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Combining Link-Tracing Sampling and Cluster Samplir.lg to
Estimate Totals and Means of Hidden Human Populations

TN
Martin H. Félix-Medina' and Pedro E. Monjardin

Félix-Medina and Thompson (2004) proposed a va_riant of link-tracing sa@phng in “(])I;;(ce}; ;t iz
assumed that only a portion of a hidden population, such as dr_ug use1sborfsexdeith hi s
covered by a frame of sites where the members of the populaﬂop can‘ e Elént with b fte
probability. A sample of sites is selected and the people on those sites are a; eth.O nominat
other members of the population to be inClqu(: in the s?rl?plef:ti\r’nfztgfsn(s)} teﬁe t(l)ial ang th%,

i nd propose several types of Horvitz-Thompson-like :
CILCesallin(;faa refpogse variable, such as monthly drug expenses or pumber of s‘exutal Pa(l) En;lrest :l/ai
also propose Horvitz-Thompson-like estimators of the variances of the esthlma or 1st ! the tota
and the mean, as well as Wald confidence interval.s for these pgrametefrs. T aei resu st e
simulation studies with real and artificial data indicate that pomt and interv esttima ogse ofthe
total and mean perform well as long as all the assumptions qbout the stated bm?he o e
satisfied and the number of nominees in the portion of the population not cpvered y ame
is ot small, but that their performance deteriorates as the number Qf nominees §01eas§si e
results also indicate that the proposed estimators are robust to deviations from the mode that
describes the numbers of people found on the sites, but not to q§v1at10ns from the.asstugl% "
that every member of the population has the same prgbablllty qf bgu{g n01.mni1 e ! }tfhe
particular site. However, in this case, the proposed estimators still yield estimates
parameters of the correct order of magnitude.

Key words: Capture-recapture; design-based approach; finite population; hard-to—access
population; Horvitz-Thompson estimator; model-based approach; snowball sampling.

1. Introduction

Sampling hidden or hard-to-access human populations, such as drug-users, sex workers%
homeless people and illegal workers, is a challenging problem because of the lack 0d
_appropriate sampling frames. Although several sampling methods have been propo§e
(see Magnani et al. 2005 and Kalton 2009 for recent reviews and references)‘, accord.mg
to Heckathorn (2002) two types of methods are the most commonly used in pract.lcal
situations. These are location sampling, which is also known as time—and—spa.ce samphng,
aggregation point sampling or intercept point sampling, and snowb?ﬂl sampling, which is
also known as link-tracing sampling (LTS) or chain-referral sampling.
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them a sort of systematic sample of people is selected. For descriptions of this method, see
MacKellar et al. (1996), Kalton (2001), Munhib et al. (2001), and McKenzie and Mistiaen
(2009). Although design unbiased estimators of different characteristics of the population
can be constructed, the main drawback of this method is that inferences are valid only
for the part of the population covered by the frame. Clearly, if the sampled portion has
very particular characteristics, the results will not be applicable to the whole population.
Snowball sampling consists in selecting an initial sample of members of the target
population and asking them to nominate their friends who belong to the population. The
nominated people who are not in the initial sample are added to the sample and they might
be asked to nominate their friends who belong to the population. The sampling process
continues in this way until a specified stopping rule is satisfied. For a review of different
variants of LTS see Spreen ( 1992), Thompson and Frank (2000), and Heckathorn (2002).
Respondent-Driven Sampling (RDS) is a variant of snowball sampling that has recently
been used in many studies of hidden populations completed in different countries, It was
proposed by Heckathorn (1997), and improved by Heckathorn (2002), Salganik and
Heckathorn (2004) and Volz and Heckathorn (2008). The particular characteristic of this
method is that after purposively selecting some members of the population (initial seeds),
the other participating members are recruited by previously recruited participants and not
by the researchers. By modeling the recruitment process as an irreducible Markov chain,
those authors use the stationary distribution of the chain to construct asymptotically
unbiased estimators of means and proportions. In recent works, Gile and Handcock (2009)
and Lu et al. (2010) have indicated that some of the assumptions might not be easy to
satisfy in practical situations and that deviations from those assumptions might bias the
estimators. Additionally, RDS is not appropriate for estimating the size of the population
nor the total of a variable of interest unless the size of the population is known.,

One variant of snowball sampling that allows the sampler to estimate the size of the
population is the one proposed by Frank and Snijders (1994). In this one-wave snowball
sampling variant the initial sample is assumed to be a Bernoulli sample, that is, the
inclusions of people in the initial sample are supposed to be independent and equally
probable. Furthermore, the probability that a particular person in the population is
nominated by a specific person in the initial sample, which is called nomination
probability, is assumed constant, that is, it does not depend on the nominator nor on the
nominee. This premise is called homogeneity assumption. Clearly, both suppositions are
difficult to satisfy in practical situations. Frank and Snijders (1994) reported that this
method yielded a reasonable estimate of the number of heroin users in Groningen, but
Dévid and Snijders (2002) reported an underestimate of the number of homeless in
Budapest. The latter authors indicate that the underestimate might be a consequence of
deviations from the assumption of a Bernoulli initial sample.

The problem of selecting, in practical situations, an initial sample that approximately

satisfies the assumptions of a Bernoullj sample motivated Félix-Medina and Thompson
(2004) to develop a variant of LTS in which the initial sample is selected from a sampling
frame. Thus, those authors assume that the sampler can construct a frame of sites, such as
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In location sampling, a frame of primary units is constructed, where these units are
formed as combinations of places and time segments in which the elements of the
population tend to gather. A probability sample of primary units is selected and from each of

. . ) . 5
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parks, bars and hospitals, where the members of the population can be fou1'1d w;th
high probability. They do not suppose that the fr?me covers the whole Popu'latlo?, tu(;
only a portion. Then, a simple random sample without re[.)lacem'ent c?f 31teslls selec Pf

from the frame and the people who belong to each sampled site are 1.dent1ﬁed_. Flgally, as ﬁn
ordinary LTS, the persons in the initial sample are asked to nominate their friends who

opulation. - .
be?l?fs?aﬁicispproposed maximum likelihood estimators (MLEs) of the pop_ulatlon s‘1ze
derived from a probability model that describes the number of c.zl.anents found in each site,
and a model that considers homogeneous nomination propgl?111tles. They found that the
MLEs perform well provided that the nomination probabilities are. not small. Howe;zer,
when these probabilities are small their proposed estimators have serious problems'of 1.as.
Later, Félix-Medina and Monjardin (2006) proposed estimators of the popu?atl‘on size
derived under the Bayesian approach. They found that their estimators perform snmlarl'y to
the MLEs when the nomination probabilities are not small and that there.are no serlc.)us
problems of bias when the nomination probabilities are relatively srr%all. It is worth 1'10t1ng
that those authors used the Bayesian approach to assist themselves in the c'onstrucuon of
their estimators, but they used a frequentist design-based approach to make mferengas tl?at
is, inferences were based on the probability distribution used to select th'e sample, as in finite
population sampling, and not on the final distribution, as in the.: Bayf:smn' approach.

This variant of LTS has not been applied in any practical 31tuat'1or.1, nor has the
performance of the proposed estimators been analyzed 1.1nder deviations from th;c1
homogeneity assumption. However, because the proposed est1@ator§ resemble those u§e
in capture-recapture methodology, we should expect underestimation of the population
size when this assumption is not satisfied. .

In this article we consider the problem of estimating the total and the mf/:gn ofa \fanable
of interest from a sample selected by the variant of LTS proposed by Fellijed1na aer
Thompson (2004). Examples of population characteristics that we are interested ﬁn
estimating are the total and the mean of monthly drug expenses, the number o'f people who
consume more than one type of drug, and the average number of weekly clients in a §ex
worker population. To estimate these parameters we propose two classes of Horw_tz—
Thompson-like estimators. One class is based on the MLEs. of the population s'1ze
proposed by Félix-Medina and Thompson (2004), and the ot}}er is based 01? theT Bayesxgn
estimators of the population size proposed by Félix—Medmfl and Monjardin (2006).
The proposed estimators are not real Horvitz-Thompson .e‘stlmators because .tt.le.:y use
estimates of the model-based conditional inclusion probabilities as these probab111t.1es are
unknown. For each of the proposed estimators of the total and mea?n' we de.nve an
expression for a Horvitz-Thompson-like estimator of its variance. In addition, for 1nterva11
estimation we propose Wald confidence intervals. Finally, we explore the performance ];)
the proposed estimators and their robustness to deviations from the assumed models by
means of three Monte Carlo studies.

2. Sampling Design and Notation

We will use the sampling design proposed by Félix-Medina and Thompson (2004). Thus,
we will assume a finite hidden human population U of an unknown number 7 of persons.
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. ; ) ) e ~(2) (0 @ =1 ...

We will suppose that a portion Uy C U of the population can be covered by a sampling the authors show that the MLEs f,, %, 5" and p\> of 7y, 75, p{" and p{”, i = 1, )11, are
frame A, . . ., Ay of N sites where the members of the population can be found with high obtained as the solutions to the following equations:

pro‘?abﬂlty. We will assume the%t the researcher ha§ a .crltenon that allqws him or her' to ) M+R, 50— 70 /5~ My, i=1,...n

decide whether or not a person in U belongs to a site in the frame and in the affirmative = I~ - a/MT" (1 — ﬁq)) v Pi i ! s

case to assign that person to only one site. This does not mean that a person cannot be =1 '

found on several sites, but that, as in ordinary cluster sampling, he or she is assigned to % Ry and ﬁz@ = Z,@ /B, i=1,...,n ey

only one of those sites. We will denote by M; the number of people who belong to the site
A, i=1,... N.Thus, the unknown numbers of people in Uy and in Uy = U — Uy are
T = Ellv M; and 7, = 7 — 71. We will suppose that associated with person j in U, is the
value y;k) of a nonrandom variable of interest y. The totals and means of the y-values in U,
and in Uare Ye = 37cp, y* and ¥ = Yi/m, k=1,2,and ¥ = ¥, + ¥, and ¥ = ¥/r.
The sampling design is as follows. A simple random sample without replacement
(SRSWOR) S, of n sites A, . . .,A, is selected. The members who belong to each
sampled site are identified and their associated y-values are recorded. Let M = > 1M be
the number of people in the initial sample, that is, in Sy = {peopleinA,; : 4; € S4}. Then,
as in ordinary LTS, the people on each sampled site are asked to nominate other members
of the population and the y-value associated with each nominated person is recorded. Let
X = 1if person j € Uy — A, is nominated by site A; € §, and XP =0ifj € A;orjis
not nominated by A;, k = 1,2, where we say that a person is nominated by a site if at least
one member of that site nominates him or her. We will suppose that the variables X,@ are
jointly independent, that is, that the nominations are made independently. Let pfk)
Pr(ng) = 1) be the probability that person j in U, — A; is nominated by the site A,
i=1,...,nk=1,2. These probabilities are called nomination probabilities. Let ng) =
Zje Ue—a; ng) be the number of people in U — A; nominated by the site A;, and let R; and
R, be the numbers of distinct people in U; — S, and U>, respectively, that are nominated
in the study. Notice that the nomination probabilities are assumed to be homogeneous,
that is, that they do not depend on the people, but only on the sites. Furthermore, the
model for pf.k) implies that every person in U; — A; can be nominated by site A;. Clearly,
these assumptions are difficult to satisfy in practical situations, but we expect the

estimators we propose in this article to yield estimates of the parameters of the correct
orders of magnitude.

SIS (- A7)
Thus, the MLE of 7is = 7 + . . '
Later, Félix-Medina and Monjardin (2006) propose estimators of the population sizes
derived under the Bayesian approach. They do that by assuming the previous models, and
defining prior distributions for 7, and agk) =In [p,(.k) /(1= pgk))], i= 17 oo k= 1,’2.
Those authors consider the following three types of prior distributions for the 7’s:
(i) uniform distributions: () oc 1, k = 1,2; (ii) Jeffreys’ distributions: 7(7) oc 1 /T,
k=1,2; and (iii) Poisson-Gamma distributions: w(r|A;)oc (NA)™ /7! and
m(Ay) o< X Le 7PN and ai(m[Ag) o AR /7! and mm(As) oc A le*bzfz, where aj, bl., a,
and b, are known constants. They indicate that the first two distributions can be obt.amed
as limit cases of the last distribution by setting a; = 1, by = 0, k = 1,2, for the Uniform
distribution and a; = 0, b, = 0, k = 1,2, for the Jeffreys’ distribution. In the case of the
as the authors consider the following two-stage normal prior distribution:
oz%k)IHk ~N(0k,0%), i=1,...,n, and 6 ~N(,uk,y2k), where iy, o% a.nd y%, k=1,2,
arle assumed known, and N(¢, ?) denotes the normal distribution with mean ¢ and
variance 2. They also suppose that all the random vectors (7, A) and (g, 6), where
a =, ..., a®), k= 1,2, are mutually independent. o '
The authors propose that 7, and ozgk) be estimated by the mode of their joint pc:(skt)erlor
distribution. Thus, they find that the estimators 7 and fa,(k) = exp (o?l(.k)) /I1 +exp (&;”)] of

7, and pgk), i=1,...,n,k=1,2, are given as the solutions to the following equations:

> A
. MA+R +(1—n/N)IN@ — /N +bDITL, (1-5{")
= 1 Al ’
B 1= (1= n/MIN/O + 6T, (1—50)
o expfay oz &V 40 40—y =
T 14exp {a} A =M (R —Mpot  n(h - Mpn

3. Estimators of the Population Sizes

o _ Rat i@ = /A + BT, (1= 57)

o) and 2)
1—[1/Q 4+ I, (1 = 1)

In addition to proposing the previous sampling variant, Félix-Medina and Thompson
(2004) propose MLEs of the population sizes 74, 7, and 7. To obtain those estimators they

~(2) (2) ~2) _ 5(2) a® — )
suppose that the variables M; i=1,...,N, are independent identically distributed 5@ e_xp__ai (}2) _AT & 02a R P NI
. . . L. . . . . i A 2 7 v
Poisson random variables with mean A,. This implies that given that 7y = EIIVM ;» the joint 1+ exp {a; } T2 203 nnv2
conditional distribution of the vector of variables M s=My,...,M,, 1 — M), where

where = 42 + o2 and &® = $"1@® /n, k = 1,2. They propose that 7 be estimated by

M=73%"" M; is multinomial with parameter 7; and vector of probabilities P
= .

(1/N, ..., 1/N, 1 - n/N). Additionally, they assume that the conditional distribution
of X,(»;‘) given M; is binomial with parameters 1 and pgk), i=1,...,n k=1,2, which
will be denoted by X{°|M; ~ bin(1,p{). Notice that these assumptions imply that
ZPONM; ~ bin (1 — My, p), ZP|M; ~ bin (n,, ), RilM, ~ bin(r, — M,1 — Q,) and

Ry|M, ~ bin(r, 1 ~ 0,), where Q; = ’1’(1 —p,(k)), k=1,2. Using these assumptions

4. Horvitz-Thompson-like Estimators of Totals and Means

To construct Horvitz-Thompson estimators (HTEs) of the population totals Y;, ¥, and
. Y=Y, 47, we need to compute the inclusion probability of each element.
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4
sites Ay, . .
that the people in U, are uniformly distributed over the N sites Ay, .

M. Therefore, given that Al .
person j € U is

7 = 7 =1 - Pr(jisinnoneof the A;’s € ;)
X Pr(jis notnominated by any of the A,’s € S4ljisinnoneof the A,’s € Sa)

=1-(01~-n/N)Q

Similarly, the conditional inclusion probability of a personj € U, is 70 =a®=1-0,
Since Q7 and Q, are unknown, 7rj(1) and 77](.2) are unknown, but we can estimate them by
#=1-(1—n/MQ; and #?=1-, 3)

where Oy =[], (1=p®), k= 1,2, and p® denotes cither the MLE or a Bayesian

estimator of pgk). Therefore, Horvitz-Thompson-like estimators of ¥. 1, ¥ and Y are

v 1 v 1 v v v
— § ‘ (1) — E ()] —
Yl —#(1) y]- y Yz—— F76) yj and Y-—Yl—f—Yz,

JES JES2

where Sy is the set of distinct elements of Uy, k= 1,2, that are in the sample.

Notice that in ¥, we are using an estimate of the conditional inclusion probability 7 ®
given that the sites A;,...,A, are in Sa. The idea is that if #® were known,
Yies ¥/ m® would be a model-based conditional unbiased estimator of Y, given that
the sites Ay, . . ., A, are in S,. Consequently, it would also be unconditionally unbiased,
that is, it would be unbiased with respect to the joint distribution formed by the model-
based conditional distribution given the sites in S, that models both the numbers of people
that are in the sites and the numbers of people nominated by the sites, and the design-based
distribution that models the selection of sites in Sa.

The proposed estimators are not “real” HTEs because we are not using the actual
conditional inclusion probabilities but estimates of them. Thus, we will call these
estimators “Horvitz-Thompson-like estimators” (HTLEs). This type of HTLE of a total
has been considered by Pollock, Turner, and Brown (1994), Haines and Pollock (1998)
and Haines, Pollock, and Pantula (2000) in the context of estimation from incomplete
list frames.

If the interest is to estimate the means ¥;, ¥, and 7, then the estimators will be

D (S A 4
Y1:T; YZ:T and Y:—;
71 7 T

where 7, 7| and 7denote either the MLEs or any of the Bayesian estimators of 7, 7, and 7.
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Unfortunately, we cannot compute (nor estimate) the inclusion probabilities because we
do not have information about the nomination probabilities p(.k) ’s associated with the sites
A;’s that are not in the initial sample S,. However, from a model-based approach we can
compute the conditional inclusion probability of an element given that a particular set of
-, A, are in 4. To obtain that probability for a person Jin Uy, we will suppose
. ., Ay in the frame.
Notice that this assumption is in agreement with the assumed multinomial distribution of
.+, Ay are in S, the conditional inclusion probability of a
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As was indicated earlier, we can estimate w,((k) either using the MLEs or any of the

Bayesian estimators of the p,(k)’s. Thus, we have two classes of estimators of totals and

~ . = = = . . ~ ~(k)
means: the estimators Yy, Yo, Y, Yy, Yo and ¥ obtalnPd lzy using the MLEs % and p;",
i=1,...,n, k=1,2, and the estimators 171, Y5, 7Y, Yy, Y, and Y obtained by using the
. . N AK) s _ g . 1
Bayesian estimators 7, and p;’, i = 1, S 1, k AI(L)Z'AIEz?t? (l;l)lag (\glﬂ_}l(gl) t}éng)last (il ass
of estimators we have three sets of estimators: {Y VLYY Y LY, Y, where

a = U, J or P indicate that the corresponding set is obtained by using as prior distribution
for the 7’s the Uniform (U), Jeffreys’ (J) or Poisson-Gamma (P) distribution, respectively.

5. Horvitz-Thompson-like Estimators of the Variances of the Estimators of Totals

5.1, General Form of the Variance Estimators

The results that are presented in this subsection are valid for the estimators ¥, and ¥, as
well as for ¥, and ¥. The results that are presented in the other subsections depend on the
type of estimator, and consequently each type of estimator will be considered separately.
As was done previously, let ¥ denote either ¥ or ¥, and p® denote either 5® or p®. An
expression for an HTLE of the variance of ¥ can be obtained by the Delta method. To do
that, notice that ¥ can be expressed as

M @ .
gl 7 m V. — £V V. 5D 3@
W(l)(l\i(l)) Yl + 77(2)([3(2)) Y2 _f(Yla Y27 p 1p )7 Say

5,,:

where 7®@E®) = #®  [this notation emphasizes that #® is a function (_)f
PO =P, .. p®Y], and ¥, = Yies y;.k) /m® is a random variable whose form is
that of an HTE of Y. Since for samples of large sizes we would expect that Y, = Y and
p® ~ p®, and consequently that w®E®) = 7®, we have that the Taylor linear

approximation to ¥ about 6 = (Y1, Y5, p”, p@)' is

. 2 . ¥ [am®p@)] S0 _ o)
YzY_{_Z{(Yk—Yk)—W[—af)(—k)‘ p(k)(P p)

 where [amr®(p®)/ afﬂk)]pm is the vector of derivatives of m®(p*) evaluated at p®.
_ Consequently, an estimator of the variance of Y is

o 2 (., ., .o [ @) " s [27PBO)
=3y {V(Yk)HYk/w“‘)] [‘““““ap@ V) —sm—
k=1

= V() + WY,), say 4

_ where ‘v/(lv/z) is an HTE of the variance of IV/;, and V(p®) is an estimator of the covariance
matrix of p®, . N

To obtain an expression for ‘v/(lv’k) we first need to get the second-order conditional
inclusion probabilities 7. Although we can obtain these probabilities from the
assumption used to obtain the first-order conditional inclusion probabilities 7%, this
Supposition implies that inclusions of people in the initial sample are independent even if
_ they belong to the same site, and this contradicts the fact that two persons on the same site




are included in the sample if that site is selected. Therefore, for the people in U, we will
suppose that the N groups of people of sizes my, . . ., my are independently and uniformly
distributed over the N sites Ay, . . ., Ay. Notice that although this assumption is just partly
in agreement with the assumed multinomial distribution of M, the first-order conditional
inclusion probabilities obtained from the previous assumption can also be obtained from

this one. Therefore, given that Ay, .. .,Ay are in S4, the second-order conditional
inclusion probability of persons j and /' is

= Pr(jandj arein S)

=1 —Pr(jisnotinS) —

Pr(j' isnotin §) + Pr(j andj’ are notin S)

= @ + 7y — 1 + Pr(jandj arenotin S)

®
where § is the final sample and #; and 7y are the first-order conditional inclusion
probabilities of j and f, respectively.

Because of the assumption of independent nominations, the last term of (5) is equal to

(A = mA — ) if both] and j are in U, or if j is in U; and /' is in U, or conversely,
whereas if both j and ;' are in U; then

Pt(jandjarenotin$)

=Pr(jand;" areinnone of the A;’sin S4) X Pr(jand j are not nominated by any

of theA;’s € Ss|jand j'areinnone of the 4,’s € Sy)

[(1 —n/N)Q(]* ifjand j’ are ondifferentsites
(1= n/N)Q}

ifjand j are on the same site

Consequently, ; — ;77 = 0 except when both j and /' J are in U, and on the same site.

Thus, we have the following estimators of the variances of Y and Y

S-S5
i= i=1 jEA,
where Y{) = ZJEA ¥ and #0D =1 = (1 — n/N)01(2 — Oy) is an estimator of i
when both j and ;' are on the same site,

To obtain the second component of V( Yk), that is, the quadratic form, we need to obtain

the vector of partial derivatives of 7®(p®) and an estimator of the covariance matrix of
p®, k= 1,2. The elements of the vector of derivatives are

_ U =n/M0
I O

D — (,77-(1))2
7LD Dy2

amOHD)

<
E)p](.)

j=1,...,n; and

aw@)(f)@)): O:
Y E
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To get a partly design-based estimator of the covariance matrix V(p®), we will use the
same strategy as that used by Félix-Medina and Thompson (2004) and Félix-Medina and
Monjardin (2006). They compute the variances by replacing the multinomial distribution
of the M, by the distribution of the sampling design used to select the initial sampvle Sa.
We will carry this out by computing the entries of the estimated covariance matrix V(p®)
by means of the formulas:

V@) =

v v ~ (k) (k)
Cov (ﬁfzo, Iaj’“) = Cov, [Eg(pgk)|l11s),Eg(p](-k)|ms)} +E, [Cov,;(p, ), B Ims)]

V, [EpPlmy)] + E, [VepPlmy)]  and

©)

where Eg(p{°lm;), Ve(plm,) and Cov; (pfk), pjk)lms) denote the model-based
conditional expectation, variance and covariance operators, given that Ms = m,; and
E,(-), V,(-) and Cov,(-,-) denote the design-based expectation, variance and covariance
operators.

Since the results for the MLEs ”(k)’s are different from those for the Bayesian estimators
pfk)’s we will consider each case separately. Notice that once we have calculatefi the
estimator V(p®) of the covariance matrix of p® or the estimator V(p®) of the covariance
matrix of p*, we can compute the quadratic forms that appear in (4) and consequently the

estimators V(¥7), V(¥,) and V() or the estimators V(¥,), V(¥») and V().

. . . ] . - k
5.2.  Estimator of the Covariance Matrix of the Maximum Likelihood Estimator p®

In the case of the MLEs, from (1) we have that 5" = f{)(c(V) and p® = f@(c®), where
o) = (M5, Z{"\R)), ¢ = (ZP,Ry), 2P = (2P, ... Zz¥), and FP(+) denotes the
functional relationship between ¢® and p*, k= 1,2. Applying (6) to the first-order
Taylor approximations to p{" and p{® about Egc{") and E¢(c®), respectively, we
obtain that

_ 2 ] i ~
V(") =nt = n/M(EP) —= " o —
=1

2
- - ~(1
s (Y,
7 —*Mi A M,'
Cov(p(l) p(1)> =n(l — n/N)F(l)F(l) Z (M; — M)
N
Ay (7 — M)(Fi — M)
=(2) (2) ~(2)
pp?) =2 PT) )—i- it 17 and
VB % i 2
%(2)=(2)
~ pip;
Co (~€2> ~<2>> Pi b
4 1)1 7pj A2'T2 2
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5.3.  Estimator of the Covariance Matrix of the Bayesian Estimator p®
In the case of the Bayesian estimators ﬁ;k), using the previous strategy we get that

V@) = n(1 - n/N)(F(“)2 Z (M; — iy?
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2 ~(D N 2
& MpE! - M P
LG (4 A(l)) o (Z’I )0, plq)(plgl) ~ by
n B; A(fi —M — R))

(D

2D A
o L (L= ME 3 — D,y
Ay B

i

Félix-Medina and Monjardin: Combining Link-Tracing Sampling and Cluster Sampling 613

A(l) (1)

I
o o2
Cgv(ﬁ,(.l),ﬁj(.l)):n(l n/N) 15 (M;—M)
=1

(1) E(l)
el {(p‘” ~D)(" ~Dih+kit | 30— Do+@" D)Ly
B, ;

N N (D
Gy [(BA—MYED  (-MpE;

~(D ‘ ~(1)
n B; Bj
(=M

[ DGO - D+pIHO D )]

Al(ﬁ —M~-— R)

B0~ (7 =ME @Dy
_i (f1 —M)E; " (p; Dl),A(l) D1)n e (A(l) ﬁl) :
i L 5

237 2
e E( )
V( )= B(z)

1

{@52) —D) 4+ Ro+ 7 2E,(‘2)+2(IA7:('2) —Dni,

N ~ . A SOPNOIE-RY)
_2G2’f2E§2)J ) 202 SOGD D)2 1 HE; (B ) Do) and
n D ARy A BY

~2) A(Z)
E
Cov(p(z) )y (2)J L {(p(z) -bH )(p(Z) —Dy)Jr 4Kk,
B,- BJ

L 22
G2 TzE(z) TZEJ'

n| P £
i J

6P Doy D) Lo

4 PO [a)(p(z) D)+ - D)}
AT~ Ry)

D A2) _ A 52— R
L |RECOP D) o gy £ @ 2)(13(.2)—D2)
s ~(2) J ~(2) !
Aj B, Bj
C P =Dy (1
- LED, B =p0a - p)

Al(fy — M —Ry) Efl) t

a1 -
(D o2




614

Journal of Official Statistics
(vi! = noy [n 12 A(l)/A(DJ

L+ 1yt = noy ,1—12” I/A(l)

b - n= o = noTHn ]Z A(l)/A(D
1=
L+n 17! = noy z)n‘lzk Il/A(D
a2

s L) 180 - Dy (1) - M), -
=Ly [k_m_ (5 — g 1 L= 202101 = D)

Al =1 Bk (fi —M — Ry)

o (FL = M) Z 2 = Dil .

i =M~ R 1921) Pr
. - a2 .
& = nH (vl = noy 2) ras G, ’Z’ (71 — Mk)E,((I)
M Ki=— — T
L+n (vt = noy n‘lzk 1/B; B n? 4 @,((1))2
- a(l A A A noooa
;1 gi B D Mpp . =01 Gig Y
LR T30y | A —M—R,n 2= 30 (°
1 B, Ry n = By

242) ~ R ~(2)
E7 =pP0 -p®), B

i i

A 2 & 1 1
A, :Z(p(z))z/B() ) 4 — e

= Tz-{*(lz'—l ’Tz—Rz

~ 212
(5! ~nay?) [n 12 A(Z)/B(Z)J

= 5B + o

- values yj(k) Y. Therefore, V(Y ) is obtained by dividing (4) by #2 and replacing Y ) by

2 =
-1 _ ~1 B®
L+n=(p! —noy?)n Zk /By
~1({,~1 _ 72 -1\ A(Z) ~(2)
. n . no, n B,
D, = ( 2 Zk 1” / .
1+n7' (15!~ noy?) n‘lz I/A()
. 1 n (2) b . D1 — s A n [a@ A
= Z _ 2 2E(z) n TzQAz( sz) _5 ATZQZ by — D, 5
Ay =T | OBy (f2 = Ry) Rz | BY
6}2 _ nt (V;l — 11052) Z TzE]((Z) J
an
T+n=1(y! - nor;z)n‘lz 1/3(2)’ “n? £ (A(2)>2

n 1 G n N ﬁ NG 3 > G n A(2)
I,=—{22 Dby 2 sz;(() 22 _22 Py
Ay | 1 £ <B1(<2)> T — Ry n £

A(2)

(
= By

Félix-Medina and Monjardin: Combining Link-Tracing Sampling and Cluster Sampling 615

6. Horvitz-Thompson-like Estimators of the Variances of the Estimators of Means

Since estimators of means are ratios of two estimators, for instance ¥ = ¥ /7, we estimate
their variances by estimating the variances of Taylor linear approximations to the
corresponding ratios about the parameters estimated by the numerator and denominator,

say Y and 7. This strategy yields that
Iy = Wt - vp)/42

In the case of the estimators of the means based on the MLEs, from (1) we have that

F=Y 1M+ 1/

JES JES

Thus

o oo 1 1
o= LS - )+ 3 )
1 fe3, 2 fe3,

that is, ¥ — Y7 has the same form as that of ¥, but the y-values y Vin ¥ are replaced by the

(k) — Y. Similarly, V(Yk) is obtained by dividing V(¥;) by > and replacing y(k) by y; ©— ¥,
In the case of the estimators based on the Bayesian estimators, from (2) we have that

F= VAVHTl + le + Wzli& + W22

 where 7} = 3 ies, 1 /#® is an HTLE of 7,

PO Bt Rt/))¢] o = (L= n/N)INGa; = D/ + 51101
1—(1—n/N)N/N+ )10 1 =1 —n/N)N/N + b1
Mo 170 g, = e DU 10
L= [1/(1+ b2)10s 1= [1/(1+b2)10,
Thus

f]“ Yf'\: [?1 — WHYT1 - W]z?] + [?2 - WZIWZ - WZZY]
=101, Ty, 00) + f2(a, T2, 02)

Obtaining the first-order Taylor approximation to f( IA/k, Tk, Qk), k = 1,2, and estimating
the variances of the first-order approximations, we get that

2
Y —-7p)= Z {V(f/k ~ Wu¥Ti) + Wzkav(ék)} @

V\zhele V(Yk W YTk) has the same form as that of V(¥}), except that yj(.k) is replaced by
~ Wu?,
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Because of Equations (3), we have that

o 1 dmOHD) " arOpm)
V(O = V) |—5—| and
v (1—n/N>2{ ap™ } ® )[ op } o
o AT H®) " aT@(PH?)

— 5(2)

Thus, ‘A/()—A’) is obtained by dividing (Z) by fz. Similarly, ‘A/(I—A’ ©) 18 thained by dividing the
kth term of (7) by 77 and replacing ¥ by ¥} in any place where ¥ appears.

7. Wald Confidence Intervals

Though in this work we will not justify theoretically that the proposed estimators of the
population totals and means are asymptotically normally distributed, we will suppose that
the normal distribution is a reasonable approximation to the distributions of the estimators.
Thus, we suggest that 100(1 — @)% design-based Wald confidence intervals for the
population totals and means are used. These intervals have the form 6 + L—ap2V V(h),
where z;—q/5 is the upper a/2 point of the standard normal distribution, V(6) is a partly

design-based estimator of the variance of é, and  denotes an estimator either of a total or
of a mean.

8. Monte Carlo Studies

In order to observe the performance of the proposed estimators, three simulation studies
were carried out. In each of the studies we constructed populations from which samples
were repeatedly selected using the sampling design described in Section 2. In the first
study we used data from the Colorado Springs study on transmission of HIV/AIDS to
construct two populations. In the second study we constructed two artificial populations in
which all of the model assumptions set in Section 3 were satisfied, and two populations in
which only the assumption of the Poisson distribution of the M;’s was not satisfied.
Finally, in the third study we constructed an artificial population in which only the
assumption of homogeneous nomination probabilities was not satisfied.

8.1.  Study Based on the Colorado Springs Study on HIV/AIDS Transmission

In the Colorado Springs study on heterosexual transmission of HIV/AIDS, described in
Potterat et al. (1993), Rothenberg et al. (1995) and Potterat et al. (2004), among other
papers, a set of 595 persons presumably at high risk of acquiring and transmitting HIV
were enrolled through a sexually transmitted disease clinic, a drug clinic, self-referral and
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outreach. Those people were interviewed about their demographic characteristics and their
_ knowledge and practices with regard to HIV/AIDS. They were also asked for a complete
enumeration of their personal contacts, defined as those persons with whom they had
social (sharing meals or lodging), sexual, or drug-associated relations. The interviewees
named 7,379 contacts who were not in the set of the 595 interviewees and 367 contacts in
that set. The 7,379 contacts were also interviewed and asked to nominate their contacts,
__but in our study we omitted the information about their contacts.

k We defined U as the set of the 595 original interviewees and U as the set of the 7,379
_contacts who were not original interviewees. We defined as the response variable a binary
variable which took on the value 1 if the person was a sex worker and on the value 0 in
other case. Thus, 71 = 595, 7, = 7,379, 1= 17,974, Y; = 135, Y, =417, and Y = 552.
Since no sampling frame of sites was defined in the Colorado Springs study, we
__constructed one by forming N = 105 clusters (groups) with the 595 interviewees. The
sizes m;’s of the clusters were generated by sampling from a zero-truncated negative
binomial distribution with parameter of size 2.5 and probability 2/3. The sample mean and
variance of the 105 m;’s were 5.67 and 15.03, respectively. The clusters were formed by
putting people located in the same or similar places in the same cluster. For instance, the
people located at the drug clinic were assigned to several groups which were different
from the groups to which the people located at the sexually transmitted disease clinic were
assigned. We assumed that a person was nominated by a group if that person was not in
the group and was nominated by at least one of the members of the group. The average
values of the nomination probabilities were 51 = 0.02 and p® = 0.01 for people in U,
and U,, respectively.

It is worth noting that 6,924 persons in Uy (94%) were named by only one group, 273 by
only two groups, 81 by three, 26 by four, 14 by five, 1 by six, 5 by seven, 2 by eight, 1 by
twelve and [ by thirteen. Since this high percentage of the people in U, who were
nominated by only one group was expected to cause serious overestimation of 7,
(estimators of the population size of the type used in capture-recapture have serious
problems of overestimation when most of the sampled elements are captured only one
time), and consequently to affect the performance of the proposed estimators, we defined a
reduced population in which U; was defined as in the previous case (complete population)
and U, as the set formed by all the nominees that were named by at least two groups (415
people) plus the 379 sex workers who were named by only one group. Thus, in this
reduced population, 7, = 595, 7, = 794, 7= 1,389, Y¥; = 135, Y, =417 and ¥ = 552.
The average value of the nomination probabilities was p = p@ = 0.02.

The simulation experiment was carried out by replicating r= 10,000 times the
following procedure. For each population of N = 105 values of nz;’s, a SRSWOR of size
1 was selected, where n = 40 in the case of the complete population and n = 30 in the case
of the reduced population. From cluster A; in the sample, the people in U — A;, k = 1,2,
named by that cluster were included in the sample. The values of the variables M, Z,(.k)
and Ry, k = 1,2, were calculated and those data were used to compute the followirjg
estimators of the totals and proportions of sex workers: the sets of estimators { ¥, ¥5, ¥}
and {1:71, y 2 I:’} obtained from the set of MLE’s {#, %, 7}; and the three pairs of sets

A A A a(a) 2@ ala) .
of estimators { ¥ fa),Yz(a),Y @1 and Y, Y, ,Y }, a=U,J,P, obtained from the
9}, a = U,J, P, which use as prior

corresponding sets of Bayesian estimators {ﬂ(“), 759,
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distributions for the 7’s the Uniform (U), Jeffreys’ (J) and Poisson-Gamma (P)
distributions, respectively. In addition, estimators of the variances of the estimators of the
population totals and proportions, and 95% confidence intervals for these parameters, were
also computed.

. . Aa) ~@ s(a) a(@ 2@ 2(a)

To obtain each of the sets of estimators {Y, ", ¥, ", Y }and{Y, ,¥, ,¥ },a=U,J,P,
the parameters of the initial distributions for the logits oz,gk) = In[pf.k) /(1 - pgk))] were set to
the following values: p = —3.5, 07 = v =9, k = 1,2. The parameters of the Poisson-
Gamma distributions of 7, were a; = 1 and b; = 0.1 (E(A;) = 10 and V(A;) = 100). The
parameters of the distribution of 7, were a, = 42.25 and b, = 0.0065 (E(\2) = 6, 500 and
V(Ay) = 10%) in the case of the complete population, whereas @y = 8 and by = 0.01
(E(A2) = 800 and V(A,) = 80, 000) in the case of the reduced population. The values set for
the parameters of the prior distributions implied that these distributions were well dispersed
over relatively long intervals that contained the parameters of interest.

The performance of an estimator 7oty , say, was evaluated by its relative bias and the
square root of its relative mean squared error, defined as r-bias = Z’i(f’,@ - Y)/Y)

and /r-mse = \/ i (f/ﬁa) — Y)?/(rY?), where I?f.a) was the value of #“ obtained at the ith
replication. The performance of a variance estimator was also evaluated by those
parameters, which were similarly defined as those of the estimator ffm), but using the
empirically determined variance instead of the real variance. Finally, the performance of a
95% confidence interval for ¥, say, was evaluated by its coverage probability and its
relative length defined as the proportion of replications in which the replicated intervals
contained Y and the average length of the replicated intervals divided by Y, respectively.

The results of the simulation study are shown in Table 1. We can see that in the case of
the complete population, everyone of the estimators of ¥; performed well in terms of bias
and mean squared error. However, as was expected, the estimators of ¥, had serious
problems of overestimation. The bad performance of the estimators of ¥, deteriorated the
performance of the estimators of Y. In the case of the reduced population, every one
of the estimators of ¥; and ¥ performed acceptably in terms of bias, whereas each of
the estimators of ¥, showed slight problems of bias. In terms of mean squared error, the
estimators of ¥; performed well, whereas the estimators of ¥, and Y showed some
problems of instability (\/r-mse > 0.2).

The estimators of the variances of the estimators of ¥, performed well in terms of bias in
both populations, although they showed some problems of instability. (Results for
variance estimators are shown in parentheses in Table 1.) However, the estimators of the
variances of the estimators of ¥, and Y had serious problems of subestimation,

The 95% confidence intervals for ¥; performed moderately well in the complete
population (coverage probabilities and relative lengths were about 0.91 and 0.23,
respectively), and acceptably well in the reduced population (coverage probabilities and
relative lengths were about 0.93 and 0.31, respectively). (Results for confidence intervals
are not shown.) However, in both populations the confidence intervals for ¥, and ¥ had
coverage probabilities close to zero. Their bad performance was a consequence of the

biases of the estimators of ¥, and Y and the great subestimation problems of the estimators
of their variances.

With respect to the estimators of proportions, the estimators of ¥; showed moderate
positive biases in both populations. The estimators of ¥, performed acceptably in the

Colorado Springs study: Relative biases and squared roots of relative mean square errors of the estimators of the numbers and proportions of sex workers and of the

estimators of their variances

Table 1.

Estimators of the proportions of sex workers

Estimators of the numbers of sex workers

Reduced population
n=30,M=169.9

Complete population

Reduced population

Complete population

= 3443

1389 R,

Ry =

= 40, M = 226.7
142.3 R, = 29445

1=

n
R

= 3443

1389 R;

=

=30, M =169.9

n
R

2944.5

1423 R,

1=

=40, M = 226.7

n
R

Tr-mse

r-bias

T-mse

r-bias

r-bias

T-mse

r-bias

29 (.30)
28 (.81)

27 (— 24)
— 27 (— 81)

22 (.29)
14 (.69)
15 (.68)
22 (.29)
14 (.69)
15 (.68)
22 (29)
14 (.69)
15 (.68)
22 (29)
15 (71)
12 (71)

21 (= 25)
f the number and proportion of sex workers based on the MLEs of the population sizes;

04 (— .69)
— 10 (—.68)

7,

.08 (.33)
27 (.83)

01 (—.03)

—.10 (—.80)
—.08 (—.80)

06 (.28)
3.9 (.79)
3.0 (.79)
06 (.28)
3.9 (.79)

2.9 (79

—.02 (—.03)

Y

37 (=.77)
2.8 (—77)
~ 02 (—.03)

¥

.14 (.80)
29 (30)
28 (.81)

— 11 (— .80)

27 (- 24)
— 27 (—.81)

21 (—.25)
.04 (—.69)

~(U)
#

— 11 (—.80)
— 08 (—.80)

37 (= .77)
2.8 (—.77)

— 02 (—.03)

"
2

14 (.80)
29 (.30)
28 (81)
14 (81)
29 (.30)
28 (.82)

—.11 (—.80)

e

27 (— 24)
— 27 (— .81)

21 (—.25)
.04 (—.69)

.06 (.28)
3.9 (79)

2.9 (79

J)

7,

—.11 (—.80)

—.08 (—.81)

3.7 (=.77)
2.8 (—.77)
—.02 (—.03)

J)

—.11 (—.80)

0
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27 (—.24)

— 27 (- .82)

21 (—.25)

07 (—.71)

06 (27)
2.0 (74)

P)

7

— 13 (- 81
— .10 (—.81)

1.9 (—.73)
1.5 (—.74)

P)

7,

14 (.81)

—.11 (—.81)

1.5 (74)

Notes: Results for variance estimators in parentheses; ¥, and Y estimators o

P

N@)
ol

()
{0 andY, ,
{ the number and proportion of sex workers obtained from the Bayesian estimators of the population sizes based on the prior Uniform, Jeffreys

k

y,

x estimators o

2(P)

and Y

P)
X

and ¥
and two-stage Poisson-Gamma distributions, respectively. Results based on 10* trials.

)
and Y,
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complete population, but showed moderate negative biases in the reduced population.
Finally, the estimators of ¥, the main proportion of interest, performed moderately well in
both populations (r-bias~ — 0.1 and \/r-mse ~0.15).

The estimators of the variances showed problems of subestimation and instability. As a
result of the biases of the estimators of the proportions and the estimators of their
variances, the 95% confidence intervals had very small coverage probabilities.

It is worth noting that because of the relatively large sample sizes used in this study, no
practical differences regarding the performance of the different estimators were observed.

&)
ks

and Y,

T
ol

U ()]
,E )andY( s

1,

Population III

8.2. Study Based on Artificial Populations with Homogeneous Nomination Probabilities

We constructed four artificial populations of y-values. The populations were generated by
considering two probability distributions for the M;’s: Poisson and negative binomial, and
two distributions for the y/'s: chi-square (x?) and Bernoulli. The characteristics of the
populations are described in Table 2. The nomination probabilities p?k), i=1,...,N,
k=1,2, were generated using the model pgk) = 1 — exp(— Bum;), where the values of B
were set so that the following values of p® = S"Np® /N were obtained. Case A-:
(W, pP) ~ (0.03,0.02) and Case B: @, p@) = (0.01,0.006).

The simulation experiment was carried out as in the previous study, except that when
the cluster A; was included in the initial sample, the values x,(il) and x,(.jz) were generated by
drawing samples of sizes 7 — m; and 7, from Bernoulli distﬁbutions with means pf-l) and
2, respectively. The size of the initial sample was n = 25. The values of the parameters

o
> <
|

Population I

pi
of the initial distributions used to construct the Bayesian estimators were the same as those
set in the reduced population defined in the previous study.

Because of restrictions of Space we present a selection of the results in Tables 3 to 6, but
the following comments refer to the complete set of results. We can see that when the pgk)’s
were not so small (Case A), the estimators of the totals and means did not present problems
of bias regardless of the distribution of the M;’s, although the estimators of the total Y,
showed slight problems of instability, particularly when the y](-k)’s were Bernoulli
distributed. The 95% confidence intervals for the totals and means had good coverage
probabilities, with the exception of the interval for Y. 1 which showed slightly low

- S
Uy Uy UPN <

Estimators of the population means

T .73

Population IIT

Table 2. Parameters of simulated populations

N =250 N =250

-

M; ~Poisson E(M;) = 7.2 V(M,) = 7.2 M; ~ neg. bin. E(M,) = 7.2 V(M,) = 24.4

71 = 1,800 7, = 700 7 = 2, 500 T =1,758 7 = 700 7 = 2,458
P RT T

Population I Population II Population IIT Population IV
yi ~ x2(10) ¥ ~Bernoulli(0.2) ¥i ~ x*(10) ¥ ~Bernoulli(0.2)

; 18 2, relative mean squared error; ¥, and ¥ estimators of the population total and mean based on the MLEs of the population sizes;

Y, = 18,234.4, Y, = 366, Y, =17,798.8, Y; =361,
¥, =10.13 71 =0.20 i = 10.12 71 =021
Y, = 6,855.6, Yy = 142, Yy = 6,862.6, Y, = 143,
Y, =9.79 ¥, =0.20 7, =9.80 ¥, =0.20
Y = 25,090.0, Y = 508, Y = 24,661.5, Y| = 504,
Y =10.04 ¥ =0.20 7 = 10.03 71 =021

P esti i i i i ulation sizes based on the prior Uniform, Jeffreys and two-stage Poisson-
and Y, ~ estimators of the population total and mean obtained from the Bayesian estimators of the pop P

Population I

and 77

- Lyl 2
Table 3. Relative biases and square roots of relative mean squared errors of the total and mean estimators: Y} x-(10)
4 . 4
Gamma distributions, respectively. L; and L, indicate values greater than 10° and 10%, respectively. Results based on 10 trials.

Estimators of the population totals

Notes: 13, relative bias
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coverage probabilities in Population III. The lengths of the intervals were reasonable.
The estimators of the variances of the estimators of the totals and means did not show
problems of bias, except those of the estimators of ¥;, which presented problems of
subestimation when the M;’s were negative binomial distributed. Each of the estimators of
the variances of the estimators of the totals had problems of instability. The most serious
problems were observed for those of the estimators of Y, (0.34 < Jr-mse < 0.57),
followed by those of the estimators of ¥ (y/r-mse < 0.35) and then those of the estimators
of ¥y (y/r-mse < 0.2). The estimators of the variances of the estimators of the means had
modest problems of instability, (v/r-mse < 0.21).
On the other hand, when the pgk)’s were small (Case B), every one of the estimators of ¥ 1
performed well. With respect to the estimators of Y,, we have that ¥, performed very
badly, f’éU) badly, fé‘]) poorly, and f’(zp) modestly. In the case of the estimators of the main
parameter, the total ¥, ¥ performed very badly, #¥) modestly, and ¥ and $® well.
Every one of the confidence intervals for ¥; performed well. Although the intervals for ¥,
had good coverage probabilities (with the exception of the interval based on f’éj)), their
lengths were long. The interval for Y based on ¥ performed very badly (it had huge
length), those based on Y@ and #) performed modestly, and that based on ¥®
performed well. Every one of the estimators of the variances of the estimators of the totals
had problems of bias and instability. The best performance was achieved by the estimators
of the variances of f’gp), IA/(P), and ¥®, which performed modestly. Finally, every one of the
estimators of the means performed well. The estimators of their variances and confidence
intervals also performed well, except the estimators of the variances of I:/z and ¥ , which
had huge biases and variances, and the intervals based on them, which had huge lengths.
It is worth noting that, in general, the estimators of the totals and means, the estimators
of their variances and the confidence intervals performed better when the M;’s were
Poisson distributed than when they were negative binomial distributed, as well as when the
»{9s were x2-distributed than when they were Bernoulli distributed. In addition, when the
pgk)’s were not so small, no difference among the performance of the different types of
estimators of the totals and means was observed, but when the p?k)’s were small, the sets of
estimators {f’ip), f’gp), e )} and if/l % 5 YL as well as the estimators of their
variances and confidence intervals based on them, had the best performance.

8.3. Study Based on Artificial Populations with Heterogeneous Nomination
Probabilities

To analyze the sensitivity of the proposed estimators to deviations from the homogeneity
assumption, we carried out a simulation study in which we used the populations 1T and 1T
defined in the previous study, but generating the pg‘)’s by means of the following Rasch
model: p,(.]{‘) = exp (a,(.k) + B;k)) / [1 + exp(a,(-k) + ,BJ(.]‘)) , Where p,(.]]f) is the probability that
person j in Uy is nominated by site A;; a,(-k) is a fixed (nonrandom) effect that represents the
potential that the site A, has of nominating a person in U, — A i» and BJ(.]‘) is arandom effect,
with distribution N(0, akz), that represents the propensity that person j € U, has of being
nominated. It is worth noting that this model was used by Coull and Agresti (1999) in
the context of capture-recapture sampling. In this model, o determines the degree of
heterogeneity of the pg.‘)’s: great values of o imply high degrees of heterogeneity.
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For each of the two populations we considered two levels of heterogeneity of the p,(.j/-o’s.

Case A: Small degree of heterogeneity, which was obtained using the following values
of the parameters: oz,(.k) = c'k/(ml.l/4 +dy), c1 =57, c;=—064, d, = dr = 0.0001 and
o1 = oo = 0.4. Case B: Great degree of heterogeneity, which was obtained using the
following values of the parameters: ozl(.k) defined as in the previous case with ¢; = — 6.0,
¢ =—6.7, dy=d,=0.0001 and o1 = g, = 0.64. These values of the parameters
implied that in both Cases A and B the average values of the pgjl)’s and p,(-jz)’s were
p1 = 0.03 and p, = 0.02, respectively. In addition, in Case A the average values of the
ratios maxjp,(-jl) /minjpgjl) and maxjpf:?) /minjpgjz) were 17.3 and 12.7, respectively, whereas
in Case B those ratios were 67.6 and 51.9 (for the m,’s greater than 0).
The simulation study was carried out in the same way as the previous one, but we only
. considered the estimators f’(P), fép) and IAf( P). The results of the study are shown in Table 7.
_ We can see that in Case A the estimators of the totals performed acceptably, although they
showed a tendency to subestimate those parameters. On the other hand, in Case B, the
estimators presented problems of subestimation which increased their mean square errors,
_although the magnitudes of the r-bias and /r-mse of the estimator of Y, the main
_ parameter, were not very large (both were less than 0.2). In general, the estimators of the
_ variances presented problems of instability. In Case A and M,’s with Poisson distribution,
_ the estimators did not show problems of bias, although slight tendencies to subestimate the
variances were observed; however, when the M;’s were negative binomial distributed the
tendencies to subestimate the variances of f’(lP) and 7 were greater than in the previous
case. In Case B, the biases of the estimations of the variances were greater than in Case
_ A.In particular, when the M;’s were negative binomial distributed, the magnitudes of the r-
biases of \A/()A/(IP)) and 77 were 0.31 and 0.25, respectively. Finally, the 95% confidence
_intervals for the totals showed very low coverage probabilities and very short lengths.
These results were consequences of the subestimation problems of the estimators of the
totals and the estimators of their variances.
With respect to the estimators of the means, every one of them performed very well. The
estimators of their variances did not show serious problems of bias, but they presented
some problems of instability (particularly when the M,’s were negative binomial
distributed). The confidence intervals for the means also worked well, except in Case B
_and M;’s with Poisson distribution, where the intervals for Y, and ¥ showed coverage

’ probabilities slightly below 0.9.

9. Conclusions

From the results of our simulation studies, we can conclude that the main factors that
determine the performance of the proposed estimators are the initial sample size n, the
average size of the p{®’s, which along with n determine the numbers of nominees ry, and

H
the degree of heterogeneity of the pgk)’s. In the context of capture-recapture studies, Xi,

1
Watson, and Yip (2008) have found that the minimum value of the capture proportion
(MCP) that yields reliable estimates of the population size depends mainly on the size of
the population and the degree of heterogeneity. They encountered that the MCP decreases
as the population size increases and it increases as the degree of heterogeneity increases.

For populations of sizes about 1,000, they found that the MCP is between 0.3 and 0.5, and
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we think that similar values are required for the proportion of nominees in U, to obtain
reliable estimates of Y, (the proportion of nominees in U; does not need to be so great
because the estimators of 7; and ¥, use also the information of the people in Sg). Thus,
when the assumption of homogeneous nomination probabilities is satisfied and the
combination of the value of n and that of the average size of the p(k) ’s is such that
the number of nominees r, in U, is not small, say between 30% and 50% of the size of U,,
the estimators and confidence intervals for the totals work well regardless of the
distributions of the M;’s and y(k)’s and no differences among the performance of the
distinct types of estimators and intervals are observed. However, as the number of
nominees decreases (say below 30% of 7,), the performance of the estimators and intervals
for the totals deteriorates, although the estimator ¥ and the interval obtained from it
could still work well when r, is relatively small. With respect to the estimators and
confidence intervals for the means, they all work well when the homogeneity assumption
is satisfied, regardless of the value of r,, except the confidence intervals based on the
estimators obtained from the MLLE’s of the 7’s, which could work very badly when r, is
small and the M;’s are not Poisson distributed.

On the other hand, when the homogeneity assumption is not satisfied, the estimators of
the totals and means have small to moderate problems of subestimation and instability.
The estimators of their variances also have problems of subestimation and instability
which range from small to relatively large. As a consequence of these problems of
subestimation the confidence intervals present low coverage probabilities, as well as
smaller lengths than what one would expect.

The very good performance of every one of the estimators of the means in the case of
homogeneous nomination probabilities and regardless of the size of the p,(-k)’s deserves an
explanation. From Equations (1) we have that 7} = (M + R)/#® and %, = R,/#®, and
consequently

) DX I, i

JES 2 JES,

In the case of the artificial populations with heterogeneous probabilities, the
estimators of the means also performed very well because the y(k)’s were not associated
s, and consequently the sample mean of the y(k) ’s was a good estimator of Y.
Howeve1 in the case of the reduced population obtained from the Colorado Springs study
data, the performance of the estimators of the means was not very good because the y( )
were associated with the p(k)’s For instance, the elements in U, with y( ) = 0 were hnked
_on average, to 2 6 sites, whereas those with y(z) =1 to 1.2 sites; therefore the sample
mean of the y ) associated with the elements in S, tended to subestimate ¥». It is worth
"' noting that we carried out a small simulation study with the reduced population, but
eplacing the original y-values with values obtained by sampling from a chi-square
distribution with one degree of freedom (x%(1)) and also from a Bernoulli distribution with
mean (.1, so that the y(k)’s were not associated with the p(k) ’s. The results, which are not
shown, indicated a very good performance of the estimators of the means.
We want to end this section with the following remarks. (1) In the variant of LTS
ampling proposed by Félix-Medina and Thompson (2004) it is assumed that each
person in U/, is assigned to only one site in the frame. Although this assumption
educes the efficiency of the sampling design, its relaxation would make the derivation
_ of estimators more difficult, and we consider that this is a topic for future research.
2) The results of the simulation studies indicate that when the number of nominees is
_not so small, the proposed estimators of the totals and means are robust to deviations
_from the assumed Poisson distribution for the M;’s. (3) The simulation results also
ndicate that when the homogeneity assumption is not satisfied, the estimators yield
_ estimates of the parameters of the correct order of magnitude. (4) The previous analysis
shows that even in presence of heterogeneity, the estimators of the means perform well
if the y-values are not associated with the nomination probabilities. (5) To reduce the
tfect of the heterogeneity, one could divide the population into subpopulations defined
ccording to the values of an appropriate categorical variable, such as race, socio-
economic status or gender. Then one could estimate the total of the variable of interest
for each subpopulation and the sum of those estimates would be an estimate of the
opulation total. An estimate of the variance of this estimator could be obtained by
umming the estimates of the variances of the estimators of the subpopulation totals.
6) The previous remarks imply that our proposed sampling strategy is a reasonable
lternative when the size of the population is unknown and the researcher is interested
_ I estimating that parameter and additionally in estimating means and totals of some
:' Iesponse variables (although inferences based on confidence intervals might not be
teliable). (7) If the researcher’s interest is only in estimating means and proportions, he
or she has other alternatives, such as RDS. RDS has the advantage of being more
_ €conomical and easier to perform than the LTS variant employed by Félix-Medina and
'Thompson, but the construction of the frame of sites gives the latter variant the
advantage of producing good estimates of the means of any characteristics of the
elements in U;. Thus, if U; is a great portion of U, those estimates could be used as
estimates of the means of corresponding characteristics of the elements in U.
Regardless of this fact, it is not clear which alternative is the best from a statistical
point of view, and consequently, further research needs to be carried out to answer
this question. (8) Other topics that require to be researched are the development of

h<jn

~

- #OM+R) 7R, 2
= — — Yi4+— > — Y,
#OM +R)+#OR, ' T #OM +R,) + 7R,

Therefore, Y1 and ¥ 2 are the sample means of the y-values assomated with the elements in
S and Sy, respectively. Notice that given these samples, Y and ¥, do not depend on the
pfk)’s In addition, smce every element in Uy has the same probability of being included in
St it follows that ¥ « 1s a good estimator of YA, regaldless of the size of the p(k)’s k=1,2.
Furthermore, smce in our simulation study Y 1 = Y2, it follows that ¥ =~ ¥ 1= V% 0, and
consequently Y is also a good estimator regardless of the size of the p( 5. Notice also
from the expression for ¥ that even if the values of Y, and ¥ 2 were very different
from each other, and the p{’s were small (which would imply that #® would also be
small), ¥ would not have as senous problems of overestimation as ¥ would have. With
respect to the estimators Yk) and Y k=1,2;a=U,J,P, by considering the values of
the parameters a, and by, k = 1,2, used in the simulation study, and carrying out a similar
analysis to the previous one, we can show that those estimators have similar performance
to that of ¥ r and Y.
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