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A Bayesian Approach to Data Disclosure:
Optimal Intruder Behavior for Continuous Data

Stephen E. Fienberg,1 Udi E. Makov,2 and Ashish P. Sanil3

1. Introduction

There has been a longstanding government interest and concern in the United States and

elsewhere over the con®dentiality of statistical data, especially as gathered in sample sur-

veys and censuses. For example, the U.S. Bureau of the Census operates under Title 13 of

the U.S. Code, virtually from its inception in 1929. Such legal guarantees of con®dentiality

are not only a re¯ection of the public concerns regarding disclosure but also of the agen-

cies' desire for high quality data. Even in the absence of legal restrictions on access to data,

statistical agencies and survey researchers have always been concerned about the need to

preserve the con®dentiality of respondents in order to ensure the quality of the data pro-

vided, and these concerns have been heightened by the decline in response rates for cen-

suses and surveys over the past two decades (e.g., see Panel on Privacy and Con®dentiality

as Factors in Survey Response 1979; Fienberg 1993±1994).

At the same time government agencies have an obligation to report their data widely and

thus they recognize the need for some balance between strict con®dentiality (however it is

to be interpreted) and the bene®ts derived from the release of statistical information. To

In this article we develop an approach to data disclosure in survey settings by adopting a prob-
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ef®ciently evaluate data disclosure limitation procedures. The probabilistic de®nition and our
attempt to study optimal intruder behavior lead naturally to a Bayesian formulation. We apply
the methods in a small-scale simulation study using data adapted from an actual survey con-
ducted by the Institute for Social Research at York University.

Key words: Con®dentiality; disclosure limitation; inferential disclosure; identity disclosure;
measurement error.

q Statistics Sweden

1 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
2 Department of Statistics, Haifa University, Haifa, 31905, Israel.
3 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
Acknowledgments: The preparation of this article was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada to the first author at York University, North York, Ontario, Canada, and
in part by the U.S. Bureau of the Census. We are especially grateful to the Institute for Social Research at York
University which provided us with the data used in Section 4, and to Sangeeta Agrawal for assistance with the
structuring of the database and a variety of initial calculations. We received valuable comments and suggestions
on earlier drafts of the manuscript from staff at the U.S. Bureau of the Census, an Associate Editor and two
referees, and these have led to substantial changes and improvements to the article. A preliminary version of this
article was presented at the Second International Seminar on Statistical Confidentiality, Luxembourg, November
1994, and has been published as Fienberg, Makov, and Sanil (1995) under the same title.



judge the balancing of disclosure risk and the bene®ts to be derived from the access to data

the statistician requires a technical interpretation for disclosure. This article offers a sys-

tematic attempt to examine these issues.

Various authors have attempted to provide a precise technical de®nition of the concept

of disclosure. For example, Fellegi (1972) suggests that disclosure requires both the recog-

nition of an individual member of a population included in a data release and learning

something about that individual. In the context of sample surveys, the ®rst part of the de®-

nition would mean that someone could actually identify a sample member on the basis of

the data released without knowing a priori that the individual was a member of the sample.

The second part means that just identifying someone as a sample member by a unique set

of characteristics is not a disclosure without there being additional characteristics which

are then identi®able. Fellegi goes on to discuss the notions of direct and residual disclo-

sure.

In this article, we develop a Bayesian approach to the issue of data disclosure that

builds upon a probabilistic approach ®rst suggested by Dalenius (1977) who offered the

following de®nition: If the release of certain statistical information make it possible to

determine a particular value relating to a known individual more accurately than is pos-

sible without access to that data, then a disclosure has taken place. Because almost any

data release provides some information about the individuals whose data are included,

total avoidance of disclosure is impossible. Thus we are left with the notion of controlling

or limiting disclosure. Duncan and Lambert (1989) describe this notion as inferential disclo-

sure and contrast it with other notions of disclosure proposed in the literature. Note that we can

have a disclosure according to this de®nition for someone in the population who has not

actually provided data. Thus a disclosure does not always produce a breach of con®dentiality.

Our work is guided by the principle that a data collection agency must consider dis-

closure from the perspective of an intruder in order to ef®ciently evaluate disclosure

limitation procedures (c.f., Duncan and Lambert 1989; Lambert 1993). Others have

also studied aspects of intruder behavior, most notably the empirical study by Paass

(1988), Blien, Wirth, and MuÈller (1992), Fuller (1993), and Skinner, et al. (1994). Paass

(1988) studied empirically the ability of an intruder to match two large ®les using a

non-Bayesian discriminant analysis and he claims a substantial rate of success, even in

the presence of added noise, but his results are not supported by another empirical study

by Blien, Wirth, and MuÈller (1992). Lambert (1993) suggests a Bayesian approach to dis-

closure identi®cation, using a logistic regression model for discrimination purposes, but

she makes no attempt to optimize intruder behavior nor to allow explicitly for a mechan-

ism that might prevent an intruder from making a match, i.e., measurement error. On the

other hand, Fuller (1993) studies the role of measurement error as part of a masking pro-

cess intended to foil an intruder's attempts at identi®cation. Our work in this article shares

Bayesian features (but not the linear logistic regression model) with Lambert and aspects

of measurement error with Fuller. We do not suggest that an investigator necessarily must

adopt Bayesian methodology for the sake of disclosure. We ®rmly believe, however, that

Bayesian methodology is better suited for this purpose, in part because it allows for the

direct incorporation of prior judgements and produces information on the probability of

accurate identi®cation. Consequently, we believe that Bayesian analysis provides a

more accurate picture of data base vulnerability.
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The risk of disclosure for population data, as in a census, is clearly greater than for

exactly the same kinds of data releases for sample data. Indeed, the real aim of an

organization addressing the issue of con®dentiality is the exercise of disclosure control

and the acceptability of disclosure risk associated with various kinds of data in different

situations (see the discussion in Skinner et al. 1994). There is general agreement that, after

speci®c identi®ers, geographic information poses one of the greatest risks for disclosure

and statistical agencies and survey organizations have developed rules on the suppression

of detailed geographic information (Greenberg and Zayatz 1992). Recent work at the U.S.

Census Bureau attempts to address this analytical concern through the creation of micro-

data ®les of ``contextual'' variables that present reduced disclosure risk (Saalfeld, Zayatz,

and Hoel 1992). Duncan and Lambert (1986) illustrate how this probabilistic approach can

be applied to provide a justi®cation for various ad hoc rules proposed or actually used to

limit disclosure.

Lambert (1993) argues that one can make an assessment of the ad hoc rules currently in

use only when we have a working model for the behavior of the intruder. We follow this

approach in Sections 2 and 3, as we develop a model for optimal identi®cation of indi-

vidual records by an intruder leading to the potential disclosure of information in an

agency's data base. In Section 4, we present a small scale case study using data from a

survey conducted by the Institute for Social Research at York University. The use of

our model for the assessment of disclosure avoidance procedures still requires careful

investigation.

2. Basic Disclosure Model

We assume the intruder possesses veri®ed information, x, on several individuals. He or she

attempts to obtain additional information on one or more individuals by examining the

released data, y, and identifying the released information of these individuals with his

or her records in x. Our Bayesian treatment of this problem assumes: (i) a model describ-

ing the data with unknown parameters to which exchangeable priors are assigned; (ii) a

probabilistic mechanism which introduces bias into the responses; (iii) a probabilistic

mechanism which generates errors in the data base. Finally, we have the realistic assump-

tion that there is a nonzero probability that the released data, y, does not contain any infor-

mation on the individual(s) concerned. The framework here is related to that used by

Duncan and Lambert (1989).

In the simplest situation, the data available to the ``intruder'' consists of data on an

individual who is at the center of the investigation (x0�; where x � x01; x02; . . . ; x0k

� 	
is a k-attribute vector of observations collected on that individual. These k variables in

the investigator's data are sometimes referred to as key variables which are also available

in the data released by the agency (Bethlehem, Keller, and Pannekoek 1990; Skinner et al.

1994).

Assumption A1: The intruder saves no effort in verifying his or her data x0 which are

therefore totally accurate.

While in most real-world situations the intruder's knowledge about the values of his or her
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data elements may contain considerable uncertainty, Assumption A1 allows us to put an

upper bound on the posterior probability of correct identi®cation.

The agency records data on N individuals which, for the purpose of simpli®cation, we

assume to constitute an entire population. We denote these data by y�N�
� y1; . . . ; yN

� 	
where yi � yi0; yi1; . . . ; yiq

� 	
is a q � u-attribute vector of observations recorded on the

ith individual and where yi0 is a u-vector of ``identifying'' attributes (such as social secur-

ity number) not released to the public. Clearly yi Þ yj for i Þ j, as yi0 Þ yj0. The agency

releases the censored records of a subset of n individuals, 1 < n < N, which we renumber

from 1 to n (typically 1 p n). We denote the released records by z�n� � z1; . . . ; zn

� 	
,

where zi � zi1; . . . ; ziq

� 	
and assume that the attributes are arranged such that zij corre-

sponds to x0j for j � 1; . . . ; k < q.

The variables could be either discrete and/or continuous, but in this article we shall treat

all variables as continuous, in order to avoid a focus on ``uniqueness'' (Bethlehem et al.

1990; Skinner et al. 1994). For continuous variables all observations are unique. While

much survey and census data involve categorical variables or variables that are made

such (e.g., the use of intervals for continuous quantities such as age or income), there

are a number of practical survey contexts where interest focuses on continuous variables.

For example, Kim and Winkler (1995) describe work done at the U.S. Bureau of the Cen-

sus linking data from March 1990 supplement Current Population Survey to income data

for the Internal Revenue Service Form 1040. The primary variables of interest to users of

the merged data ®les are components of income that are all essentially continuous and

preserving the con®dentiality of the merged ®les has been a major preoccupation of those

who worked on this project. Kim and Winkler (1995) use matrix masking techniques

for the income variables in this dataset assuming an underlying multivariable normal

distribution.

Even though we consider the case of continuous variables, an intruder may have only

approximate information about some of them. By assuming exact knowledge on the

part of the intruder, we are greatly simplifying the modeling problem and also getting

an upper bound on the probability of correct matches in the more complex and realistic

setting.

Assumption A2: The distribution of the attributes amongst all individuals is given by

f �z�n�jm�, where m � m1; . . . ;mq

� 	
is a vector of parameters. We assume independence

between individuals, i.e., f �z�n�jm� � Pi f �zijm�. We further assume that, a priori,

m , t�m� (where f �?� and t�?� denote probability density functions).

The independence assumption is certainly not re¯ective of real-world settings and we have

made it largely for convenience. Elsewhere we plan to relax this assumption to allow for

interesting covariance structures.

We now de®ne J be an indicator function, J � 1; 2; . . . ; n � 1, such that J � j, (for

j � 1; . . . ; n) if x0 is associated with the individual whose released record is given by zj,

and J � n � 1 if x0 is associated with an individual whose record has not been released.

The aim of the investigator is to ®nd the value of J (say j ) since with such knowledge

the con®dential attributes yj�k�1�; . . . ; yjq become known and identity disclosure is accom-

plished.
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The task of identi®cation is far from trivial, not only because the records corresponding

to x0 are not necessarily in the released sample, but also because J � r < n does not imply

that zrj � x0j. This is because the agency records, z�N�, can be accidentally corrupted or

modi®ed (intentionally or otherwise) by the individual supplying the information to the

agency. While one can model a variety of noises and biases which are introduced into

the data, we shall, for the sake of simpli®cation, assume that disturbances are generated

according to the following assumption:

Assumption A3: x0j � vijzij � yj; J � i; i � 1; . . . ; n � 1; j � 1; . . . ; k.

Here, vij is an unknown, non-zero bias removing parameter associated with the jth attribute

of the ith individual, and v�n�1�j is the parameter associated with any of the individuals

whose records are not released by the agency. The random variable yj follows a noise

distribution, say N�0; j2
j � with unknown variance, j2

j . Finally, we take the j2
j to have dis-

tribution u�j2
j �, independent of vij. Note that we assume here that the noise yj varies across

attributes but not across individuals. This assumption can be easily extended to account for

changes in noise between individuals as well.

One may argue that rather than generating x from z via a ``bias removing parameter,''

we could generate z from x via a ``bias inducing parameter.'' The later formulation proved

more cumbersome and thus we used the former.

Clearly if vij � 1 there is no bias and the ith respondent honestly reports the value of

attribute j. However, due to additional noise (like typing errors etc.) modeled by the nor-

mal distribution, zij can still differ from x0j.

We might argue that, in most cases, respondents provide honest (unbiased) answers

(vij � 1� and that the degree of honesty depends both on the `sensitivity' of a particular

attribute j and on the subjective feelings of an individual i towards exposing the truthful

information. We could go further and argue that there is a pattern of bias amongst the

respondents in such a way that for an attribute generating bias (such as income) most

people exhibit a bias of a similar nature (overstating/understating) though will differ in

the extent of their departure from the truth. This leads us to:

Assumption A4: The vij are exchangeable with respect to the index i and are distributed

g�vijjJj�. The prior distribution of Jj is given by h�Jj�.

The problem faced by the intruder is to attempt to match his or her record x0 with one of

those in the ®le released by the agency. What distinguishes this problem from the more

basic problem of exact matching (e.g., see Subcommittee on Matching Techniques

1980) is the error structure embedded in the model outlined in this section. To cope

with these errors, we now explore a Bayesian approach to identity disclosure.

3. Identity Disclosure and the Bayesian Approach

In attempting to establish identity disclosure, the intruder can use the posterior distribution

of J given all available data, P� Jjx0; z�n��, and ``decide'' that the con®dential records
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associated with x0 are in zm, where m is the value of J for which the posterior distribu-

tion of J is maximized. We now discuss the evaluation of P� Jjx0; z�n��.

Using Bayes's Theorem we have

P� J � ijx0; z�n�� ~ f �x0j J � i; z�n�� f � J � ijz�n��; i � 1; . . . ; n � 1: �1�

The second term on the right-hand side (r.h.s.) of (1) is simply the prior distribution of J

since the observations contribute no extra information on J. Clearly, in the absence of data

on the individual at the center of investigation, we can take

f � J � ijz�n�� �
1=N for i � 1; . . . ; n

�N ÿ n�=N for i � n � 1:

�
�2�

Note that as the difference between n and N increases we put less prior probability

on individuals in the released data. The ®rst term on the r.h.s. of expression (1) is the

predictive distribution of x0, which is given, for i � 1; . . . ; n; by

f �x0j J � i; z�n�� �3�

�
Yk

j�1

�
vij

�
j2

j

f �x0jjvij; zij; j
2
j �f �vijjz

�n�; J � i�f �j2
j jz

�n�; J � i�dvijdj2
j

where the ®rst term on the r.h.s of (3) is known from assumption A3.

For i � n � 1; the value of zij is not released and therefore we need to integrate out

the unknown realization of z�n�1�j by taking its expectation with respect to the predictive

distribution f �z�n�1�jjz
�n�). Expression (3) now takes the form

f �x0j J � n � 1; z�n��

�
Yk

j

�
v�n�1�j

�
j2

j

�
z�n�1�j

f �xijjv�n�1�j; z�n�1�j; j
2
j � f �v�n�1�jjz

�n�; J � n � 1�

� f �z�n�1�jjz
�n�
� f �j2

j jz
�n�; J � n � 1� dv�n�1�j dz�n�1�j dj2

j �4�

where, by assumption A2,

f �z�n�1�jjz
�n�
� �

�
f �zn�1� jjm� f �mjz�n�� dm �5�

and

f �mjz�n�� ~ f �z�n�jm�t�m� �
Yn

i�1

f �zijm�t�m�: �6�

4. A Case Study: Canadian Survey of Elites

4.1. The data

In this section we report preliminary simulation results using the formulation from Section

3. This case study uses data from the survey on Elite Canadian Decision-Makers collected

by the Institute for Social Research at York University. This survey was conducted in 1981

using telephone interviews and there were 1,348 respondents, but many of these did
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not supply complete data. We have extracted data on 12 variables, each of which was

measured on a 5-point scale:

Civil-liberties

C1 ± Free speech is just not worth it

C2 ± We have gone too far in pushing equal rights in this country

C3 ± It is better to live in an orderly society than to allow people so much freedom

C5 ± Free speech ought to be allowed for all political groups

Attitudes towards Jews

A15 ± Most Jews don't care what happens to people who are not Jews

A18 ± Jews are more willing than others to use shady practices to get ahead

Canada±U.S. relationship

CUS1 ± Ensure independent Canada

CUS5 ± Canada should have free trade with the U.S.A.

CUS6 ± Canada's way of life is in¯uenced strongly by U.S.A.

CUS7 ± Canada bene®ts from U.S. investments

In addition, we have data on two approximately continuous variables:

Personal information

Income ± Total family income before taxes (with top-coding at 80,000 USD)

Age ± Based on year of birth

We transformed the original survey data as follows in order to create a database of

approximately continuous variables:

A. We add categorical variables (all but income) to increase the number of levels. (When

necessary we reversed the order of levels of a response to a question.) The new variables

are de®ned as follows:

Civil � C1 � C2 � C3 � �8 ÿ C5�

Attitude � A15 � A18

Can=U:S: � �5 ÿ CUS1� � CUS5 � �5 ÿ CUS6� � CUS7

After we removed cases with missing observations and two cases involving young child-

ren, we had a database consisting of 662 observations. (Extensions of the basic method-

ology to handle missing data are straightforward but beyond the scope of this article.)

B. In order to enhance continuity, we took the following measures:

Age: We added normal distributed variates, with 0 mean and variance 4 to all observa-

tions.

Income: We added uniform variates on the range of [0 USD±10,000 USD] to all incomes

below 80,000 USD. Since all cases of incomes exceeding 80,000 USD were lumped

together in the survey, we simulated their values by means of a t(8) distribution. Drawing

values from the upper 38% tail of t(8), we evaluated the values of income as 60,000

USD � 25; 000 � t(8).
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Other variables: We added normal distributed variates, with 0 mean and variance 1/2 to

the variables.

We assume that the agency releases information about all variables, except for Attitudes

(towards Jews), which is unavailable to the intruder and is at the center of the intruder's

investigation. We denote the released data by z � zij; i � 1; . . . ; 662; j � 1; . . . ; 4
� 	

. We

further assume that the agency releases information on all records held �n � N�, thus mak-

ing the intruder's task easier than would be the case if only a sample were released.

We assume that the intruder's data are accurate and are related to z via the following

transformation: x0j � zij � vij � yj; where vij is a bias removing parameter normally dis-

tributed with mean 1 and variance Jj, and yj is normally distributed disturbance with 0

mean and variance j2
j . The following table provides the values of Jj and j2

j used in the

study:
Jj j2

j

Civil 0.1732 25

Can/U.S. 0.1732 25

Age 0.1732 9

Income (in 10,000's USD) 0.1732 4

In Table 4.1 we illustrate the impact of the process of the error on the data. The columns of

this table present the intruder's accurate data, x, and the biased and corrupted released data, z,

side by side. The marked difference between the two data sets, which in reality is unlikely to be

so striking, clearly makes the task of identi®cation by the intruder a dif®cult one.

4.2. Implementation of the Bayesian model

We assume a uniform prior distribution on all individuals in the released data, i.e.,

f � J � jjz�662�
� � 1=662.

We attempt identi®cation by evaluating equation (1), which we now modify following the

particular assumptions on the distributions of vij, and yj. Taken together, yj , N�0; j2
j � and

82 Journal of Of®cial Statistics

Table 4.1. First 10 records of x and z

Age Civil Can/U.S. Income (USD)

x z x z x z x z

44.607011 31.00364 24.803494 23.26688 0.2782396 7.230798 80351.260 86680.77

44.356572 58.36153 17.330712 17.76006 6.8772395 4.480846 95886.344 64127.42

35.260936 49.43488 10.930148 14.58399 12.3295743 7.632419 120247.969 88728.53

47.740238 40.87560 20.582654 16.54536 10.9438634 9.448964 106980.348 80348.58

32.257831 30.38650 21.430536 14.09269 16.5630154 10.828120 74050.109 76234.72

16.964057 21.51478 21.842566 14.62777 12.4165201 14.206017 105327.918 81986.36

43.319185 52.79831 10.552020 16.20542 2.3126535 5.881757 54703.225 73593.64

36.162886 42.55710 22.629968 21.26227 2.0760983 5.632542 39358.922 63209.81

31.119159 32.50106 15.738561 20.83966 8.4469488 14.843309 4466.606 42866.14

56.607847 82.03417 19.465088 18.70948 4.3898451 7.309711 102111.234 119271.81



assumption A3 imply that xijjvij; zij; j
2
j , N�vijzij; j

2
j �. The additional assumption, that

vijjJj , N�1;Jj�, implies that xijjzij; j
2
j ;Jj , N�zij; j

2
j � z2

ijJj�. Equation (3) now takes the

form

Y4

j

� �
f �x0jjz

�n�; j2
j ; Jj; J � i� f �Jjjz

�n�; J � i� f �j2
j jz

�n�; J � i� dJjdj2
j : �7�

Note that the f �wjjz
�n�; J � i� and f �j2

j jz
�n�; J � i� cannot be evaluated unless the intruder

possesses accurate information on additional individuals. Such a situation, however,

would require entirely different modeling which we do not address here. Equation (7)

therefore takes a simpli®ed form

Y4

j�1

� �
f �x0jjz

�n�; j2
j ; Jj; J � i� f �Jj� f �j2

j � dJj dj2
j : �8�

One possible identi®cation rule is to choose that value of i which maximizes the left-hand

side (l.h.s.) of (7). Of course, if the maximum posterior probability is small, a wise intruder

should conclude that there is insuf®cient information to act as if identi®cation has

occurred.

In essence we employ Monte Carlo evaluation of the expectation in (8) using variates

generated from f �Jj� and from f �j2
j �. In this study, we assumed that the prior distributions

for j2
j and Jj, u�j2

j � and h�Jj�; respectively, are gamma distributions. We selected

the values of the two hyperparameters of the gamma distributions in order to center the

distribution at an ``intelligent guess'' of the mean value of the parameter. We guessed

that the vj would range from 0.75 to 1.25 for all j. We took this range to be six times

the (guessed) standard deviation of the vj's. This led to a guess of the central value or

mean of the Jj's. We guessed the mean values of the j2
j 's in a similar manner. For instance,

we took
�����
j2

1

p
, corresponding to Age, to be one-sixth of the range of the Age variable in the

released dataset. In addition, we added a condition that the coef®cient of variation

(mean divided by standard deviation) is 20. We give the resulting a and b parameters

we used for the gamma priors in the following table:
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Table 4.2. Values of the parameters of the Gamma priors distributions used for J and j2

Attribute a b

J Age 400 5,000
Civil 400 5,000
Can/U.S. 400 5,000
Income (in 10,000's USD) 400 5,000

j2 Age 400 3.5
Civil 400 34
Can/U.S. 400 63
Income (in 10,000's USD) 400 110



4.3. Illustration of computations

To gain a better understanding of the performance of our Bayesian model for intruder

behavior, we next conducted a complete simulation of the procedures for the complete

set of n � 662 cases. We considered four different scenarios for the simulation:

· The released data contains no bias or noise (i.e., Jj � 0 and j2
j � 0 for all j ).

· The released data contains only noise (i.e., Jj � 0 for all j and j2
j as given in Table

(4.2)).

· The released data contains only bias (i.e., j2
j � 0 for all j and Jj as given in Table

(4.2)).

· The released data contains both bias and noise (i.e., j2
j and Jj as given in Table

(4.2)).

We took each individual in turn as the object of the intruder's efforts and carried out the

calculations.

We display the results in Table 4.3 through Table 4.6. The second column indicates the

number of times the correct record in z was ranked 1st, 2nd; . . . ; 5th, or 11th and higher.

The third column of the table gives the average probability of a correct match for each rank

(with its standard deviation in parenthesis), and the fourth column gives the average sum

of the probabilities of the highest ten probabilities of match for each rank (with its standard

deviation in parenthesis).

In Table 4.3, where there is neither noise nor bias, we see that in 319 of 662 cases the

intruder's posterior probability of a match was highest for the correct record; in 144 cases,

the posterior probability of a match was second highest for the correct record; and so on. In

this exact match case, the intruder does well but not perfectly, since he or she works to

learn about the parameters of the distributions and not simply to match records. Moreover,

the average value of the posterior probability associated with the highest ranked record is

still modestly small, running roughly from 0.02 to 0.10, and the average value of the pos-

terior probability associated with the 10 highest ranked records ran from about 0.25 to

0.40. There were no cases where the correct record ranked higher than 10th according

to the intruder's posterior probability.
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Table 4.3. Results for data without noise or bias

Rank Number observed Avg. prob. match (SD) Top 10 cum. (SD)

1 319 0.017 (0.021) 0.113 (0.067)
2 144 0.009 (0.003) 0.078 (0.025)
3 106 0.007 (0.003) 0.066 (0.024)
4 41 0.006 (0.001) 0.06 (0.011)
5 34 0.006 (0.001) 0.058 (0.011)
6 8 0.005 (0.001) 0.051 (0.009)
7 3 0.005 (0.0001) 0.054 (0.001)
8 3 0.005 (0.001) 0.055 (0.008)
9 3 0.006 (0.0001) 0.056 (0.003)

10 1 0.007 ± 0.074 ±



In Table 4.4, where there is noise but no bias, we see that in only 42 of 662 cases the

intruder's posterior probability of a match was highest for the correct record; in 448 cases,

the correct record was not even in the top ten in terms of posterior probability. The noise

has led to a precipitous drop in the intruder's ability to infer a correct match. Things are
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Table 4.4. Results for data with only noise

Rank Number observed Avg. prob. match (SD) Top 10 cum. (SD)

1 42 0.045 (0.057) 0.204 (0.14)
2 36 0.023 (0.021) 0.162 (0.087)
3 29 0.015 (0.012) 0.177 (0.092)
4 26 0.015 (0.01) 0.146 (0.089)
5 18 0.015 (0.007) 0.16 (0.082)
6 22 0.014 (0.008) 0.145 (0.094)
7 6 0.014 (0.01) 0.193 (0.177)
8 13 0.01 (0.003) 0.119 (0.043)
9 12 0.009 (0.004) 0.111 (0.06)

10 10 0.012 (0.007) 0.176 (0.156)
>10 448 0.005 (0.003) 0.109 (0.058)

Table 4.5. Results for data with only bias

Rank Number observed Avg. prob. match (SD) Top 10 cum. (SD)

1 295 0.018 (0.026) 0.116 (0.071)
2 141 0.009 (0.004) 0.081 (0.029)
3 75 0.008 (0.003) 0.073 (0.022)
4 46 0.006 (0.001) 0.06 (0.012)
5 33 0.006 (0.001) 0.062 (0.012)
6 21 0.007 (0.002) 0.067 (0.02)
7 13 0.005 (0.001) 0.054 (0.008)
8 11 0.005 (0.001) 0.056 (0.01)
9 6 0.006 (0.002) 0.061 (0.019)

10 2 0.006 (0.002) 0.062 (0.016)
>10 19 0.005 (0.0001) 0.054 (0.005)

Table 4.6. Results for data with both bias and noise

Rank Number observed Avg. prob. match (SD) Top 10 cum. (SD)

1 43 0.044 (0.068) 0.193 (0.149)
2 34 0.026 (0.022) 0.179 (0.088)
3 34 0.02 (0.014) 0.168 (0.097)
4 24 0.014 (0.008) 0.133 (0.073)
5 16 0.02 (0.012) 0.2 (0.115)
6 15 0.013 (0.006) 0.139 (0.073)
7 16 0.014 (0.007) 0.167 (0.119)
8 13 0.014 (0.006) 0.184 (0.116)
9 12 0.011 (0.005) 0.139 (0.091)

10 4 0.009 (0.003) 0.104 (0.042)
>10 451 0.005 (0.003) 0.108 (0.057)



not quite so dif®cult for the intruder when there is bias but no noise. From Table 4.5, we

see that in 295 of 662 cases the intruder's posterior probability of a match was highest

for the correct record, in only 19 cases the correct record was not in the top ten in terms

of posterior probability.

Finally, in Table 4.6, where there is both noise and bias, we see that in only 43 of

662 cases the intruder's posterior probability of a match was highest for the correct

record, while in 451 cases, the correct record was not in the top ten in terms of posterior

probability. The bias leads to some degradation in matching over and above the noise,

but not much.

From an examination of the top ten posterior choices of the intruder, we clearly see that,

by applying the Bayesian model with carefully chosen priors, the intruder is able to per-

form moderately well, at least in terms of winnowing down the agency records to a small

number of possible matches with moderately high probability. Even in the presence of

moderate bias and noise in the released data the intruder has the correct match in the

top ®ve around 40% of the time.

5. Discussion

In this article, we have laid out a framework for a Bayesian approach to data disclosure in

which we focus on the perspective of an intruder. In our framework, the intruder attempts

to use microdata released by an agency in order to gain access to additional information on

speci®c individuals for whom he or she already possesses information. The intruder

attempts to ``break'' the con®dentiality of the released data by comparing his or her indi-

vidual-level data on speci®c individuals for a selection of variables with the values on

those same variables for individuals in the released database. We chose to specialize

our framework to the situation involving continuous data that are treatable as observations

drawn from a normal distribution, for simplicity when carrying through the formal

machinery of the Bayesian framework, and we made a number of simplifying assumptions

regarding the noise and bias as well as the independence of variables.

The key to our framework is the role of error in the variables in the released database

which, when combined with the continuous observations, precludes the use by the intruder

of exact matches between data on individuals which he or she possesses and data in the

released database. Thus, in the problem we have chosen to investigate in this article every

individual in the released data ®le is ``unique'' but the data for no one can match

exactly ``precise'' data possessed by an intruder. We believe that this framework

and the key assumptions about the errors are realistic ones that are relevant to

many problems of interest.

We then studied numerically the workings of our Bayesian model for intruder behavior

using data based on observations from an actual survey (suitably modi®ed). We found that,

at least in the circumstances involving what we deemed to be the modest database error we

chose to examine here, an intruder following the Bayesian model had great dif®culty

achieving matches with high posterior probability, and we would expect this probability

to degrade further as n grows. In such uncertain settings an intruder would most often

mis-identify which individual in the released data matched with the data in the intruder's
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possession. For example, suppose we had adopted some threshold for the intruder's

posterior probability of a match and we had declared a match only when the maximum

posterior probability exceeded that threshold. This would correspond to the speci®cation

of a loss function for the intruder, perhaps along the lines of those discussed in Duncan and

Lambert (1989). Then we would have a negligible correct identi®cation rate. These results

should not be interpreted as indicating that there is no risk to the release of microdata ®les,

but rather that error in the data plays a more substantial role than some previous investi-

gators may have suggested.

In choosing the parameter settings for the database errors in our model, we explored a

variety of values and decided, on somewhat subjective grounds, that we had modest levels

of error present. Readers will have to judge for themselves whether they believe these to be

modest error values.

Paass (1988) reports on a substantial empirical investigation involving the simulated

matching of two extremely large data ®les, including the use of added noise, using a

form of discriminant analysis and he concludes that there is a non-negligible rate of

successful identi®cation for target individuals randomly selected from the population.

These results seem startlingly different from those suggested by our modest investigations.

Yet, it is important to note that Blien, Wirth, and MuÈller (1992) also carried out a detailed

empirical investigation, but using two actual data ®les (one of which involved data from

the German microcensus). They found much higher levels of erroneous identi®cation and

substantially lower levels of correct identi®cation. They concluded that the frequencies of

error in the data which they observed serve as a ``natural barrier'' against intruders. These

latter conclusions seem much closer in accord with the results reported here. We hope to

shed further light on these widely discrepant conclusions through a more elaborate formal

simulation using the Bayesian framework described in Sections 2 and 3.

This article is, in many senses, only a ®rst consideration of a more general Bayesian

approach to the problem of modeling optimal intruder behavior, and our effort has been

necessarily specialized and limited in nature. In work in progress, we are attempting to

remove the simplifying assumptions adopted in Section 2, and we are considering the

more dif®cult case where the intruder matches more than one record at a time against

the agency's released data, and where the released data are only a sample from the popu-

lation and possibly even a sample of the data held by the agency. We expect an increase in

the intruder's rate of success with an increase in the number of individuals whose record

the intruder possesses. On the other hand, we expect an even more substantial decrease in

his or her success rate with a drop in the sampling rate or the proportion of the data

released by the agency. The proposed study will throw light on the actual effect of these

factors and hence will provide some guidance as to how much of a decrease in the propor-

tion of released data might be necessary to neutralize an intruder's increased resources.

Further, we plan to investigate related models for intruder behavior when the variables

under consideration are categorical or a mixture of continuous and categorical variables.

Once we have a systematic understanding of optimal intruder behavior in these varied

circumstances, we hope to turn our attention to developing an exploration of the agencies

response to an optimally performing intruder through the use of such techniques as matrix

masking, and then ®nally assess whether an intruder can undo the agency's attempt to pro-

tect con®dentiality. Our speculation from the calculations in the present article is that the
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addition of noise for continuous variables will be suf®cient to protect con®dentiality pro-

vided that the released ®le is moderately large in size. More noise will be required,

however, if the number of key variables is increased.
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