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Degrees of Freedom Approximations and Rules-of-Thumb

Richard Valliant* and Keith F. Rust®

In complex samples, t-distributions are used when performing hypothesis tests and
constructing confidence intervals. Rules-of-thumb are typically used to approximate degrees
of freedom for the ¢-distributions. The standard rule is to set the degrees of freedom equal to
the number of primary sampling units minus the number of strata. We illustrate some
circumstances where these rules can be poor. A simple estimate of degrees of freedom is
presented that leads to improved confidence interval coverage.

Key words: Complex samples; kurtosis; linearization variance estimator; nonlinear
estimators; skewness; variance of variance estimator.

1. Introduction

Analysts of survey data use approximate degrees of freedom (DF) to account for
imprecision of variance estimates when computing confidence intervals and performing
hypothesis tests. Rust (1984, 1985, 1986) and Rust and Rao (1996) review the problem of
approximating degrees of freedom in a variety of situations, particularly for replication
variance estimators. Rust (1984) and Rust and Kalton (1987) address the effect of collapsing
strata on DF approximations. Eltinge and Jang (1996) cover the problem of gauging the
stability of variance component estimators in complex designs. Korn and Graubard
(1990; 1999, Section 5.2) discuss approximating degrees of freedom for analytic statistics.

Software packages typically use the rule-of-thumb that the DF for a variance estimator
is the number () of primary sampling units (PSUs) minus the number of strata (/). One
motivation for this rule-of-thumb is to suppose that a variance estimator has a chi-square
distribution and to apply an approximation due to Satterthwaite (1946). As shown in
Section 4, the Satterthwaite approximation specializes to n — H under some restrictive
conditions. Stata® (Stata Corporation 2005), SUDAAN® (Research Triangle Institute
2004), and WesVar® (Westat 2000), among other packages, use this approximation unless
it is over-ridden by a user. This rule-of-thumb works under the assumptions described in
Section 4, but can be poor for many variables. The fact that the rules-of-thumb can be
faulty in some circumstances is known, or at least suspected, by practitioners. Johnson and
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Rust (1992) and Johnson, Rust, and Hansen (1988) found that the effective DF for
jackknife variance estimators depended on whether estimates were for the full population
or subpopulations. Subpopulations that occurred in only some of the strata or PSUs had
fewer DF than suggested by the standard rules-of-thumb. Graubard and Korn (1996) and
Burns et al. (2003) proposed that the DF for domain estimates be modified to account for
the possibility that a domain may not occur within all primary sampling units (PSUs) in a
design. Their suggested rule-of-thumb was (number of PSUs with sampled members of the
domain) minus (number of strata with sampled members of the domain). Although over-
riding the default in a software package is usually permitted, users may not have enough
knowledge to do this with any degree of accuracy.

In this article, we present some theory for the usual rules-of-thumb and some
illustrations of when they can be far from correct. Section 2 describes Satterthwaite
approximations; Section 3 summarizes calculations of the variance of a variance
estimator, which is a key ingredient in Satterthwaite. The fourth section covers some
special cases that lead to the rules-of-thumb. In Section 5, we present some simulation
results that show when the rules-of-thumb are acceptable and when they are poor. We also
give an estimator of the DF that is simple to compute and is an improvement over the
rules-of-thumb. The last section summarizes our results and recommendations.

2. Satterthwaite Approximations

Suppose a stratified probability sample s;, of n;, primary sampling units (PSUs) from a
universe Uy, of PSUs is selected from stratum h (h = 1,. . . ,H) with replacement. The total
number of sample PSUs is n = >, n. Throughout this article, we use the design-based
approach to inference. We will refer to a plan in which PSUs are selected with varying
probabilities with replacement as PPSWR. Although with-replacement (WR) sampling is
rarely used in practice, the design-based theory for WR is more tractable and often more
enlightening than for without-replacement sampling. Consequently, assuming WR
sampling is a standard simplification for many theoretical analyses in sampling theory.

A sample of elementary units is selected within each PSU andj = 1,. . ., J variables are
collected on each unit in such a way that a design-unbiased estimator of the PSU total of
cach variable can be constructed. The vector of population totals of the J variables is
t=(t1, .. .,2,)". The estimator of the population total for variable j is #; = > n i where
$in = 1y, ey, Vini/Phi, Yjni is the estimated total for variable j for units in PSU (), Phi is
the single-draw selection probability of PSU (hi). The 7; ’s are combined to create a
nonlinear estimator § = g(t) with t= (3, ...,7,)7 and g being some differentiable
function. The standard linear approximation gives

6—o0=a’i -1 )

with 6= g(t) and d = (3g/ot1, ...,0g/dt;)T is the vector of partial derivatives
evaluated at t.

By reversing the order of summation in (1) between variables and PSUs, the
approximation can be written as
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A 1 W)y R 5
06— 0= Yy M= Z ity 2
zh: iy ;Phi i 7
where u); = Ej d;yjn and d; = 9g/0t;. Expression (2) is in t.he form of a “pwr” estima.tor
as discussed in Sirndal, Swensson, and Wretman (1992, Section 2.9). In PPSWR sampling
of PSUs, the u/,/py are independent and have expected value uy;, = ZieUh'LlU]"‘ \.)v1th
Uyni = Zqzldjtj,,,- where fi = Y ey, Yinik With Y the value observed on variable j for
unit (kik) and Uy, the universe of units in PSU hi. This assumes that y;, is a design-
unbiased estimator of the total for PSU (ki ). Thus, we also have E(i;) = uyy,. Using the
standard, conditional variance formula, VE(-|sy) + EV(-|sy) with s, the set of sample PSUs

in Stratum A, the design-variance of i, is V(i) = 0% /nj, where

2 !
o = Z Prituni [pri — won)” + Z V() /phi
Uy U
and V (u/,) is the variance of uj,; with respect to whatever type of sampling is used within
PSU #hi. Thus, the approximate variance of is AV(0) = Eh o% /ny. Note that o% can be
interpreted as the contribution to the variance of an estimated total for a single variable
from a sample of size 1 in Stratum h. For example, in a single-stage, stratified simple
i ob = N2§? with 7 = (ni — Yun)*/ (N, — 1) (see
random sample with replacement, o, = N;,5;, with S, ZU,, Yni — Yun h 2
Case 2 in Section 4). Notice in particular that in our notation o7 is not the unit variance Sj.
The standard estimator of the approximate variance is

2
R 1 up, 1 Ul
6) = - Zhi i
Vo) Z szh <P/n' iy ;phi

7 np(my, — 1) "

= Z o nﬁ 0 Z(uhi - L_‘h)z
I h

Sh

&)

where uy; = ul;/mypy;. Expression (3) implicitly reflects the contribution of sampling
within PSUs and is an example of what is known as the “linear substitute” method (Wolter

2007, Section 6.5). .
A Satterthwaite approximation (Satterthwaite 1946) is based on assuming that

a variance estimator has a chi-square distribution and solving for the implied degrees of
freedom, using the method of moments. If DFv(6)/AV(8) ~ X%)F where DF is the degrees
of freedom for v(f) and x3 is the central chi-square distribution with DF degrees of

freedom, then
Var[DFv(6)/AV(6)] = DF*>Var[w(§)]/[AV()]?
= 2DF

Solving for DF gives
DF = 2/relvar[v()]. 4

where relvar [v(é)] = Var[v(é)] / [AV(OA)]2 is the relvariance of the variance estimator.
Somewhat more generally, (4) can be derived assuming only that the first two
moments of DF v(é) /AV(é) match those of a central chi-square distribution. The pivot
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t(é) = (é -6/ \/17@) is treated as having a central #-distribution with DF degrees of
freedom. To formally justify this, we would need to show that DFv(é)/AV(é) is
approximately the sum of weighted independent chi-square random variables and
that 6 — 0 and v(6) are independent. But, we have no such design-based theorem. The
model-based result, which can be found in many mathematical statistics books (e.g.,
Bickel and Doksum 1977), requires independent and identically distributed normal
random variables. Expression (4), along with the ¢ approximation for #( é), is an ad hoc, but
practical, fix-up to account for instability of the variance estimator. However, in cases
where the data for individual units are far from normally distributed the variance of the
variance estimator may be larger than expected (Cochran 1963, Section 2.14), making the
assumption that v(6) has a distribution proportional to a chi-square a poor one.

3. Variance of the Variance Estimator

The linearization variance estimator in (3) can be written as

~ 1
D=3 S -z
v(6) — = 1) . (zni — Zn)

where zy = u};/pn — uy,. Under PPSWR sampling of PSUs, the z;; are independent
with mean 0 and variance o% Using the same steps as in Hansen, Hurwitz, and Madow
(1953, pp. 99-101), calculation of the variance of v(é) is tedious but straightforward.
The Appendix gives some of the details. The result is

A 1 , — 3
VIOl =~ [mh -7 ”’——J

— ny, ny— 1

It follows that the approximate DF in (4) is

2

2 [Z 0‘,27/11]1:,

h

Zg;:— B . ny — 3 (5)
11,31 4 n, — 1

h

DF =

with B, = uy, /0}1‘. The expression B, — 3 is Fisher’s measure of kurtosis (e.g., see
Cochran 1963, Section 2.14) and is sometimes called “excess” kurtosis since (when it is
positive) B, — 3 is the amount over and above the value of 3 for a normal distribution.
Note that for a domain that is defined by a subset of strata, the summations in (5) would
cover only the strata containing the domain.

4. Special Cases

Evaluating (5) in some special cases leads to the rules-of-thumb that practitioners and
software packages often use.
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Case 1. n;, = 2. Expression (5) reduces to

4{20%
h

S o+ 11
h

2

DF = ©)

If, in addition, 8; = 3 as for a normal distribution and 0% = ¢ in all strata, then (6)
equals H. This is the rule-of-thumb that 1 degree of freedom is picked up per stratum
when 2 PSUs are selected per stratum.

Case 2. i, > 2. If B, = 3 and 02 = 02, (5) becomes

(=)

Znhﬂ(nh — 1)71 .

h

If the sample size is the same in each stratum, say ny = 71, then DF = H(# — 1). This
corresponds to the prescription that the DF should be (number of PSUs) — (number 9f
strata). As noted in Fuller (1984), the assumption that 8, = 3 may be reasonable in
multistage samples since u); is a sum across a number of elementary units. In that case,
failure of the rule-of-thumb may be due to the o7 being different across strata.

Case 3. Single-stage, stratified simple random sampling with replacement; o

6=, Nuu with 5, = D7, Yai/ . In this case, uy; = ypis pri = 1/Np, ar_ld o’ = N:S;
if N, is large. Assuming further that n, is large, the DF approximation (5) is

2
2 (ZN%Sﬁ/WJ
h

DF = T
SN g, — 1
h 7 h

where B, =Si0/St with S =Sy (yu — Jun)* /Ny — 1) and st=(s2)? with
52 = >0, (ni — yun)?/(Ny — 1). Note that, when B, =3, n; is large, and nh/Ni is
small, expression (5.16) in Cochran (1977) is a special case of (7). If ]Y/, = N S =7,
S% =52, and B, = B, then (7) reduces to 2H#/(B — 1). If y has heavier tails than the
normal distribution (8 > 3), DF can be much smaller than the rule-of-thumb value,
H(fi ~ 1) = Hi. :

With Neyman allocation, n, = nN;Sy/ >, NiSy, and when B, = B, (7) reduces to
2n/(B — 1). With proportional allocation, nj, = nNy/N, approximation (7) becomes

2
e
2 n\% ' )]

B=1N > N,
I

DF =

Q)

DF =

i =,/ =4/N .57, the Cauchy-Schwartz inequality,
Lemngz S 2 - 2 a'nd 'Wh ]_ {1 52 2 yN $*=1. As a result
(thwh> = 3x23 wi, implies that N~' (37, NuS3)"/ 30, NiSjy = 1. »




%
i
i
[
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the DF with proportional allocation is less than 2n /(B — 1), the value for Neyman
allocation with B, = B. As noted before, if 8 is much larger than three, the DF will be
considerably less than the rule-of-thumb value of H n—1)=n.

In a single-stage design, it can often be the case that some or many of the f3;, values are
very much larger than three. Kurtosis for a binary variable is (1 — 6p + 6p%)/p(1 = p)+3
where p is the proportion with the characteristic. This becomes arbitrarily large as p
becomes close to 0 or 1. (In the example population discussed in the next section, values as
large as 2,000 are encountered.) In these cases the standard rule-of-thumb is completely
inappropriate, as will be seen. However, provided that the stratum sample sizes, 1, are for
the most part not small, it is possible to use the sample data to estimate the values of B
and thus obtain an estimate of DF. However, note that having an improved DF estimate
may still not yield CIs for rare characteristics that cover the population parameter
at the desired rates. Kott and Liu (2009) present an alternative using an Edgeworth
approximation that is preferable for small proportions.

As described in Joanes and Gill (1998), an estimator of the kurtosis in Stratum A
Gy, = Sff) /S;: — 3, in a simple random sample is )

A ny — 1 iy
Gop = ———— | + 1) =~ — 3(ny —
5 G 2y = | D~ 30 1)} ©)

where myy, = n,jl Ey,,()’hi — $js)* is the fourth central moment among the sample
observations, y,, in Stratum # and my, = n,jl Zsh(y,,i — yhs)z. For nonlinear estimators,
the linear elernent: 'z, 18 used in place of yy; in myy, and moy. In large stratum samples (9)
is approximately Gy, = my;/m3, — 3. An estimator of 8, = S;f) / S;ﬁ is then 3, = Gy, + 3.
Joanes and Gill (1998) discuss other estimators of G,;, and recommend (9) as having
smaller mean squared error in highly skewed populations. Using (7), an estimator of the
DF from a particular stratified simple random sample is then

2
R 2<Z N%Si/n;,)
DF = ——
Ad A
> 385G -1

hh

10)

where S‘i = Ziah( i — Yis)?/(y — 1). As for Gop, u},; is used instead of yj; in 5',2, for
nonlinear estimators.

The approximation to DF in (7) and the estimator in (10) can be quite sensitive to the
sam le allocation. The estimates of B, in (10) are weighted together in proportion to
N;iS,l /p; where py = ny, /n. If a stratum with a large kurtosis receives a relatively small
allocation, the DF can be much smaller than when, say, an equal allocation is used. The
estimator in (10) may also be unstable since it involves fourth moments which are
notoriously difficult to estimate—a point noted in Fuller (1984).

5. A Simulation Study

We examined the accuracy of the rule-of-thumb and more finely tuned approximations to
DFs in a simulation study. The study involved a population and design of the type
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represented in Case 3 of the previous section. The population consisted of 11,389 school
districts in the 50 United States and the District of Columbia—a subset of the population
used in Brick et al. (2005). To eliminate extreme observations, districts in the original data
set were dropped that had values of O for the numbers of administrators, students, or
teachers or had more than 50 administrators, 40,000 students, or 2,000 teachers. Having
such outliers randomly enter a sample would affect variance estimates, but our goal is not
to study the effect of individual extremes. The districts were categorized into twelve
design strata based on size (four categories based on the number of students) crossed with
percentage of students at or below the poverty line (three categories). The distribution of
the population among the strata is shown in Table 1.

We studied estimates of the following six quantities: (i) total administrators, (ii) total
administrators in districts with poverty level 1, (iii) student-teacher ratio (total students
divided by total teachers), (iv) student-teacher ratio in districts with poverty level 1,
(v) total number of districts with more than 15 administrators, and (vi) number of districts
with poverty levels 1 and 2 with more than 15 administrators. As the final six columns of
Table 1 show, these variables have kurtoses that are far from the normal distribution value
of three. Estimand (vi) is for a rare characteristic since only 2.5% of districts with poverty
levels 1 and 2 have more than 15 administrators. Estimands (ii), (iv), and (vi) are for
domains that are contained in a subset of the strata.

Two sets of 10,000 stratified simple random samples without replacement (STSRS)
were selected. In the first set the stratum sample sizes were 60, 100, 100, 140, 160, 160, 60,
60, 40, 40, 40, and 40 for a total of 1,000. This allocation is similar to proportional
allocation, with some smoothing done to increase the allocation to strata 10—12. The
second set of samples used an equal allocation of 10 districts per stratum for a total of 120.
We also ran simulations for an equal allocation of 84 per stratum (12 = 1,008) to explore the
effects of an allocation different from the first one above but of about the same total sample
size. Results were qualitatively similar to those reported below and are not recorded here.

In each sample, the six estimands above were calculated along with the variance
estimates appropriate for STSRS without replacement. In particular, (3) was used with the
addition of a stratum-specific finite population correction factor. In (3), py; = 1/N;, and
why = Yni in the case of estimated totals (estimands (i), (ii), (v), and (vi)) and u}; =
(yni — Oxp,) /1, for ratios (estimands (iii) and (iv)) with ébeing the estimated ratio for the
population or subpopulation, y,; the number of students in a district, x;; the number of
teachers in the district, and % the estimated number of teachers in the population or
subpopulation. In each sample, we computed the estimated degrees of freedom in (10)
separately for each of the six estimands described above.

Figures 1 and 2 are histograms of the variance estimators for the two sets of
10,000 samples. To draw the histograms, the variance estimates v are scaled to be X =
sim (DF)#v /v where sim(DF) is the degrees of freedom estimated using (4) across the
10,000 samples, and ¥ is the average variance estimate across the samples. If the variance
estimator behaves as needed for the Satterthwaite approximation, then X will have an
approximate chi-square distribution. Note that sim(DF) would not normally be available to
a practitioner analyzing a single sample, although a single-sample analog might be
constructed via bootstrapping. We use sim(DF) here as a standard against which to compare
the estimated DFs from (10), which can be computed directly in each individual sample.
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The solid line in each panel of Figures 1 and 2 is a chi-square density with sim(DF)
degrees of freedom. The short-dashed line is the maximum likelihood estimate of a more
general gamma density. When the chi-square and gamma are close in shape this provides
evidence that the distribution of the scaled relative variance of the sample variance is close
to chi-square, since the additional freedom for the parameters of the gamma distribution is
not needed to improve the fit. The dotted line is a chi-square density with the DF, denoted
median(DF), estimated by the median of (10) across the samples. The degrees of freedom
estimated from (10) are extremely skewed across the samples so that the means are
somewhat larger than the medians. If (10) is a useful alternative to the n — H rule-
of-thumb, then median(DF) and average(DF) should be near sim(DF) and should
be considerably different from » — H. The rules-of-thumb are 998 for n = 1,000 and
12 strata and 108 for n = 120.

In Figure 1 the chi-square with sim(DF) is virtually identical to the gamma density,
implying that the density of variance estimates is well-approximated by a chi-square. The
chi-square density with median(DF) has too few DF to match the empirical densities in four
of the six panels in Figure 1, but in all panels the median DF is 34 or more so that
t confidence intervals will be similar to ones based on the normal approximation. In Figure 2
for the samples of n = 120, the chi-square densities with sim(DF) degrees of freedom are
also close to the more general gamma densities. However, the chi-square densities with
median(DF) have too many degrees of freedom to match the empirical densities well in five
of six panels. In some cases, this would make a noticeable difference in the length of
confidence intervals. For instance, median(DF) = 12 for total administrators in poverty
level 1 districts while sim(DF) is 3.5. The 0.975 ¢-distribution values for these are 2.94 and
2.18, i.e., t intervals based on the empirical, simulation distribution will be 35%
{(2.94/2.18 — 1) longer than those based on the median estimated DF for the individual
samples. However, these median estimated DFs are all much smaller than the rules-
of-thumb DF of 988 for the samples in Figure 1 and 108 for the samples in Figure 2.
Tables 2 and 3 are numerical summaries of the simulations. For samples of n = 1,000
in Table 2, the range of estimated sample DFs from (10) is large. For example, the range
for student-teacher ratio is (35.5, 227.9). In Table 2, the normal approximation z-intervals,
i.e., ones in which |§~ 0| / m is compared to 1.96, are essentially the same as CIs
computed using the rules-of-thumb for DF. Consequently, normal approximation 95%
confidence intervals (Cls) cover about as well as f-intervals when n = 1,000. Ideally,
about 95% of Cls constructed in the simulated samples should contain the population
values. Faulty methods will typically have coverage rates noticeably less than 95%. The
picture changes for n = 120 in Table 3. For all six estimands the #-intervals give closer to
95% coverage than do the normal approximation intervals. For example, the coverage for
total districts with more than 15 administrators is 96.1% for DFs estimated from (10) but is
90.8% for normal approximation intervals. This increased coverage is obtained by making
the CIs longer than those based on the normal approximation. For example, in Table 3 the
median DFs range from 7.5 to 31. Thus, the ratios of the lengths of ¢ intervals based on the
median DFs to the normal approximation interval lengths range from 1.041 to 1.190.
At the extreme, the minimum DF in Table 3 is 1.7 for which the t-multiplier for a 95% CI
is 5.12. In that case, the r interval is 2.6 (5.12/1.96) times longer than the normal
approximation interval.
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Notice that the variance estimators themselves are approximately unbiased, as shown in
the last column of Tables 2 and 3, which gives the ratio of the average variance estimate to
the empirical mean squared error of the estimate in each row. The one exception is
estimand (vi), which is the rare characteristic. Constructing CIs in such cases is well-
known to have special problems and to require special solutions (Korn and Graubard 1998;
Kott and Liu 2009).

Although the chi-square density based on the median of (10) was not a good match for
the actual density of the variance estimates when n = 120, estimating the DF separately in
each sample was a substantial improvement over the rule-of-thumb of 7 — H, which is
standard practice.

Figure 3 illustrates how coverage can vary depending on the estimated DF for the
variables total administrators and total administrators in poverty level 1. The 10,000
samples of size 120 were sorted by estimated DF and divided into 40 groups of 250
samples each. Coverage rates and average values of the estimated DF were computed
within each group for the #-intervals and z-intervals and are shown in the panels in the first
row. Two nonparametric smoothers are shown in each first-row panel along with the
individual coverages. The second row shows the differences in the coverage rates using the
estimated DF and the rule-of-thumb (which is the normal approximation in this case).
A smoother is also shown in the second-row plots. The t-intervals uniformly give a few

points higher coverage at every value of average DF. For small estimated DF this is
actually a disadvantage since the t-intervals over-cover there., Nonetheless, through most
of the range the coverage of the t-intervals is closer to the nominal percentage of 95,
leading to the better overall coverage shown in Table 3.

6. Conclusion

We provide theory that covers the approximation of degrees of freedom in stratified
multistage samples and investigate the empirical properties of an improved degrees of
freedom estimator in the case of stratified simple random sampling. The standard rule-
of-thumb for degrees of freedom of a linearization variance estimator is (number
of PSUs) — (number of strata). The accuracy of this rule hinges on several assumptions.
At least the first two moments of the distribution of a variance estimator have to be
well-approximated by those of a chi-square distribution. The point estimate to which the
variance estimate applies must be for the full population or for a domain that is spread
across all strata and PSUs. Stratum variance components and first-stage sample sizes must
be equal or nearly so.

As illustrated here, the rule-of-thumb DF can be a substantial over-estimate if the
assumptions that justify it are violated. The faults are more likely to occur when the sample
size is not large and may be especially severe in the types of single-stage samples used in
establishment or institutional populations. However, there is a sample estimator of the
actual DF that is simple to compute. Although imperfect, the estimated DF leads to
¢ confidence intervals that have coverage probabilities that are much closer to nominal

values, at least for stratified single-stage samples with moderate to large sample sizes in
each stratum.
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In this article, we addressed only exact or linearization variance estimators. A separate
set of rules-of-thumb is used for replication variances, particularly ones that involve
collapsing of strata or PSUs. The DF appropriate for replication variances depends on how
the replication method is implemented for a particular survey. Collapsing of strata or PSUs
will typically lose DF compared to the maximum that is available. Collapsing is
sometimes used for linearization variance estimators, but our experience is that it is more

common when setting up replication weighting systems. We plan to focus on those
applications in another report.

Appendix. Variance of the Variance Estimator

This appendix sketches some of the details needed to derive VIv(h)] given in Section 3.
By definition, V[V(G)] = E[v( 0)2] - [Ev(t9)]2 The variance estimator is

1 .
; (g, — 1) ﬁ: (@i = 2

where zj; = u}, /pr; — uyy,. In PPSWR sampling, the z;,; are independent random variables
with mean 0 and variance oﬁ, as defined in Section 2. Since 1/ 4/ Pri is a 1-PSU estimator of

the stratum total and u, is itself a constant, the variance of 2p,; 1s calculated as

w(6) =

Vizw) = VEQuy,;/pulsy) + EV (b, /prilsy)
= V(uyni/pn) + E[pp2 V(uhylsp) )]

= ZPhi(”Uhi/phi — ugn)* + Z V(ul,.)/phi

Uy U

= o2,

It follows that E Z (@ni —

Zn)* = (ny — 1)o7 and
Ev(b) = Z al/nh

(A.1)

Next, the expectation of the square of the variance estimator is

2
. 1 - 27
Eor1=£ Zh [ (ny — DJ? [ 5 (e =2 jl
(A.2)

1
Znh(nh — 1)’1}.'(71/,/ -1 Z(Z}n le) Z(Zh, )

h h#h Syt

+

)

To evaluate (A.2), we need the expectation of

o] (5)

Sh

2 2, 2.4
2mpz;, Z Zpy; 132y

Sh

(A.3)

Journal of Official Statistics

601

Valliant and Rust: Degrees of Freedom Approximations

By squaring out and collecting terms, the expectation of the first term in (A.3) is

2 4
E {(Zs, Z%i) } = npptan +np(ny — Do where pyy = E (), /pw — uon) . As an example

of how to compute the expectation of the remaining terms in (A.3), consider z; ZS, =
- 3 2.2 o 2, 0|
iy 2 [th Z;fi +2 Zi;ﬁjEs,, ZjiZhj + Zi;éjes,, Zhyilp T Ewéﬁska,, thzhjzhk]
2 —
i and E(zyay) = E(zzzm) = 0.

= 0y
.. . AN
Thus, E(Z}’; >, z%,) = n; ! [pan + (my — Doff]. Similar computations lead to E(Z;) =

By independence of the zj, E(Z%,-Z%])

n;> [pan + 3(ny — 1)o7f]. Substitution of these results gives

E [Z(zm —Z

Sh

)2} = (ny — 1)11,71 [M4h(nh D+o; (”h 2y, + 3)] (A.4)

Expression (A.2) is then

EN(1=")

h

% %

Py 1yt

1) + o-h (nh 271]1 + 3)} + Z

h W' h

Zah/n,, + ZZ (0% /n4) (03 /rr), we have

h h h+#h

1
—_ n,
T— [ (o —

Noting that [Ev(6)]* =

VIv()] = Ev(8)*] — [Ev(D)]

1

2y +3)]
ny, 3y —

D+ iy (m;

Py (;;,,) (Z,l )

3
which after some algebra simplifies to V()] = 211%3 [/-Mh - o} e 1}

[ an gy —

1)
+ Zh Zh’#h n:, My

a—h
112

Zh
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