ) ] n , where Pi(x) is given by (4.17). 
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4.3 Initialization Algorithms 

The following algorithms are used to set up the initial conditions for the 

state-space model. 

Algorithm CUE (a, b, e) 

This algorithm is used to compute the components of C,,r in (2.84). 

Suppose we have an ARIMA process 

(4.20) 

where (4.21) 

(4.22) 

(4.23) 

where c(B) is the differencing term, so that all the roots of c(B) are on the 

unit circle. The {et} are independent N(0,a2) . 

The function CUE(a,b,c) returns values d^, . . . , d r where 

r = max(p+R-l, q+1) and 

(4.24) 

where u^ = c(B)9t . 

The d. ' S are derived by multiplying 

(4.25) 

by e. i + 1 and taking expectations. The computations are 

(4.26) 
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(4.27) 

where 

Algorithms DCUEA (a ,b ,c) and DCUEB (a ,b ,c) 

The functions DCUEA (a,b,c) and DCUEB (a,b,c) compute the derivatives 

of CUE (a,b,c) with respect to a and b, respectively. The results have r 

rows, and p columns and q columns, respectively, where 

r = max(p+R-l, q+1). From (4.26) and (4.27) we have 

(4.28) 

(4.29) 

(4.30) 

otherwise. (4.31) 

Algorithm VU (a,b) 

Using the model (4.25), the function VU(a,b) computes the vector 

Vp v 2 , . . . . v - where 

Multiplying expression (4.25) by IL . . . and taking expectations yields the 

following system of equations. 
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(4.33) 

where b j = . . . = br_j = 0 if r>q+l, and d i , . . . , d is the result of 

CUE. 

Algorithms DVUA (a.b) and DVUB (a.b) 

The functions DVUA (a,b) and DVUB (a,b) compute the derivatives of 

VU(a,b) with respect to a and b respectively. The results have p+1 rows, 

and p columns and q columns, respectively. The system of equations (4.33) may 

be written as 

(4.34) 

where D is the (p+1) by (p+1) matrix on the left hand side of (4.33) and e is 

the (p+1)-dimensional column vector on the right hand side. We therefore have 

(4.35) 

and 

(4.36) 

To compute ae/aa., and ae/abi we need the results of DCUEA and DCUEB. 

Note that aD/aa. does not depend on the value of a, only on its 

dimensionality. 
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We have, for i > 1, 

(4.37) 

(4.38) 

The expressions for 3e-./3 a. and 3e-./3b. can be derived analogously. 

Algorithm INITV (a .b .c) 

For model (4.20), the function INITV (a ,b ,c) returns a 2r by r matrix 

where r = max(p+R, q+1). The first r rows of the result correspond to 

Vj^OlO) in (2.83), and the last r rows correspond to VQ(0|0) in (2.84) for 

a2=l. 

The algorithm proceeds by constructing the matrix M from (2.78) and A., and 

A? from (2.73) and (2.74). Note that A, contains a~, . . . » a R which is 

obtained from POLYMULT (a ,c) . The matrix V in (2.84) is given by 

(4.39) 

where {v.} is the solution to (4.34). 

The matrix C,r in (2.84) is given by 
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where {d^ is the result of CUE(a,b,c). Matrices V^OlO) and VQ(0|0) are 

then computed from (2.83) and (2.84) for a2=l. 

Algorithms DINITVA (a .b . c ) and DINITVB (a .b .c) 

The results of DINITVA (a ,b ,c) and DINITVB (a,b,c) a r e a 2r by r by p 

array and a 2r by r by q array, respectively, corresponding to the derivatives of 

the result of INITV (a ,b ,c) with respect to a and b. Letting K = A,M , we 

have 

(4.41) 

* 
where 3a/aa is the result of OPLYMLTA (a , c ) . From (4.41) we obtain 3K,/3a. 

and aKp/aa., being the first max(p,l) columns and the last R columns of 

3K/aa., respectively. The expressions for the derivatives of V and CUE can be 

obtained from DVUA(a.b), DVUB(a.b), DCUEA(a,b,c) and DCUEB(a,b,c) 

applied to (4.39) and (4.40). 

Thus, we have 

(4.42) 

(4.43) 

(4.44) 
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(4.45) 

Algorithm SETUP ( \ , a, v, B. • , ». a2 , T 2 , S, d, D, L) 

Consider now the model given by (4.1) to (4.10), including the regression 

coefficients, b. SETUP returns a (2r+l) by r matrix, where 

(4.46) 

The first row of the result is IHQ(OIO) = 0. 

The next r rows correspond to V, (010) for the r-dimensional state vector 

and the last r-rows correspond to V Q ( 0 | 0 ) . 

The state vector is made up of three parts. The first L components 

correspond to the regression coefficients, b. The next max(sP + p + sD + d, 

sQ + q+1) components correspond to the ARIMA model for {e.} given by (4.1) 

and the last max(m, n+1) components correspond to the ARMA model for the 

{eA given by (4.2). 

The algorithm SETUP proceeds as follows. 

be defined as 
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otherwise. 

Similarly, let v = (v^, . . . , v Q) be defined as 

otherwise. 

Let V = (0, 0, . . . , 0, 1) an s-dimensional vector. 

2. Let a be the result of POLYMULT (X*. a) ; let b be the result of 

POLYMULT (v*, 8); let C be the result of 

POLYMULT (P0LYP0WR(v*, 0 ) , P0LYP0WR ( l , d ) . 

3. Compute INITV (a, b, c) . Let the result be 

Compute INITV (e , f, null vector). Let the result be 
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4. The (2r + 1) by r matrix result of SETUP is: 

(4.47) 

Algorithm DSETUP ( \ , a, v. 0, • , », o\ T 2 , S , d. D, L) 

Algorithm DSETUP computes the derivatives of the result of SETUP with 

respect to the unknown parameters, X, a, v, 0, and a2. The result is a 

(2r+l) by r by (P + p + Q + q + 1) array. To compute this, we need: 

aa/3o given by DPLYMLTA (a, x*), 3a/3X given by every s-th column of 

DPLYMLTA (X*. a) , 3b/36 given by DPLYMLTA (0, v*) and 3b/3v given by 

every s-th column of DPLYMLTA (v*, 0). 

Computing the results of DINITVA (a ,b ,c) and DINITVB (a ,b ,c) we obtain 



-43-

All other derivatives of (4.47) will respect to the unknown parameters are 

zero. 

4.4 Likelihood Function Algorithms 

The algorithm to compute m(0|0) and V(0|0) and their derivatives is given 

by SETUP and DSETUP in Section 4.3. The model is completed as follows. 

We let F be the r by r matrix 

(4.47) 

where r is given (4.46), F, and F~ are given by (3.9) and (3.10). We let G 

be the r by 2 matrix 

(4.48) 

where G, = (1 , - b , , . . . , - b Q) ' for b being the result of 

P0LYMULT(v*,8), and G2 = ( 1 , - « j , . . . . 4>n)'. Finally, we let 

(4.49) 

The modified Kalman filter recursions were given in section (2.3) so we will 

not give details here. 

The derivatives will also be required. In terms of storage requirements, it is 

only necessary to keep the most recent version of m and V. The {åA and 

{vQ(t)} and its derivatives will be needed for all t such that v^(t) = 0. 

To facilitate the process, it is worthwhile to have algorithms FMULT(x) and 
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DFMULTA(x) which compute the results of Fx, (3Fx)/3X and (aFx)/3a, 

where x is an r-dimensional vector. 

Finally, algorithms should be set up to compute the marginal log-likelihood 

functioning (2.61), its derivatives (2.62) and the information matrix (2.64). 

4.5 Other Algorithms 

The details of the Davidon-Fletcher-Powell algorithm are given in 

Section 3.5. Computations for fixed point smoothing are given in Section 3.3 

and confidence intervals are computed as in Section 3.4. It should be noted 

that the addition of the regression coefficients to the model does not change 

the general discussion of those sections. 

5. FURTHER RESEARCH 

In this paper we have given a detailed discussion of methods to incorporate 

survey errors in ARIMA modelling. Other models which can be formulated 

within the state-space framework could use a similar approach. 

A suggestion was given in Section 3.5 for maximizing the likelihood function 

but research into alternatives would be useful. Also the confidence intervals in 

Section 3.4 used asymptotic approximations whose validity could be checked by 

simulations for finite samples. 

It was suggested in this paper that the survey errors can often be 

approximated by an ARMA process, at least up to a multiplicative constant. 

Methods for estimating these parameters from various survey designs have not 

been well developed. Also the confidence intervals have ignored the variation 

due to the estimation of the survey error variances. This topic deserves further 

study. 
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