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A Bayesian Approach to Designing U.S. Census
Sampling for Reapportionment

Joseph B. Kadane'

This article proposes a design criterion for sampling in conjuction with the U.S. censuses
of 2000 and beyond. Since reapportionment of Congress is the constitutional basis of the
census, the loss function used here minimizes apportionment errors in a certain sense.
This leads to a stochastic modification of the Hill (equal proportions) method of appor-
tionment now used. If the sampling in the census is designed to achieve minimum con-
stant coefficient of variation of state shares of the national population, the use of the
proposed “‘single-number” census will result in the same apportionment as would have
been obtained using the proposed loss function.

Key words: Census adjustment; equity in reapportionment; Hill method of equal propor-
tions; loss functions; small distance asymptotics; Webster method.

1. Introduction: Purposes of the U.S. Census

U.S. Decennial Census data are used in many aspects of American life. The Consti-
tution requires that the census be taken every ten years, and that the results be used to
reapportion Congress (although the reapportionment did not happen after the 1920
census). Federal statutes require the use of census data in many formulae dividing
Federal funds for various purposes. Private companies use census data to guide mar-
keting by zip code, store location, etc. States and localities use it for drawing
legislative and Congressional district boundaries and for planning purposes. Without
denying the importance of these manifold uses of the census, this article concentrates
on the Constitutional use, the reapportionment of Congress among the states.

Other countries’ censuses also have systematic errors, as recent articles about the
Australian (Steel 1994), Canadian (Strauss 1993) and United Kingdom (Diamond
and Skinner 1994) censuses have pointed out. These censuses are conducted in an
institutional environment that may be more amenable to stress the goal of estimation
rather than apportionment.

2. The Uses of Sampling in the Census

A recent National Research Council report (1993) endorses the Census Bureau’s
proposal of a “single number census” for the year 2000. This is a departure from
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the practice in 1990, when an enumerative census was reported in December 1990, and
an adjusted census was prepared for the following summer. In a much disputed
decision, the Secretary of Commerce determined not to adopt the adjustment.

A “‘single number census” will no doubt involve a traditional enumeration, but may
embed sampling in a variety of ways as well. Sampling for follow-up of residences
from which no questionnaire has been returned by mail has been advocated both
to save money and improve the quality of census data, since by concentrating on rea-
sonably sized samples more careful work can be done in follow-up (Ericksen and
Kadane 1985). Additionally, a single-number census will incorporate whatever
form the Post-Enumeration Survey takes for the year 2000.

In any sampling design, the issue arises of how to distribute sampling resources:
where to sample heavily, and where more sparsely. This article proposes and justifies
a criterion for designing such sampling in the census.

3. Uncertainty in State Populations

As traditionally reported, the census gives a single number for the population of each
state. For example, in 1990, South Dakota was reported to have 699,999 persons on
Census Day, April 1, 1990 (Department of Commerce 1990). The implicit accuracy
claimed must of course be treated with some scepticism.

In order to obtain design criteria for sampling in connection with the census, it is
necessary to be explicit about what the consequences would be of various different
patterns of uncertainty in state populations. Since apportionment is the Constitu-
tional purpose of the census and the focus of this article, I begin by reviewing the cur-
rently used method of apportionment, called the Hill (1911), or Equal Proportions,
method.

To establish some notation, an apportionment is a choice from the set
A={a;|a; > 1, a; is an integer and >_ a; = h}, where & is the intended size of the
house (currently 435 for the House of Representatives), and the index i ranges over
states, now 50 in number. Suppose also that state i has population P;, presumed
for the moment to be a known number. The Hill method may then be stated as an
algorithm, as follows:

a. [Initialization]. Set ¢; = 1 fori=1,...,50.

b. [Step]. Suppose /' seats have been allocated, i.e., S a; = /. Choose a state j
for which P;//a;(a; + 1) is maximum. Increase a; by one, and /" by one.

c. [Stopping]. If /' < h, return to (b). Otherwise stop.

Note that P; appears in the algorithm in a linear, homogeneous way. Thus if
P = (Py,...,Ps) were replaced by a constant multiple, for example, population
shares ¢ = (¢y,...,¢s), where ¢; = Pj/T and T = S0, P;, the Hill algorithm
applied to ¢ would yield the same apportionment as would the Hill algorithm applied
to populations P.

There are two rather fundamentally different ways to view uncertainty in statis-
tical problems. The classical view, which accepts only distributions on the.observa-
tions given the parameter, has been used by several authors studying aspects of
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reapportionment in a stochastic environment. Gilford, Causey, and Rothwell (1982)
and Gilford (1983) used simulation from the twelve Post-Enumeration Program
(PEP) series arising from the coverage evaluations of the 1980 census. They show
that the PEP series chosen would have an effect on apportionment. Spencer (1985)
simulates given a known “‘true” population, to assess the effects of uncertainty on dif-
ferent algorithms for apportionment, and the extent to which they may systematically
favor smaller or larger states. Schirm and Preston (1987) examine the effects of a syn-
thetic estimate of census adjustments using similar methods.

This article uses the other main approach of dealing with uncertainty, the Bayesian
method. This presupposes the knowledge of a posterior distribution on the quantities
of interest. Although the modeling requirements and agreements needed to produce a
50-dimensional posterior distribution of state populations might seem severe, only
certain very simple features of that posterior distribution will turn out below to be
relevant. Since the literature concerning how to produce such posterior distributions
is voluminous (e.g., Ericksen, Kadane, and Tukey (1989) for the 1980 census, the papers
in the special section on the undercount in the Journal of the American Statistical Asso-
ciation (JASA) of September 1993 for the 1990 census) and because the methods to be
used in the census of 2000 are still in flux, I will not address the question here of how such
a posterior distribution might be developed for the census of 2000.

The other fundamental quantity that must be specified to use the Bayesian
approach is a loss function. There are two criteria that I believe should apply to
the choice of a loss function. First, when the posterior distribution is concentrated
at a single point, so that state populations are considered known, the use of the
loss function should reproduce the currently used Hill (equal proportions) method.
(The Appendix considers an analogous analysis for the main alternative to the Hill
method). Second, to be useful, the loss function should lead to a tractable result.
Without taking this consideration into account, the result could be a computational
problem of some magnitude. Bayesian principles require the minimization of
expected loss (equivalent to the maximization of expected utility). Here that would
mean the minimization over the set 4 of the expectation of the 50-dimensional
posterior distribution of the expected loss, considered as a function of the state
apportionments. The set A is finite, but quite large ( a simple occupancy argument
from Feller 1957 pp. 36, 37, shows that |A| = (3%)). For each member of 4, the
expected utility would have to be determined by numerical integration of some
kind. This mammoth calculation seems unlikely to yield theoretical insight that might
be used to help design the sampling for the census of 2000. Hence tractability is a
rather pressing concern. Some discussion of loss functions in this problem can be
found in Spencer (1985), Citro and Cohen (1985), Cressie (1989), Fienberg (1986),
and Zaslavsky (1993).

An important consideration for these loss functions is that the decision space be
modeled correctly. The focus of this article is the set A of possible apportionments,
but in other countries an estimation focus might be more useful.

To establish some further notation, let v); = h¢; be state i’s quota, the number of
seats in the House of Representatives state i “deserves” absent the constraints that
the allocations g; must be positive integers.
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One commonly used loss function in statistics is squared error, which here would be
S™(a; — ;). In analogy to chi-square like distances, it might make sense to divide by
a;, yielding the loss function

50 )2
Lita) =3 B S k0 (3.1)
=1 4

Thus the choice of a to minimize L, (a, %) over A minimizes ) ¥?/a;. In the case of
known populations (or population shares), the minimizing A is precisely the appor-
tionment found by the Hill algorithm (see Balinski and Young (1980, p. 105) and
Huntington 1928).

This property suggests that L; may be treated as a loss function, and its expectation
with respect to the distribution of the random variables v; may be minimized.

Thus I seek

L = E =
{1;1}1;1}4 (Z Vi a,) mm

Now let ¥; = v/E(x?). Under the assumptions made above, although the ¢;’s are
random variables, their distribution is known, so the v;’s are (in principle) a known
set of numbers. Then (3.2) becomes

50
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L'= min, 2 (i) /a; (3.3)
which is exactly in the form that the Hill algorithm minimizes. Consequently the Hill
algorithm may be used again, substituting v; for P;, which proves the following
theorem.

Theorem 3.1 When L,(a, ) is the loss function, the apportionment found by applying
the Hill algorithm to the “quotas’ 1} = /E(1)?) minimizes expected loss.

Suppose that ¢, has mean y; and variance o?. Then ¢} = /i + 072. As o7 — 0,
that is, as one becomes more and more sure that state i’s share of the nation’s popula-
tion is p;, f — p;, so the allocations under (3.1) approach those that would be
obtained by applying the Hill algorithm to p;, which is the same as applying the
Hill algorithm to known state populations P;. Hence this method satisfies the first
desiderata mentioned above, that it should reduce to current practice when state
populations are known with certainty. Additionally since it applies a known
algorithm (Hill’s) to a simple functional of the first two mements of ¢y, it is tractable,
satisfying the second requirement. Interestingly, the apportionments obtained in this
way do not depend on the covariances between v; and ¢; for different states i and ;.

4. Designing Sampling for the Census of 2000

There are (at least) two objections to using (3.1) as the basis for apportionment during
the census of 2000. First, the Census Bureau has proposed, and the National Research
Council has endorsed, a “single number” census, not a “single-distribution” census.
While the Census Bureau anticipates publishing standard errors for=the state
population estimates, this will provably reflect only sampling errors, and hence
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underestimate the real uncertainty. Not to include other sources of error would be an
unfortunate omission, in my view. The notations u; and o7 are used here to represent
the Census Bureau’s posterior mean and variance on the population of state i
including errors from all sources, sampling and non-sampling.

Second, it might be alleged that use of (3.1) could create inequity between states.
Suppose that the posterior quotas of the two states i and j are such that p; = p;
and o? > 0]2 . Then +; > 17, and state i may get more congressional representation
than state j, because uncertainty about its population share is greater. I take this to
be a very serious matter, since the history of this subject is full of equity arguments
(see Balinski and Young 1980).

The perspective I suggest on both these matters lies in the thought that the variances 0,2
are to at least some extent design variables in the control of the Census Bureau as it pre-
pares for the census of 2000. Suppose the sampling for the census of 2000 were designed
for equal coefficients of variation in state shares, or equivalently, state quotas, i.e.,

o; = kp; (4.1)
for some k > 0. In this case

¥ =11 R (42)

so the Hill algorithm applied to the means p; would result in the same apportionment
as would the Hill algorithm applied to the ¢;’s. Thus if the Census Bureau reported
state population estimates proportional to p;, it would ensure that the Hill algorithm
would have the same effect as if loss function L; were used in conjunction with
Theorem 3.1. Designed this way, the “single number’’ census would be sufficient. Sec-
ondly, the equity argument would not apply, because of the operation of (4.1).

In planning the sampling structure of the PES following the 1990 census, the Cen-
sus Bureau chose a plan “to achieve a minimum constant coefficient of variation for
the estimate of the population of each area” (Hogan 1992, p. 263), where area is a
cross-classification of census division (nine in number, groups of states) by place/
size (six categories). After the PES was conducted, poststrata were constructed reflect-
ing demographic variables as they related to the probability of not being counted.
Stratification, both pre- and post, seem to me to be an entirely appropriate way to
use prior knowledge about important variables concerning miscounting. Woltman,
Alberti, and Moriarity (1988) discuss the Census Bureau’s reasoning in choosing to
sample so as to emphasize areas, as defined above.

In planning the census of 2000, it is easier for politicians and the public to under-
stand an adjustment in which each state’s final estimated population depends only on
data from that state. A plan along these lines would require large sample sizes from
each state for reasonably accurate results, and hence is likely to be very costly or very
inaccurate. Even if it were feasible to create ‘‘raw’’ estimates of this kind, it is obvious
that the states with the lowest and highest rates of estimated undercount are not likely
to be that low and high, respectively. Thus some kind of smoothing is likely to be
advantageous in the sense of being more accurate. While it might be desirable from
a public relations viewpoint to segregate data by state, I think the losses of doimg
so may well exceed the gains.
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The purpose proposed in this article, to attend to accuracy at the state level by sam-
pling to achieve minimum constant posterior coefficient of variation for state share
estimates, could be achieved whether smoothing is used or not. Certainly the current
methods, involving dual system estimation, hierarchical Bayes modeling, and
synthetic or other demographic analysis, complicate variance estimation at the state
level, especially before the sample results are known. The use of strata that cross state
boundaries is another source of complication. Any census design would have to deal
with these complications, of course, whether the goal of the design is the one sug-
gested here, or some other goal.

There are two ways in which sampling is likely to be used in connection with the
census of 2000. As an innovation, sampling is likely to be used in the later stages of
non-response follow-up (as argued for in Ericksen and Kadane 1985). Not all local-
ities have to be sampled at the same rate for this purpose. The discussion above sug-
gests a criterion for deciding the allocation of sample (i.e., resources) among localities.
Second, sampling is likely to be used for coverage completion, in some kind of new
PES. Again, my suggestion is to sample in order to achieve equal state posterior
coefficients of variation. I do not believe that this goal can be achieved exactly, of
course, since a sample usually does not come out as anticipated. However, planning
aimed at achieving that goal will come closer to achieving it than will planning aimed
at achieving some other goal, for example, equal area sampling coefficients of varia-
tion, as was used in the 1990 PES.

5. Conclusion

This article proposes that sampling for the census of 2000 be designed to achieve a mini-
mum constant coefficient of variation among state shares, or equivalently, state quotas.
There is no reason given here why the same units used in 1990 should not be used in the
census of 2000 for stratification. However, the suggestion here is that sample sizes be
assigned to those strata to equalize posterior state share coefficients of variation, not
strata coefficients of variation. Doing so would permit use of means in a “‘single-num-
ber” census to reproduce the Hill apportionments that would be obtained by minimizing
the loss function (4.1) in conjunction with a “single distribution” census report.

In sampling theory approaches to the effects of uncertainty on apportionment, a
sample of state populations is drawn from the distribution, and the apportionment
is calculated. Then another sample is imagined drawn, etc. The resulting dispersion
of apportionments might be taken as evidence of lack of robustness of the method.
By contrast, the Bayesian approach, minimizing the expected loss (here 4.1), chooses
an apportionment that takes the entire distribution into account at once. It therefore
has a kind of built-in robustness. The result of this article offers a way for the Census
Bureau to obtain this robustness by designing the sampling in the way specified.

The design of sampling for the census 2000 must take into account each source of
variability: sampling variability in both the neo-PES and in sampling for follow-up,
detection of gross errors by the PES, etc. Also it must take into account the myriad
uses of the census. In this consideration, accuracy and fairness for reapportionment
is likely to be regarded as quite important in the U.S. context. For other countries,
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where estimation is possibly more important than apportionment, other loss func-
tions might be more appropriate.

Appendix: Webster’s Method

The Hill algorithm is not the only method that might be used to apportion Congres-
sional representation among the states. The main alternative is known as Webster’s
method, and uses the same algorithm as Hill’s except that the divisor
{a;(a; + 1)}'/? is replaced by (aj+1/2). The Webster algorithm was used until
1941, when it was replaced by Hill’s. Balinski and Young (1980) argue that Webster’s
method is less biased against large states, a conclusion challenged by Spencer (1985).
Without taking sides in this matter, I wish to indicate how the analysis above can be
extended to Webster’s method.

Suppose that, instead of dividing (a; — ¥;)? by a;, as in (3.1), one divides by v;, to
obtain

50 (N2
Ly(a,¢) = Z% (A1)
i=1 ¢
= Z atz/wi —h. (A2)

The member of 4 minimizing (A.1) is found by applying the Webster algorithm to the
numbers v; (Balinski and Young 1980, p.103 and Huntington 1928). Treating L, as a
loss function, its minimization yields

= min E(Zaz/wl> = mm Za, (1/4;). (A.3)

{a;eA4}

Let 7,[)1‘ = I/E(l/'l,/},) Then

= 11;111141} Z a; /1/)1 (A4)
and the minimization is achieved by the application of the Webster algorithm to the
numbers v;, which proves the following theorem.
Theorem 2 When L,(a, 1) is the loss function, the apportionment found by applying the
Webster algorithm to the “quotas” ¢; = 1/E(1/1;) minimizes expected loss.

Note that, again, as 0? — 0,%; — w;, so the result of using Theorem 2 in the case of
known populations reduces, as it should, to the Webster method applied to those
known population means. The variances o7 are, presumably small compared to the
means ;, so it makes sense to study the behavior of ; asymptotically as o; — 0
(Kadane 1970, 1971). Expanding 1/4; in a Taylor series

1 1 1 _€0; 620,2 3
—= =———24+—24+0

Y piteor .U,Z I »(71)
where ¢ has mean 0 and standard deviation 1. State populations are bounded from
below, so that even the least populous state has positive population and thus positive
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;. Hence
1 1 o7
() =5+ 54 o)
and
- 1
Y= 1/E(1/¢i):ﬁ"—:#i—af/ﬂi'i'o(a?)' (A.S5)

i+t 0(a))
If the census of 2000 is designed so that o; = kp;, then A.5 shows
i = [l = K]+ 0(o?)

50, to this order of approximation once again the numbers u; may be reported and
used in the algorithm. Thus the design suggestion of this article, equation (4.1),
does not depend on the use of the Hill algorithm. Asymptotically as o; — 0, the design
minimizing equal state posterior coefficients of variation permits certainty - equiva-
lent numbers to be used in the Webster algorithm as well.
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