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An Optimal Multivariate Stratified Sampling Design Using
Auxiliary Information: An Integer Solution Using Goal
Programming Approach

M. G. M. Khan'*, T. Maiti?, and M. J. Ahsan®

for practical purposes we need an allocation which

is optimum in some sense for all characteristics because the individual optimum allocations
usually differ widely unless the characteristics are highly correlated. Cochran (1977)
suggested the use of characteristicwise average of individual optimum allocations as a
related characteristics. For uncorrelated ones, many authors

compromise allocation for cor
have suggested various criteria to work out an optimum compromise allocation. For example
a compromise criterion may be to minimize the total loss in efficiency of the estimate due to

not using the individual optimum allocations. When auxiliary information is also available, it
is customary to use it to increase the precision of the estimates. Moreover, for practical
implementation of an allocation, we need integer values of the sample sizes. The present
article addresses the problem of determining the integer optimum compromise allocation
when the population means of various characteristics are of interest and auxiliary information
is available for the separate and combined ratio and regression estimates. The problem is
formulated as a multiobjective nonlinear programming problem and a solution procedure
is developed using goal programming technique. The goal is to minimize the weighted sum of
the increases in the variances due to not using the individual optimum allocations subject

to budgetary and other constraints.

In multivariate stratified random sampling,

Key words: Multivariate stratified sampling; optimum allocation; optimum compromise
allocation; all-integer multi-objective nonlinear programming problem; goal programming;
auxiliary information; ratio and regression methods of estimation.

1. Introduction

The problem of optimum allocation in stratified random sampling for a univariate
population is well-known in sampling literature (see Cochran 1977 and Sukhatme et al.
1984). In multivariate stratified sampling where more than one characteristic is to be
measured on each sampled unit, the optimum allocations for the individual characteristics
are not of much practical use unless the various characteristics under study are highly
correlated, because an allocation that is optimum for one characteristic will generally be
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far from optimum for others. To resolve this problem, a compromise criterion is needed to

determine a useable allocation which is optimum, in some sense, for all characteristics.

Such an allocation may be called a compromise allocation. Many authors have discussed

various criteria for obtaining a useable compromise allocation among them Neyman

(1934), Dalenius (1953, 1957), Ghosh (1958), Yates (1960), Aoyama (1963), Folks and
Antle (1965), Kokan and Khan (1967), Chatterjee (1967, 1968), Ahsan and Khan 1977,
1982), Bethel (1985), Chromy (1987), Bethel (1989), Jahan, Khan, and Ahsan (1994),
Khan, Ahsan, and Jahan (1997), and Khan, Khan, and Ahsan (2003). Obviously, the
compromise allocation always results in a loss of precision as compared to the individual
optimum allocations.

In surveys where auxiliary information on a variable that is highly correlated with the
main study variable is available it is desirable to consider the estimators that use
the auxiliary information to increase the precision of estimates. Dayal (1985) discussed the
optimum allocation of sample sizes for univariate stratified sample surveys using auxiliary
information. For multivariate stratified surveys, Ahsan and Khan (1982) discussed the
optimum allocation when the auxiliary information is available in the form of a joint
multivariate normal distribution.

For practical purposes, integer values of the sample sizes are required. They can be
obtained by rounding off the noninteger sample sizes to their nearest integer values. When
the sample sizes are large enough and/or the measurement costs in various strata are not
too high, the rounded-off sample allocations may work well. However, in many situations
the rounded-off sample allocations may violate the cost constraint and/or there may exist
other sets of integer sample allocations with relatively smaller values of the objective
function. There may also be other goals that must be met in order to satisty constraints on
cost, and minimum and maximum sample sizes from different strata to permit variance
estimation and to avoid over-sampling. In such circumstances the problem of allocation
becomes a problem of mathematical programming with a nonlinear objective function and
linear as well as nonlinear constraints.

The present article treats the problem of obtaining a compromise allocation in
multivariate stratified sampling using auxiliary information as an all integer multi-
objective nonlinear programming problem (AIMNLPP). A goal is set that the increase
in the variance for characteristic due to the use of compromise allocation instead of its
individual optimum allocation must not exceed a certain quantity, called the goal
variable, and a solution procedure is developed using goal programming technique. The
optimum compromise allocation is then obtained by executing a program coded in
LINGO, a computer software package for solving linear, nonlinear and integer
optimization problems developed by LINDO Systems, Inc. This software is user-
friendly and does not require much knowledge of computer programming or computer
languages.

The proposed method deals with the problem of determining an optimum compromise
allocation when the population means of the characteristics are of interest and the
combined ratio estimator is to be used. The method can also be applied to other separate
ratio and separate and combined regression estimators. Two numerical examples are given
to demonstrate the practical application of the algorithm and its computational details.
Comparison of the proposed method has been made with several other available methods
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of obtaining a compromise allocation. The comparison shows that the proposed method
provides more precise estimates than other methods.

2. The Problem

Let the population be divided into L nonoverlapping strata and n;, be the number of units
drawn by simple random sampling without replacement (SRSWOR) from the Ath s'tratum
consisting of Ny, units, and n = Zf;:lnh and N = ELIN » give the total_ samplfi size and
the population size. Let p characteristics be defined on each population unit and the
estimation of unknown population means ¥;, j = 1,2, . . ., p be of interest. Let yj,; and x;p,;
denote the values of the ith population (sampled) unit of the jth main variable (¥;) and the
jth auxiliary variable (X;) respectively, in the th stratum. Also 'let. )“zj.h =n; 15"y and
%n = n; 'Y x denote the sample means of the jth characteristic in the Ath stratum for
the main and auxiliary variables, respectively. .

In stratified sampling, in the presence of auxiliary information, the estimate of the
population mean ¥; may be given as

) ey
Vst = ZWh?jh, i=12,...,p
h=1

with the sampling variance

L w242 L, W2A?
- ”*jh h*tjh 2)
VarGys) =3 === ) (

h=1 h=1

where W, =N,/N, h=1,2,...,L o ' N .
The quantities 7, and A]?h define the method 'of est}mat1on using auxiliary information.
In this article we are using the combined ratio estimate for which

Ry X 3
th = (Rst)ij ( )
and
4
AG =80, + R2SY ), — 2Ry )
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12, . . ., L denote the cost of measuring all the p characteristics on ‘

1
h
1]0“/1 the / th str atu“l a]ld C, de“()te t] 1€ pel unit cost ()f meaSullng the ]th CharaCtCIISUC m

. ;);;:stlrr;atmg o.f tbct population means ¥;, Chatterjee ( 1967) proposed a compromised
atloe t1.on y mm@z1ng the total relative increase in variances due to the use of
ptimum allocation for a fixed budget . Chatterjee formulated the problem as: '

2
Minimize Zp: lZL: M
= O e
L
subject to Zchnh =C,
h=1

where C = Cy — ¢ and #/, i indivi i
. i 18 the individual optimum al i i X isti
in the Ath stratum for a fixed value of C. ’ ocation forthe fih haractesi

Chatterj ipli i
terjee used Lagrange multiplier technique to work out the compromise allocation as

C g i 1”1/71
M= g
Y4 ’
c !
thl I Zj=1”jh

Th i
e values of n;, given by (5) are rounded off to the nearest integer for practical use

Coch i
ochran (1977) suggested a compromise allocation by averaging the individual

optim i ! : isti
ptimum allocation ny, over the p characteristics, that is,

h=1,2,... L (5)

1&
=130 here = Wi/
pj:l g ]h (6)

13
E i1 WrAjn/Ch

Another alternative compromise allocation indicated by Sukhatme et al (1984) that
. a
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minimizes the trace of the variance-covariance matrix is given by

Wi /ST Ao

ny = T
72
E h:lW” C/;E jZIAjh

@)

If the strata sizes are not large enough, then the above compromise allocations of
Chatterjee, Cochran, and Sukhatme may give us an allocation in which some n;, = Nj; that

is, the problem of over-sampling occurs. Furthermore, to estimate the parameters Sz,j,,, S,\2~,~h
and Sy,x, we must have 1, = 2, and in order to implement the allocation, we need integer
values of 1, for the reasons discussed in Section 1.

When 7, are restricted to be integers the equality sign in the cost constraint may give a
distorted optimum or even result in an empty feasible region. Interested readers may find
the related discussion in Khan et al. (1997).

After taking care of all the factors discussed above, the problem of finding the optimum
allocation (1), . . .,ny) that minimizes the var (Fj¢) In (2) simultaneously for all
j=1,2,...,p may be formulated as the following AIMNLPP:

Minimize [var(¥1q), var (o), - - -, var(¥p,u)]
L

subject to Zchnh =C
= (8
2=m =Ny

and nyareintegers, (h=1,2,...,0)

In Expression (2) for var () the second summation is independent of 7, and therefore
may be ignored for the purpose of minimization, giving the AIMNLPP as:

L 2 42 L 242 L 242
C WhAlh W/1A2/1 WhAPh
Minimize —, —= ., _—
= = T =1
L
subject to E ey = C 9
h=1
2=m =N
and nyareintegers, (h=1,2,...,0)

The next section deals with the solution procedure using goal programming technique.

3. The Solution: Using Goal Programming

The AIMNLPP (9) can be solved by using some scalarization methods in which the
multiobjective functions are converted into a single objective function (see Khan et al.
1997, 2003). In this section, the multiobjective programming problem (9) is solved using

the goal programming technique.
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* . s .
. Let n, d'enote the individual optimum allocation for the jth characteristic, that is, n,
is the solution to the following all-integer nonlinear programming problem (AINLPP):”

242

L L WiA;
Mini h4jh .

mize E -y =12, ...,p

, L

subject to E ney CiPth = C
2=n, =N,

and njareintegers; h=1,2,...,L 10)

and can be obtained by using dynamic programming technique (see Arthanari and
Dodge, 1981).
* L 242 4 % .
Let Vi = Z,fl W}Aj,/ny, be the optimum value of the objective function at e
Further, let 1, be the optimum compromise allocation, that is, nZ is the solution to the

AIMNLPP (9) with V; as the value of the jth objective function.
Obviously,

L W2A2
J— h jh &
Vi= E —— =V,
n J
h=1 h

and the quantity V; — V; =0; j=1,2,...,p will denote the increase in the variance
of the jth characteristics for using n, instead of n;z.

The solution procedure of AIMNLPP (9) starts with setting the following “goal”:

“For the jth characteristic, the increase in the value of the objective function due to the
use of a compromise allocation, nZ, should not exceed Vi’

Therefore, n, must satisfy:

L 2 42
WhAjh o
n
h=1 h
or
L Wi
Jn #
=Y an
h=1 l;

A reasonable compromise criterion to determine the optimum compromise allocation nf
can be worked out as to minimize the weighted sum of the increase in the variances of ali
the p characteristics for using n; instead of n;I, that is, to

minimize ZP a:v;
=177 (12)

Where a;=0;j=1,2,...,p are the weights assigned to v; according to the relative
1rr.1portance of the characteristics. As the characteristics are expected to be homogeneous
within strata, a; are assumed to be equal, in general, and then (12) reduces to

minimize Ep V5
=17
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From (11) and (12), one should note that the purpose of the proposed formulation in (12) is
to minimize the total increase in the variances. However, it is possible that if the jth
characteristic in the ith stratum ‘(h = 1,2, ...,L)is heterogeneous, it may produce more
loss in precision in the estimate of the stratum mean, as the value of Afh for that
characteristic is expected to be high, which may result in an increase in the value of v;.
If one has enough evidence, g; may be predetermined as considered by Geary (1949) or
may be determined by some other method, for example by use of the money value of the
different variates as proposed by Mahalanobis (1944) (see Dalenius 1957, Chapter 9).
Khan and Ahsan (2003) also studied this case and proposed a procedure of determining the
unequal weights of the characteristics to control the increase in variances. This conjecture
gives the choice of weights a; such that:

a; = max(ajl,ajz, .. .,Cle); (] = 1,2, P .,p) (13)
where a;, are the weights for jth (j=1,2,...,p) characteristic in the hth
(h=1,2,...,L) stratum and are obtained in proportion to Ajzh, that is, a, aAJ?,,.

Letting >°7_a; = 1, aj, are worked out as:

j=1,2,...,pandh=1,2,...,L (14)

Therefore, incorporating the goal and the objective given in (11) and (12), respectively, the
equivalent problem to the AIMNLPP (9) may be expressed as the following goal
programming problem (GPP):

. V2
Minimize g a4
=1 JY

242

. L Wi *

subject to E — -y =V
h=1 m,

L
E ey = C
h=1

2 = np = Ny
ny = Oareintegers, (h=1,2,...,0)

and Vi = 0, (] = 1727 e ap) (15)

The GPP in (15) may be solved by executing a program in the LINGO software package.
For a numerical example, a program is coded in LINGO programming language with
functions “MIN” and “@GIN” for the solution procedure as discussed above, and is
available from the authors. For more information one may visit the site http://www lindo.
com. The documentation and the trial version of the software that has all the features and
functionality of the standard version but with limited capacities may be downloaded from
this site. The trial version enable users to become familiar with the software and its

features and to solve sample problems.




Data for four Strata, two Main and two Auxiliary Characteristics

Nh

Table 1.

2
)Czh

5
y2h
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2
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29,267,524,195.5

Wh

0.0808
0.3434
0.4545
0.1212

8
34
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904,170.6
5,813,439.5

1,285,355.6
456,991.5

24,360,422,802.3
22,003,466,630.3
33,367,597,192.0
21,033,769,867.3

1,154,134.2

7,056,074.8
732,004.9

2,082,871.3

777,174.1
4,987,812.9
388,378.5

1,074,510.6

21,601,503,189.8
19,734,615,816.7
27,129,658,750.0
17,258,237,358.5

26,079,256,582.8
42,362,842,460.8
30,728,265,336.9

12

4. Numerical Examples

The following two numerical examples are presented to illustrate the practical use and
the computational details of the proposed solution procedure. The data of these examples
are from the 2002 and 1997 Agricultural Censuses in lowa State conducted by the
National Agricultural Statistics Service, USDA, Washington D.C. (source: http://www.
agcensus.usda.gov/). For the purpose of the illustration, the data of N = 99 counties in
Towa State are divided into four strata. The relevant data in respect to two characteristics,
(i) the quantity of corn harvested and (ii) the quantity of oats harvested are given in
Table 1 where Y; = The quantity of corn harvested in 2002, Y5 = the quantity of oats
harvested in 2002, X; = The quantity of corn harvested in 1997, and X5 = the quantity of
oats harvested in 1997. The values of X; and X, are used as the auxiliary information
on the main variables ¥; and Y», respectively, with X; = 405,654.19, Y, = 474,973.90,
X, =2,116.70, and ¥, =1,576.25. Therefore, R;= Y/X; =1.1709 and R, =

7, /%, = 0.7447.

Example 1. TFor the combined ratio estimate the numerical values of Afh; ji=12
and h=1,2,...,4 are worked out for the data in Table 1 using (4) and presented

in Table 2.
We assume that the costs of measurement, ¢, in the four strata are ¢; = 15, ¢» =1,

c3 =5 and ¢y =9 units, respectively, and the total amount available for conducting
the survey is Co = 250 units, which includes an expected overhead cost ¢g = 50 units.

The total amount available for the measurements is C = 200 units.
Using the values in Tables 1 and 2, the rounded-off compromise allocations of

Chatterjee, Cochran, and Sukhatme given by (5), (6) and (7), respectively, are shown in
Table 3. Note that these allocations are infeasible to the problem (9) because they violate

the constraint iy = 2.
To work out the compromise allocation using the goal programming approach as

discussed in Section 3, the AINLPP (10) is solved for each individual characteristic.
Using the LINGO program, the individual optimum allocations for j = 1 and 2 are
found to be:
nly = 2,15, = 7,n}; = 17,0}, = 4 with minimum variance V] =96,754,589.11.
and

iy, = 2,1, = 11,ny; = 15,15, = 2 with minimum variance V5 =27,061.62.

Table 2. Values ofAJ?,I
2 2
h A7, A3,

1 2,230,755,317.1 242,098.5
2 1,875,241,116.7  1,047,747.4
3 2,939,641,936.7 920,058.2
4 6,029,490,311.7 321,766.5
Total 13,075,128,682.2 2,531,670.6
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96,754,589.1 (0.00)
30,808.5 (13.84)
96,785,397.6

Proposed
109.19

97,891,892.2 (7.67)
29,854.7 (1.23)
97,921,746.8

Minimizing trace
107.92

(Sukhatme)

16
196

101,941,126.3 (5.36)
26,696.7 (0.00)
101,967,823.0

Cochran’s
103.64

average

10
17
197

Allocation
Chatterjee

10

16

192

104,174,082.3 (1.18)
27,395.5 (10.32)
104,201,477.9
101.42

Proportional

2

10

13

3

192

105,650,784.8 (9.19)
29,346.8 (8.44)
105,680,131.6

100

1ChPn

Allocation (%)
a . . .
Percentage increase in the variance due to not using individual optimum allocation (n".jq)
/

4
b

N3

Table 3. Indivi . , . , . ,
ndividual sampling variances (ignoring foc) and relative efficiency (RE) of different allocations with respect to the proportional allocation

var (7 o) (% increased®)
var (¥, i) (% increased®)

Trace (Sum of Variances)
R.E. w. r. t. Proportional

ni
145}
Ny
>
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From (13) and (14), the weights to be assigned to the first and second characteristics are

0.1706 , 0.0956
0.1434 0.4139

ap=max| .. = 0.4611 and a, = max 0.3634 = 0.4139, respectively,
0.4611 0.1271

which shows that the weights are approximately equal.
For the purpose of comparison of the proposed allocations with other allocations, we

may assume that the weights are approximately equal — that is, both the characteristics are
equally important and a; = ap = 0.5. The GPP (15), which is equivalent to AIMNLPP (9),

may be expressed as:
Minimize 0.5v; +0.5v;
14,566,711.59 + 221,179,342.00 n 607,364,036.51 n 88,587,552.79

subject to p o~ e e
—vy = 96,754,589.11,
1,5i(1).89 4 123,’5;8.82 N 190,2?4.68 n 4,7’21’1.52 vy = 27.061.62,
1511 + Tng + 5n3 + 9ny = 200,
2=n; =8,
2 = ny = 34,
2 = n3 = 45,
2 =ny =12,
ni, Ny, na, and ny are integers

and v, vy = 0.

Using the LINGO program, the optimum compromise allocation is obtained as:

=2 mn="7 m=17 m= 4.
The results of compromise allocations using different criteria are summarized in Table 3.
All the four compromise allocations, Chatterjee’s, Cochran’s, Sukhatme’s and the
allocation proposed by authors, are compared with the proportional allocation
(ny = CWx/ S When). The Relative Efficiency (R.E.) of an allocation (1) with respect
to another allocation (n*), is defined as R.E. = Trace (n)/Trace (n).

Example 2. Tn the data of Example 1 we change only the cost of measurement c;, to equal
cost in all four strata, as ¢y = €2 = €3 = €4 = 7.5 units, which is common in practice and
motivates surveyors to use the proportional allocation as a kind of noninformative
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prior choice. Keeping the remaining values the same as in Example 1, we arrive at the
results given in Table 4.
Table 4 shows that only the proposed and the proportional allocations are feasible while
other allocations are infeasible because they violate the cost constraint 22:1011”11 = 200.
The proportional allocation, although feasible, is less efficient. Furthermore, the

proposed allocation has a relative efficiency of 104.46% as compared to the proportional
allocation.

5. Discussion

In this section, we compare the proposed compromise allocation with the other available
compromise allocations discussed in Section 2 and 4, when the true values of the
parameters Ajzh; (j=1,2andh = 1,2, .. .,4) are available. For the data in Example 1, if
the restrictions 2 =< i, = Ny, are relaxed to 1 <, < Ny, all the allocations given in
Table 3 become feasible and can be considered for the comparison.

Rows 6 and 7 in Table 3 show the individual sampling variances of ¥, , for the different
allocations, and their relative efficiencies with respect to the proportional allocation are
given in Row 9. It reveals that different allocations differ considerably from each other,
and the maximum relative efficiency is attained for the proposed allocation. Also, the
proposed allocation, which gives least variances for the estimates, is most efficient among
all allocations, and the gain in efficiency of the proposed allocation over the proportional
allocation is 9.19%.

The percentage increase in the variance of estimates for different characteristics due to
not using the individual optimum allocations (nj[h) are also presented in the parentheses
of Rows 6 and 7. It is evident that the compromise criteria differ little from each other
with respect to the percentage increase in the variance. The proposed compromise
allocation gives 0% increase in variance for y; and slightly higher percentage increase for
¥2 as compared to other allocations. However, one should remember that the other
compromise allocations are infeasible and therefore are of no practical use as they violate
the constraint n; = 2.

Thus we conclude that the proposed allocation provides an answer to the problem of
determining integer optimum compromise allocation in the situation where other
allocations do not guarantee even a feasible solution. The proposed compromise allocation
is also more precise than other compromise allocations discussed here. Furthermore,

SRR e SR O E LT R R CRRE R SR R U G G R

Table 4.  Allocation with equal measurement cost between strata

RE as compared to proportional

Allocations n Ny Ha ng 22: \ChTLh allocation %
Proportional 2 9 12 3 195 100.00
Chatterjee 2 9 13 4 210 111.19
Cochran 2 9 13 3 202.5 103.60
Sukhatme 2 8 12 5 202.5 108.46
Proposed 2 7 12 5 195 104.46

Khan, Maiti, and Ahsan: Integer Solution Using Goal Programming

the proposed method could easily be implemented by survey designers using LINGO
without much knowledge of computer programming.
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