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In sampling theory skewed distributions of many of the survey variables in a population make
use of classical tools difficult. One possible solution is cut-off sampling, which discards a part
of the population from the sampling frame. Although cut-off sampling is common among
practitioners, its theoretical foundations are weak because the inclusion probabilities of some
of the units are zero. In this article we propose a framework that justifies cut-off sampling and
provides a means for determining census and cut-off thresholds. We use an estimating model
that assumes that the sizes of the discarded units for each variable are known. We compute the
variance of the resulting estimator and its bias. We develop a mean-squared-error-minimizing
algorithm as a function of multivariate auxiliary information at the population level. Due to
the multivariate nature of the model, we employ the theory of stochastic relaxation and use the
simulated annealing algorithm.

Key words: Cut-off sampling; skewed populations; model-based estimation; optimal
stratification; simulated annealing.

1. Introduction

Cut-off sampling is a procedure commonly used by national statistical institutes to select

samples, but it is not easy to give a unique, clear-cut definition of the methodology.

Roughly speaking, the population is partitioned in two or three strata such that the units in

each stratum are treated differently. In particular, part of the target population is usually

excluded a priori from sample selection.

A short introduction to cut-off sampling is found in Knaub (2008b). The basic

formulation (Hansen et al. 1953, pp. 486–490; Särndal et al. 1992, pp. 531–533),

frequently employed in the field of price collection, is characterized by a threshold such

that the units above this threshold are included in the sample with a positive probability.

The units below this threshold are discarded, their probability of being included in the

sample being zero. In this case, as noted by de Haan et al. (1999), the sampling variance is

zero by definition. This does not imply, however, the solution of all of the accuracy

problems. It is well known (see, for example, Särndal et al. 1992, p. 531) that cut-off
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sampling produces biased estimators. Therefore, the error measure typically used is the

mean squared error (that is, the sum of variance and squared bias). It follows that cut-off

sampling might be a good choice where the variance reduction more than offsets the

introduction of a small bias (Knaub 2007).

An alternative interpretation is proposed by Hidiroglou (1986), who considers two

strata. In the first one all the observations are included in the sample, whereas in the second

one the units are not discarded but sampled. In this context, the algorithm proposed by

Lavallée and Hidiroglou (1988) is often used to determine the stratum boundaries and the

stratum sample sizes. For the setup where the survey variable and the stratification variable

differ, Rivest (2002) proposed a generalization of the Lavallée and Hidiroglou algorithm.

The Rivest algorithm includes a model that takes into account the differences between the

survey and the stratification variable and allows one to find the optimal sample size and the

optimal stratum boundaries for a take-all/take-some design.

Finally, the most general approach (the one adopted in this article) considers three strata

whose units are respectively enumerated completely, sampled and discarded. As pointed

out by Sigman and Monsour (1995), this type of stratification is particularly appropriate in

business surveys, because businesses tend to have skewed distributions. Thus, size has a

considerable impact on the precision of survey estimates, and failure to notice that such

populations should be stratified in the aforementioned manner may cause an

underestimation of the population characteristics. When the distribution of the selection

variable is concentrated in a few large establishments, this methodology provides the

investigator with a sample whose size is rather small but whose degree of coverage is high.

The problem treated in this article is a generalization of the standard cut-off sampling.

As is usual in business surveys, we assume the population of interest to be positively

skewed, because of the presence of few “large” units and many “small” units. If one is

interested in estimating the total of the population, a considerable percentage of the

observations makes a negligible contribution to the total; on the other hand, the inclusion

in the sample of the largest observations is essentially mandatory.

In such situations, practitioners often use partitions of the population in three sets: a

take-all stratum whose units are surveyed entirely (UC), a take-some stratum from

which a simple random sample is drawn (US) and a take-nothing stratum whose units

are discarded (UE). In other words, survey practitioners decide a priori to exclude part

of the population from the analysis (for example, firms with less than five employees).

However, this choice is often motivated by the desire to match administrative rules: in

this case, the partition of firms into small, medium and large. This strategy is employed

so commonly in business surveys that its use is “implicit” and “uncritical”, so that the

inferential consequences of the restrictions caused to the archive by this procedure are

mostly ignored.

The problem of determining the optimal take-all threshold, i.e., the partition of the

population into strata UC and US, is relatively straightforward both from the technical and

from the methodological point of view (Hidiroglou 1986). On the other hand, finding a

criterion that assigns each unit to exactly one of the three strata tends to be considered as a

nonviable alternative, mainly because some inclusion probabilities are set equal to zero. It

follows that cut-off sampling is, in some sense, in an intermediate position between

probabilistic and nonprobabilistic sampling schemes, a feature that is not appreciated by
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experts in this field. As a result, in the literature there are very few papers concerning its

methodological foundations.

Nonetheless, in applications it is frequently used. It is the case, for example, when it

comes to the monthly survey of manufacturing performed by Statistics Canada (see, for

example, Statistics Canada 2001), that implicitly uses cut-off sampling, without paying

too much attention to methodological implications: “The sampling frame for the Canadian

Monthly Survey of Manufacturing (MSM) is determined from the target population after

subtracting establishments that represent the bottom 2% of the total manufacturing

shipments estimate for each province. These establishments were excluded from the frame

so that the sample size could be reduced without significantly affecting quality.” Similar

procedures are employed in surveys performed by other national statistical institutes

(for a thorough review see Knaub 2007, Section II): cut-off sampling is widely used

but methodological aspects are not documented. Two exceptions are the book by Särndal

et al. (1992, pp. 531–533), and the paper by de Haan et al. (1999): the latter presents

successful applications of cut-off sampling in the field of consumer price indexes.

As pointed out by Knaub (2007, p. 2), cut-off sampling for estimation of unit prices may

be useful: “If a cut-off sample is used for revenues and another is used for sales

volume, then the ratio will tend to be more accurate than either the numerator or the

denominator”.

Finally, Elisson and Elvers (2001) performed a univariate analysis that compares cut-off

sampling with simple stratified sampling. They conclude that cut-off sampling deserves

more consideration and suggest its use in applications; however, they find that the

dimensional variable that determines the cut-off threshold has a relevant impact on the

results, so they stress that great care must be employed in choosing this variable.

Moreover, they point out the need for an appropriate model for the estimation of the

fraction of population excluded from the sample.

In any case, it is worth mentioning the practical advantages of cut-off sampling as

concerns the costs of a survey:

i) building and updating a sampling frame for small business units could be too costly,

considering that the gain in efficiency of the estimators would probably be small;

ii) excluding the units of the population that make little contribution to the aggregates to

be estimated usually implies a large decrease in the number of units that have to be

surveyed in order to get a predefined accuracy level of the estimates;

iii) putting a constraint on the frame population and, as a consequence, on the sample,

makes it possible to reduce the problem of empty strata that mainly affects the

smallest firms. Regarding this issue, several empirical analyses shown that some

difficulties, such as the nonresponse rate, the turnover rate of economic units and the

errors of under- or over-coverage of the frame, become more relevant as the size of

the units gets smaller;

iv) cut-off sampling may be demonstrably more practical in terms of accuracy when total

survey error is taken into account. Knaub (2004) shows a way to gauge total

survey error in the context of nonsampling errors, such as measurement error.

Given that practitioners are in favor of such partitions of the population and there are

technical reasons that justify their use, the basic question is: is it possible to consider
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cut-off sampling as a valid sampling scheme? If the answer is positive, the issue is to

define a statistical framework for cut-off sampling.

In this connection we try to develop an easily implementable solution to the problem of

the construction of the three strata UC, US, and UE in a multipurpose and multivariate

setup. In other words, similarly to what happens in practical applications, we assume an

interest in surveys with more than one target variable, using auxiliary information

contained in multiple variables.

The case when a single measure of size is available is, however, not that uncommon. For

example, in business surveys, the only auxiliary information is often the number of

employees. Furthermore, when the surveys are voluntary, the rate of participation of small

firms is mostly very low. In this instance a cut-off sampling procedure based on a

dimensional variable (Bailar et al. 1983, Section 5.1) is undoubtedly convenient. The

situation should simplify substantially in that the take–all categories would be the units

with the biggest size measures and the take–none would be the units with the smallest. It

would remain to determine the boundary points. For this issue there is probably an

analytical, instead of algorithmic, resolution to be found. However, the present problem is

multivariate, so that we leave to future research the study of the univariate problem.

The structure of the article is as follows. In Section 2 we will define an estimation model

that assumes, for each variable, the weight of the units excluded from the analysis to be

known and constant. However, this hypothesis is not, in general, under the control of the

investigator, so that this estimator is biased, and we will have to find its bias and mean

squared error (MSE). The model will be developed for the estimation of a total. Section 3

will be devoted to the derivation of the sample size for the cut-off scheme, focusing on its

optimization and, consequently, on the construction of the optimal design. The problem

will be tackled by defining the sample size as a function of the partition UC, US, and UE

determined on the basis of multivariate auxiliary information that will be assumed to be

known for the whole population. In view of the combinatorial nature of this problem, we

will use the theory of stochastic relaxation and, in particular, the simulated annealing (SA)

algorithm. In Section 4 we will show some empirical evidence about the bias of the

estimator when using data from surveys concerning slaughtering firms in Italy. In the same

section we will present the main results of the application of the sampling scheme to this

dataset. Finally, Section 5 shall conclude the article and point out some open problems.

2. An Estimator of the Total for Cut-off Sampling Schemes

The problem of stratifying in two strata (take-all and take-some) and finding the census

threshold was first treated by Dalenius (1952) and Glasser (1962). The former author

determined the census threshold as a function of the mean, the sampling weights and the

variance of the population. Glasser (1962) derived the value of the threshold under the

hypothesis of sampling without replacement a sample of size n from a population of N

units. Hidiroglou (1986) reconsidered this problem and provided both exact and

approximate solutions under a more realistic hypothesis. He found the census threshold

when a level of precision concerning the mean squared error of the total was set a priori,

without assuming a predefined sample size n. It is worth noticing that he considered a case

with only a take-all and a take-some stratum, so that he developed a method for finding
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a “census threshold” (defined “cut-off threshold” in the paper). In some important

applications, mostly in conjunctural business surveys, it may be convenient to use the

so–called “census threshold” (namely strata UC and UE only), especially when the data

element of interest is a ratio of other data elements (such as cost per unit volume). For such

surveys the sample data are collected monthly or quarterly and it may be difficult

(or impossible) to obtain accurate data from the smallest members of the population

(Royall 1970; Knaub 2007; Knaub 2008a). However, all these authors limit their attention

to a single purpose and univariate setup.

This work stems from Hidiroglou’s (1986) idea but extends it substantially. We

stratify the target population by means of a criterion that defines the belonging of each

observation to one of the three strata UC, US, and UE in a multipurpose and multivariate

framework. The solution is based on the identification of appropriate estimators for the

quantities in Table 1.

In this article we consider the estimator of the total t̂yj of the jth surveyed variable

( j ¼ 1; : : : ; J). This estimator is the sum of three independent components,

corresponding respectively to the take-all, take-some and take-nothing strata. Thus,

omitting for simplicity the index of the variables (the same way of reasoning can be

applied to all the J variables), we can write t̂y ¼ t̂C þ t̂S þ t̂E. As for the take-all stratum, it

is clear that t̂C ¼ tC ¼
P

k[UC
yk. In the take-some stratum, we use the classical

p2estimator of the total tS ¼
P

k[US
yk:

t̂S ¼
X
k[s

yk

pk

¼
X
k[s

dkyk ð1Þ

that is the expansion formula known in the literature as the Horvitz-Thompson estimator,

from now on the HT estimator (Horvitz and Thompson 1952). In (1), the pks are the

inclusion probabilities, that are assumed to be strictly positive; the same assumption holds

for the second-order probabilities pkl, that are necessary for the computation of the

variance of the estimator. The quantities dk ¼ 1=pk are the design weights of each unit

k [ s, namely the original weights resulting from the sampling scheme.

The sample s is a probabilistic sample drawn from the subpopulation US; in the

following we will always assume that it is a simple random sample from US. It is worth

stressing that in this article we deal with a sample design issue. When doing this,

simplifying the problem from the formal point of view is a classical strategy. However,

there would be no reason against the use, for drawing a sample from US, of any selection

criterion different from simple random sampling. Considering the special features of the

problem at hand, a natural candidate would be the pps (probability proportional to size)

criterion. An excellent reference on pps is Särndal et al. (1992, pp. 97–100). On the other

hand, in general, the pps method only works in the univariate setup. Thus, in order to

Table 1. Estimators and error measures. bð�Þ is the bias function,

f and g are functions that shall be defined in the following

Stratum UC US UE

Estimator t̂C t̂S f ðt̂C; t̂SÞ
MSE 0 varðt̂SÞ gðvarðt̂SÞ þ b2ðt̂EÞÞ
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maintain the generality of the multivariate auxiliary information approach used here, we

delay the study of the pps case to future research.

According to the setup of our problem, the Hidiroglou-type estimator tC þ t̂S ¼P
k[UC

yk þ
P

k[s dkyk has to be augmented by a model-based component that takes into

account the discarded fraction of the population, UE. As concerns this issue, we can write

tE ¼ ðtC þ tSÞd ð2Þ

i.e., the total of the discarded population is a fraction of tC þ tS. In (2) the quantity d,

that is usually unknown, can be evaluated by means of external sources (i.e., auxiliary

variables x); thus

~d ¼

X
k[UE

xk

X
k[UC

xk þ
X
k[US

xk
ð3Þ

For notational simplicity and without loss of generality, in the following we will always

assume that each auxiliary variable is the target variable as known from the last census:

xk ¼ yk;t21. Using these hypotheses we obtain the following identity:

t̂y ¼ tC þ t̂S þ t̂E ¼ ð1þ ~dÞðtC þ t̂SÞ ¼ ð1þ ~dÞ
k[UC

X
yk þ

k[s

X
dkyk

0
@

1
A ð4Þ

The assumptions introduced to obtain (4) are slightly different from those introduced

Särndal et al. by (1992, p. 532), who use a ratio estimator in the domain S as a

“compensation” for the fraction of population discarded. As we are concerned with a

sampling design, in this article we find it more convenient to employ, as a starting point for

the part of the population to be sampled, the “neutral” HT estimator. It is always possible

to implement, in the estimation procedure, a second step. One could indeed use the

auxiliary information ex post, in order to correct tC and t̂S either by means of a ratio

estimator or by means of a more general approach to the use of auxiliary information such

as the so-called calibration estimators (Deville and Särndal 1992). In any case, assuming

the ability to correct for the bias in the design phase seems to be a very strong hypothesis,

because in this step the researcher usually employs simple estimators, such as HT. When

the survey is completed and all the data are available, it is possible to resort to more

complicated estimators.

It is well-known (see, for example, Särndal et al. 1992, p. 531) that cut-off sampling

produces biased estimators. Using (4) and the independence of the three strata UC, US and

UE, the mean squared error of t̂y is given by:

MSEðt̂yÞ ¼ varðt̂yÞ þ b2ðt̂yÞ ¼ varðtC þ t̂S þ t̂EÞ þ b2ðt̂yÞ

¼ var½ð1þ ~dÞðtC þ t̂SÞ� þ b2ðt̂yÞ ¼ ð1þ ~dÞ2varðtC þ t̂SÞ þ b2ðt̂yÞ

¼ ð1þ ~dÞ2varðt̂SÞ þ b2ðt̂yÞ ¼ ð1þ ~dÞ2varðt̂SÞ þ b2ðt̂EÞ

ð5Þ

Note that (5) is the conditional MSE given that ~d ¼ d. Moreover, we put bðt̂yÞ ¼ bðt̂EÞ to

stress that the bias, that represents the price to pay for discarding part of the population,
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only depends on the excluded stratum. It is indeed clear that ~d [ Rþ in (4) introduces a

bias because the true ratio d is unknown and different from the value ~d computed in the

current survey. Note that, when only the “census threshold” (that is, only the strata UC

and UE) has to be determined, (5) reduces to the bias–related component.

It is therefore crucial to concentrate on the bias bðt̂EÞ. It is not difficult to see that:

bðt̂EÞ ¼ Eðt̂yÞ2 ty ¼ EðtC þ t̂S þ t̂EÞ2 ty

¼
k[UC

X
yk þ

k[US

X
yk þ E½ ~dðtC þ t̂SÞ�2 ty

¼ ~dðtC þ tSÞ2 tE

ð6Þ

Putting tE ¼ dðtC þ tSÞ, (6) can be conveniently rewritten as follows:

bðt̂yÞ ¼ ð ~d2 dÞðtC þ tSÞ ð7Þ

From (7) it appears that the source of the bias of Estimator (4) is the mismatch between

the numerical value ~d used in the survey and the true value d. In particular, the magnitude

of the bias is determined by the difference j ~d2 dj.

As will become clearer in the next section, (7) is a fundamental ingredient of the sample

design proposed here. In Section 4 we will show some empirical evidence concerning the

functional form of the bias.

In the next sections we will express the sample sizes as functions of the MSE because

the two components of the MSE vary as the census and cut-off thresholds change. As a

consequence, neither of the components can be held fixed.

3. The Optimal Design

3.1. Sample Size

In the preceding section we showed that the MSE of the estimator t̂y of the total for cut-off

designs is equal to MSEðt̂yÞ ¼ ð1þ ~dÞ2varðt̂SÞ þ b2ðt̂yÞ, where varðt̂SÞ is the variance of the

HT estimator used for estimating the total of the target variables in the subpopulation US.

The well-known expression for this variance in simple random sampling without

replacement (Särndal et al. 1992, p. 46) is given by

varðt̂Þ ¼ N 2 12 f

n
S2 ð8Þ

where S2 is the variance of the target variable. However, in our setup this formula

needs to be modified. The HT estimator is indeed only used in US, so that (Cochran

1977, Theorem 5.3)

varðt̂SÞ ¼
ðN 2 NC 2 NEÞ½N 2 NC 2 NE 2 ðn2 nCÞ�

n2 nC
S2 ¼ NS

NS 2 nS

nS
S2

¼ N2
S

12
nS

NS

nS
S2 ð9Þ
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where NS ¼ N 2 NC 2 NE, nS ¼ n2 nC and f ¼ n=N is the sampling fraction. In (9)

the variance S 2 is equal to

S2US
¼

1

NS 2 1k[US

X
ð yk 2 mÞ2

where m ¼ mUS
¼ ð1=NSÞ

P
k[US

yk.

In applications, the MSE is usually required to satisfy the following equality:

MSEðt̂yÞ ¼ c2t2y ð10Þ

where c is the desired level of precision for the estimation of the total. In addition to (10),

another common cost equation is MSEðt̂yÞ ¼ k 2. This expression is equivalent to (10) with

k ¼ cty.

If we substitute for MSEðt̂yÞ in (10) the next to last expression in (5) we get:

ð1þ ~dÞ2varðt̂SÞ þ b2ðt̂yÞ ¼ c2t2y

from which we easily derive the variance of the estimator:

varðt̂SÞ ¼ NS

NS 2 nS

nS
S2 ¼

c2t2y 2 b2ðt̂yÞ

ð1þ ~dÞ2
ð11Þ

We now focus on Expression (11) in order to derive the total sample size. Here, the size

is defined to be “total” because it includes both the size of the stratum completely

enumerated and of the simple random sample without replacement from Stratum US. In

the following it obviously holds that nC ¼ NC ¼ N 2 NS 2 NE; for notational simplicity,

we first put c ¼
def

c2t2y 2 b2ðt̂yÞ
h i

=ð1þ ~dÞ2, so that (11) can be rewritten as

NS

NS 2 nS

nS
S2 ¼ NS

NS 2 nþ nC

n2 nC
S2 ¼ c

from which we get

ncþ nNSS
2 ¼ N2

SS
2 þ nCNSS

2 þ nCc

Solving with respect to n, with some algebra we obtain the following result:

n ¼ nC þ
1

1

NS

þ
c

N2
SS

2

¼ N 2 NE 2
1

1

NS

þ
S2

c

ð12Þ

It is worth noting that the solution n ¼ N 2 NE 2 1= 1
NS

þ S 2

c

� �
corresponds to Formula

(2.4) of Hidiroglou (1986) if we substitute the quantities c2Y 2 and N respectively with c

and ðN 2 NEÞ. In other words, if we limit ourselves to single purpose and univariate

surveys, the sampling design proposed here is an extension of Hidiroglou’s (1986) take-

all/take-some design to the case where a cut-off stratum is added. As said before, in many

practical applications including business surveys this is a reasonable strategy.
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3.2. Optimal Partition

In this subsection we deal with the problem of optimal partitioning of the population U in

the three strata UC, US, and UE. In (12) the sample size n depends on c (that is chosen

a priori by the researcher) on the bias bðt̂EÞ, on the total ty and on the partition in the

three strata. The partition determines four additional quantities, namely ~d, NS, NE, and

S2 (see the application in Section 4 for details about the computation of the quantities

used in (12)).

Thus, if we denote with F ¼ {k1; k2; : : : ; kN} (ki [ {C; S;E}) the generic element of

the set Q of the possible partitions of the population (whose cardinality is equal to 3N), we

conclude that n is a function of F and write

n ¼ nðFÞ ð13Þ

because all the other quantities listed above are either chosen by the researcher or

computed using the auxiliary variables once a partition has been determined.

At this point it is quite clear that the problem consists in finding the partition F* that

minimizes (13) given the desired level of precision c. In particular, as our aim is the

estimation of the totals tyj , j ¼ 1; : : : ; J, of J variables by means of the same number J of

auxiliary variables (see Section 2), the optimal sample size can be defined as follows:

nðF*Þ ¼ min
j¼1; : : : ;J

max njðFÞ

� �
ð14Þ

The term maxj¼1, : : : ,Jnj(F) in (14) means that the optimization concerns, at each

iteration, the largest of the sample sizes nj corresponding to each auxiliary variable. Now

(14) is the formalization of a combinatorial optimization problem, and the simulated

annealing (Metropolis et al. 1953; Kirkpatrick et al. 1983; Geman and Geman 1984) is an

appropriate tool for solving it. This algorithm enjoys several desirable properties (see

Casella and Robert 2004, Section 5.2.3, for a review).

The implementation of the SA algorithm to the problem at hand can be summarized as

follows.

(1) Choose an initial “temperature” T0 and number of subiterations Nsub. These

quantities will be used below.

(2) Stratify the population by means of a random uniform partition F0, that is, assign to

each of the N units of the population a label f from the set {C; S;E}, where

Pðf ¼ CÞ ¼ Pðf ¼ SÞ ¼ Pðf ¼ EÞ ¼ 1=3. Let fð0Þ
i (i ¼ 1; : : : ;N) be these labels.

(3) Perform substeps (a) and (b) for i ¼ 1, : : : ,N.

(a) Visit the ith unit of the population and put fð1Þ
i ¼ j, where j is a label drawn

with uniform probability from the set {C; S;E} and is the update of the label

assigned to the ith unit at the 0-th iteration.Obviously, fð1Þ
j ¼ f

ð0Þ
j ;j – i, so

that the vector of labels f ð1Þ at the first iteration differs from f ð0Þ at most by

one element.

(b) Let Dð1Þ ¼ nðFð1ÞÞ2 nðFð0ÞÞ. If D , 0, put fð1Þ
i ¼ j; otherwise, put fð1Þ

i ¼ j

with probability exp {Dð1Þ=T0} or f
ð1Þ
i ¼ f

ð0Þ
i with probability

12 exp {Dð1Þ=T0}.
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(4) Repeat step (3) Nsub times.

(5) Replace T0 with T1 ¼ f ðT0Þ, where f ð�Þ is a decreasing function that satisfies

the conditions of the annealing theorem (Geman and Geman 1984). The function

originally proposed by Geman and Geman (1984) was Ttþ1 ¼ f ðTtÞ ¼

ð log ð1þ tÞ= log ð2þ tÞÞTt. Here we follow Sebastiani (2003) and use the so-called

geometric temperature schedule Ttþ1 ¼ f ðTtÞ ¼ rTt, with r [ ð0; 1Þ. The choice

of f in applications has been the object of a lot of interest and some controversy in

the literature: see Stander and Silverman (1994) and Casella and Robert (2004,

p. 201), and the references therein. As for the numerical value of r, it is well-known

that it has to be “large” enough to avoid a too rapid decrease of the temperature and

“small” enough to keep the computation time reasonably short. Numerical

experiments showed r ¼ 0:985 to be a reasonable compromise.

(6) Repeat Steps (3)–(5) until some convergence criterion is met. We found it

convenient to stop the algorithm the first time that one of the following conditions

was satisfied: (i) in two successive iterations no labels are switched; (ii) niter ¼ 300

iterations are reached. The numerical value of niter was again found by numerical

experiments: in the present application (see Table 3 below) results are approximately

stable after the first 100 iterations, so that niter ¼ 300 seems to be large enough to

guarantee an appropriate level of precision.

Notice that at Step 6, the tth iteration is just obtained by replacing ð0Þ with (t) and ð1Þ with

ðt þ 1Þ in Steps 2–5 above. At convergence, the algorithm determines the optimal

partition F*, that minimizes the total sample size n for a given precision level c.

4. A Case Study: The Slaughtering Monthly Survey

In this section we will apply the optimal cut-off design proposed above to the red meat

slaughtering monthly survey performed by ISTAT (Italian National Institute of Statistics).1

The goal consists in obtaining information concerning the number and the weight of the

animals slaughtered monthly in Italy. This survey is based on a stratified sampling, with a

stratification by kinds of slaughterhouse and geographical division, for a total of 5 strata,

two of them with geographical references. Geographical divisions are North–West (1),

North–East (2), Center (3), South (4) and Islands (5). Strata are the following:

. Stratum 1 (always totally observed): private slaughterhouses with European

Economic Community (EEC) stamp in the geographical division 1 or 2;

. Stratum 2: private slaughterhouses with EEC stamp in the geographical division 3, 4

or 5;

. Stratum 3: private slaughterhouses with low capacity (regardless of geographical

division);

. Stratum 4: private slaughterhouses in neglect, public with EEC stamp and public in

derogation (apart from geographical division);

. Stratum 5: public slaughterhouses with low capacity.

1 The code that was used in the study can be obtained by sending an email request to the first author.
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The stratification also acts as a dimension-based criterion that assigns to Stratum 1 the

enterprises with more than 10,000 sheep and goat or more than 50,000 pig slaughterings.

On average, the sample is of about 460 units for a population of 2,211 units with the

desired level of precision c set to 5% (ISTAT 2007). In the following we will compare the

ISTAT stratification, prepared by experts on the basis of their knowledge of the variables

under investigation, to our optimal stratification.

In addition to the monthly survey, Istat performs yearly the census of the slaughter-

houses. Thus, our frame contains N ¼ 2,211 slaughterhouses for which we know four

variables enumerated completely in 1999, 2000, and 2001. They are respectively the total

number of slaughtered (i) cattle, (ii) pigs, (iii) sheep and goats and (iv) equines. We will

first consider the complete dataset (for each of the three years) in order to assess the

behavior of the bias bðt̂EÞ and to look for possible regularities. Recalling that d is defined as

the ratio of the number of population units discarded to the number of population units

sampled and enumerated completely, it is necessary to know the complete list of the

lagged auxiliary variables.

The cut-off design proposed in this article will then be implemented, with the aim of

setting up a monthly survey on slaughtering for the year 2002, using as auxiliary variables

only the data enumerated completely in 2001. Our exercise consists in estimating the same

totals estimated by ISTAT in its monthly survey.

We start with a brief description of the archive at hand. The scatterplots of all the pairs

of the four variables in 2001 are shown in Figure 1; the same graphs for the years 1999 and

2000 are almost identical and therefore not reported here. The main evidence is that the

variables are essentially uncorrelated, as confirmed by the linear correlation coefficient,

that ranges in the interval ½20:0096; 0:0566�. Moreover, slaughterhouses are strongly

specialized and most firms are small. In particular, 38.9% of the firms slaughter only one

type of animals, 24.06% two types, 21.85% three types and only 15.2% all the four types

of animals.

4.1. Bias Assessment

In order to implement the design developed in the preceding sections, it is crucial to

analyze the bias bðt̂EÞ of the estimator t̂y given by (4), because the algorithm described in

the preceding section requires as an input a starting value for bðt̂EÞ. We solved this problem

with the help of empirical evidence concerning real data. Note that the “bias assessment”

we give estimates absolute value of “bias” as an increasing function of increasing volumes

of missing data. That would generally be true, but a clarification is in order about the

results obtained by means of “bias assessment”. They will usually be good, on average,

if the massive amounts of historical data (good data) required are available, but, as in

small area estimation, we are relying on a general effect, which may not be very good on

a case-by-case application.

Figure 2 shows the absolute value of the bias bðt̂E i
Þ, where the quantity t̂E i

is defined as

the total of the discarded population observed in 1999 and 2000, which in turn is given

by the i smallest observations of the population. In other words, the ith point of the graph

is the absolute value of the bias corresponding to t̂E i
, where Ei contains the i smallest

observations of the population.
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The procedure used to estimate the bias works as follows. If a complete enumeration of

both the auxiliary variable x and the objective y (usually they are the same variable

relevant to two different periods) is available, they can be ordered on the basis of the

values of x:

xð1Þ; : : : ; xðNÞ;

yð1Þ; : : : ; yðNÞ;

where the (i ) codes are such that xði Þ # xðiþ1Þ for i ¼ 1; 2; : : : ;N 2 1. Let now Cx;ði Þ and

Cy;ði Þ be the respective cumulative sums:

Cx;ði Þ ¼
Xi

j¼1

xð jÞ; Cy;ði Þ ¼
Xi

j¼1

yð jÞ

and Ox;ði Þ and Oy;ði Þ be the corresponding countercumulative sums:

Ox;ði Þ ¼ tx 2 Cx;ði Þ ¼
XN
j¼iþ1

xð jÞ;Oy;ði Þ ¼ ty 2 Cy;ði Þ ¼
XN
j¼iþ1

yð jÞ
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Fig. 1. Scatterplots of the data; the unit of measurement is number of animals
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Thus, if i is used as a threshold, according to (6), the absolute value of the bias obtained

by using Estimator (4) can be written as:

b t̂Ei

� ��� �� ¼ Cx;ði Þ
Oy;ði Þ

Ox;ði Þ
2 Cy;ði Þ

����
����

where the excluded part of the population is defined as Ei ¼ {1; 2; : : : ; i}.

The b t̂Ei

� ��� ��’s can be either entered directly in the optimization algorithm or used to

construct a model, in order to simplify calculations and to obtain more stable results, i.e.,

not depending on particular discontinuities in the data frame. In our experiment we found

satisfactory fits for the simple linear regression model:

b t̂Ei

� ��� �� ¼ aþ bCx;ði Þ þ e i ð15Þ

Moreover we decided to exclude from the analysis the tails of the ordered distributions

because the fit turned out to be better. In practical applications a threshold is usually

neither a very small nor a very large value, so that this way of proceeding does not cause

any problem.
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Fig. 2. The relationship between bðt̂E i
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Benedetti et al.: A Framework for Cut-off Sampling 663



The four graphs in Figure 2, corresponding to each auxiliary variable, have been

obtained using respectively the complete 1999 and 2000 frame as a basis for the

construction of the cut-off design in 2001. As expected, a larger temporal lag of the

auxiliary information causes a significant modification of the bias: the bias for 1999 is in

most cases larger than the bias for 2000. Furthermore, from the graphs it can be seen that

the function that formalizes the relationship between b̂ tEi

� ��� �� and Cx;ði Þ is well fitted by the

linear model (15). Therefore we used the following estimated regressions:

b̂ t̂Ei

� ��� ��
j;2001

¼ âþ b̂Cj;2000ði Þ; j ¼ 1; : : : ; 4; ð16Þ

b̂ t̂Ei

� ��� ��
j;2001

¼ âþ b̂Cj;1999ði Þ; j ¼ 1; : : : ; 4: ð17Þ

Equations (16) and (17) actually give an estimate of the absolute value of the bias, but

this is not a drawback because (12) only uses the square of this estimate. Detailed results

are displayed in Table 2 respectively for cattle, pigs, sheep and goats, and equines. To

assess the existence of a pattern of bias over time in the data series at hand, we also regress

data from 2000 onto 1999, even though this regression will not be used for the

determination of the optimal sample size. The estimates of the model b̂ t̂Ei

� ��� ��
j;2000

¼

âþ b̂Cj;1999ði Þ ð j ¼ 1; : : : ; 4Þ are shown in Table 2 as well.

The fit is extremely good in all cases. In particular, the values of the R2 statistics are

always large; that is not surprising if we consider that the variables used in the regression

are cumulative sums. Thus, they are very likely correlated. As a result, standard statistical

tests fail and are not reported here. We restrict ourselves to displaying the R2 statistics,

which in this setup should be interpreted as a descriptive measure. Notice that the

regressions from 2001 onto 2000 and from 2000 onto 1999 are similar and show some

evidence of temporal pattern.

We now apply our cut-off procedure in order to re-design, with respect to the year 2001,

the ISTAT red meat slaughtering monthly survey. To this aim we use, as auxiliary

information, the aforementioned frame. Thus, at each iteration of the algorithm and for

Table 2. Estimates and R 2-values for the three linear regressions

Years â b̂ R2

2000–1999 2,690 0.0681 0.8742
Cattle 2001–1999 4,621 0.1482 0.9662

2001–2000 5,810 0.0538 0.9494
2000–1999 37,740 0.1889 0.9082

Pigs 2001–1999 38,930 0.3230 0.9600
2001–2000 3,664 0.2455 0.9541
2000–1999 25,127 0.0804 0.9128

Sheep and goats 2001–1999 27,740 0.0661 0.9158
2001–2000 25,910 0.0713 0.8517
2000–1999 2,707 0.2144 0.8221

Equines 2001–1999 5,488 0.9674 0.9169
2001–2000 1,834 0.6344 0.9286

Journal of Official Statistics664



each auxiliary variable, in nðFðtÞÞ (see (14)) we substitute for the bias bðt̂EÞ contained in

(12) the estimate obtained via the estimated linear regression (16).

4.2. Sampling Design

Let us now finally turn to the results of the implementation of the cut-off design for the

estimation of the same totals of the ISTAT red meat slaughtering monthly survey. Hence,

in the objective function (14) the sample sizes njðFÞ ( j ¼ 1; : : : ; 4) are given by (12).
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In the algorithm we use a desired level of precision c ¼ 1%. The reason why we employ a

desired level of precision of 1% instead of 5% as done by ISTAT is that cut-off sampling is

considerably more efficient than standard stratified sampling. Thus, it is practically

impossible to reach a 1% level of precision by means of the standard stratified approach

used by ISTAT, unless the sample size is unrealistically large. However, at the end of this

section we discuss the consequences of the use of different numerical values of c.

Figure 3 shows the total optimal sample size as a function of the number of iterations of

the simulated annealing. It is immediately evident that the “largest decrease” in the sample

size takes place in the first few iterations; the remaining iterations seem to provide just an

adjustment towards the global optimum. More precisely (see Figure 4), approximately

after the first 100 iterations, the algorithm just moves some observations from UE toUS; to

these label-switching operations correspond very small decreases in the total sample size.

Table 3. Cut–off sampling results as a function of selected iterations of SA

Iter n NC NS NE # changes

1 797 738 736 737 –
2 377 328 637 1,246 2,544
3 369 321 652 1,238 2,095
4 372 317 720 1,174 2,139
5 369 317 714 1,180 2,192
6 366 314 694 1,203 2,179
7 365 319 652 1,240 2,133
8 368 316 690 1,205 2,151
9 365 317 690 1,204 2,101
10 364 317 691 1,203 2,089
20 357 309 620 1,282 1,827
30 353 309 613 1,289 1,613
40 347 307 517 1,387 1,286
50 340 302 454 1,455 940
60 325 295 310 1,606 489
100 315 280 207 1,724 117
150 315 280 207 1,724 61
200 314 280 210 1,721 25
250 314 280 209 1,722 5
298 314 280 208 1,723 2

Table 4. Mean and coefficient of variation for each stratum and type of animal

UC US UE

Cattle m 9,248 1,334 160
CV 2.42 0.61 1.36

Pigs m 13,019 317 206
CV 2.89 1.50 3.72

Sheep and goats m 34,393 302 583
CV 2.83 1.96 3.84

Equines m 670 8.38 9.59
CV 3.27 1.95 6.66
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Table 3 gives some details about the implementation of the algorithm. The quantity NS

is the size of stratum US; the number of units actually sampled from this stratum can be

computed as n2 NC; for example, at the 298th iteration (namely when the algorithm

converges) we sample n2 NC < 3142 280 ¼ 34 units. It is worth adding that the

algorithm is rather slow: one iteration takes almost five seconds, so that convergence is

reached in approximately 22 minutes on a Pentium 4, 3.00 GHz. According to our

computational experience, the convergence time increases very quickly as N gets large, so

that the application of the method in large populations may be difficult.

The sampling scheme developed in this article produces the partition of the population

shown in Table 4 and Figure 5. Only the partition concerning cattle and pigs is displayed.

The graphs of the remaining pairs are very similar and therefore we omit them. This

figure gives the scatterplot of the fourth roots of the two auxiliary variables. Observations

in the light-grey portion of the graph are excluded (take-nothing), those in the white

portion are enumerated completely (take-all), and those in the dark-grey portion are

sampled (take-some).

The stratification is very clear-cut, with two strata (UC and UE) whose sizes are larger

than US. The take-some stratum is nested into the take-nothing stratum, with a sampling
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Fig. 5. Optimal partition of the population for the cattle and pigs (fourth roots of the data)

Table 5. Sizes of the strata and of the sample for various values of the bias

bðt̂EÞ NC NS NE n

0.01 6 22 2,183 9
0.05 205 110 1,896 226
Case study 280 208 1,723 314
0.25 372 562 1,277 449
0.50 414 928 869 520
0.75 427 1,117 667 546
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fraction equal to 16%. This means that in our application the sampling scheme is fairly

similar to a take-all/take-nothing design. In fact, in the case study, 1,723 units are cut off,

280 units are completely enumerated and only 208 belong to the genuine sampling stratum

(Table 3). It may seem surprising that approximately 3=4 of the population can be left

out without detriment to the survey. In addition, more than 50% of the units with positive

inclusion probability belong to the completely enumerated stratum. However, this is not

unexpected, because typically it happens if a stratification variable is highly correlated

with the study variable, which is the case here given the short time span between censuses.

Moreover, according to the theoretical results derived in the preceding section, such a

small sampling fraction was expected. Considering the large concentration of the

population, stratum US contains mostly the firms with values of all the four auxiliary

variables are different from zero, namely the least specialized ones.

To complete this discussion, consider Tables 5 and 6. Table 5 shows a comparison of the

outcomes just presented and some results obtained by means of cut-off sampling as the

bias bðt̂EÞ changes. The position of our case study in the table is explained by the fact that,

even though we have used four numerical values for the bias (as many as the surveyed

variables), the average value of the bias is approximately equal to 0.1.

Table 6 has the same structure as the preceding one, but the results of cut-off sampling

vary as a function of the desired level of precision c.

From Table 5 it is clear that, if the bias is negligible (i.e., bðt̂EÞ ¼ 0:01), the auxiliary

variables are essentially identical to the target variable. It follows that the survey is

almost unnecessary (n ¼ 9). As the bias increases, NE gets smaller. This does not happen

as c decreases (see Table 6). Thus, the size of UE appears to be mainly a function of

the bias. On the other hand, Table 6 shows that the subdivision of ðN 2 NEÞ in UC and

US depends mostly on c. The smaller the desired level of precision, the larger the number

of completely enumerated units.

Recall that the desired level of precision c was set at 1%. This value has also been

employed to perform the following comparisons, that show the considerable advantages

of our approach in terms of sample size corresponding to the predetermined level of

precision. Table 7 displays detailed results concerning some direct competitors of the

cut-off design; in particular, Table 7(a) shows the sample sizes corresponding to the

Hidiroglou approach, Table 7(b) gives the sizes obtained stratifying the population with

the K-means algorithm (Rencher 2002, Section 14.4.1a) used as a minimizer of the

variance. Finally, the sample size corresponding to the ISTAT design introduced at the

beginning of this section (but setting c ¼ 1% instead of 5% used by ISTAT for its official

Table 6. Sizes of the strata and of the sample for

various values of the level of precision

c NC NS NE n

Case study 280 208 1,723 314
0.02 186 294 1,731 193
0.03 131 333 1,747 142
0.04 90 356 1,765 99
0.05 61 373 1,777 68
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survey) is equal to n ¼ 866 with 5 strata. In the last row of Table 7(a), NC is the size of

Stratum UC obtained as the union of the four strata enumerated completely with respect to

each auxiliary variable (reported in the first four rows of the table). This is one way of

rendering Hidiroglou’s approach, that is single purpose and univariate, comparable to our

technique, that is multipurpose and multivariate.

5. Conclusions

The goal of this article consisted in proposing a framework for cut-off sampling where a

model-based estimator of the unobserved part of the population plays a crucial role in

introducing a bias into the final estimates. The rationale for this proposal is based on the

assumption that often the population distributions are highly skewed, with a huge number

of small units whose weight on the population total is negligible. We have discussed a

formal approach for combining estimation and optimal partition of the population in three

strata: census, sample and exclusion. We view this issue jointly with the multipurpose

allocation of sampling units in the case where multivariate partitioning variables are

available.

We have used the SA algorithm to minimize the number of observed units necessary to

satisfy a required precision. This is expressed in terms of MSE of the estimates of the

population total. The results are encouraging. For example, for c ¼ 1%, the sample size

obtained using the present approach is approximately 50% to 60% less than its direct

competitors.

These outcomes also shed some light on the directions of future research in this field. In

particular, we believe that attention should be focused on the bias of the estimator with the

purpose of tackling at least two issues:

. assess the robustness of the design with respect to variations of the functional form of

the bias function (that here was assumed to be linear);

. use the estimated value of the bias not only for finding the optimal sample size but

also for correcting the bias of the chosen estimator (whatever it is).

Table 7(a). Sample sizes using Hidiriglou’s approach

n NC NS

y1;2001: cattle 476.97 332 1,879
y2;2001: pigs 301.03 246 1,965
y3;2001: sheep and goats 291.29 229 1,982
y4;2001: equines 227.11 180 2,031
Union 744.26 663 1,548

Table 7(b). Sample sizes using the K-means algorithm

# strata 2 3 4 5 6 7 8 9 10

n 2,193 2,094 1,800 1,689 1,259 1,206 1,145 990 649
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Finally, the last problem is related to the fact that the SA algorithm is rather slow, so that

the computational burden may become heavy when the population is large.
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