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A Bayesian Approach to
Small Domain Estimation
Kung-Jong Lui' and William G. Cumberland®

Abstract: Samples designed to provide an
estimate of a feature of the entire population
are often used secondarily to produce esti-
mates of characteristics of subpopulations.
Procedures depending on the distribution
created by the sampling plan are usually not
applicable due to the small subdomain
sample sizes. Synthetic estimators and ratio-
correlation estimators are difficult to evalu-
ate with respect to the sampling plan and
hence cannot provide a measure of error. In
this paper, Bayesian estimators which are
generalizations of the least-squares esti-
mators of Holt, Smith, and Tomberlin

1. Introduction

In large scale sample surveys, samples
designed to provide estimates for the entire
population are often used secondarily to
produce estimates of characteristics of sub-
populations. Procedures depending on the
distribution created by the sampling plan,
such as simple expansion estimators of the
subdomain means, are usually not appli-
cable due to the small subdomain sample
sizes. To require accurate estimates for all
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(1979) are proposed. The estimators can
easily incorporate auxiliary information
from previous surveys with data from the
current sample. A brief discussion of the
robustness of the proposed Bayesian esti-
mators is given. Simultaneous confidence
intervals for all subdomains are also derived.
The results are illustrated with an example
using 26 health districts in Los Angeles
County.

Key words: Least-squares; Bayesian; super-
population.

subdomains would necessitate a sample size
too large to be met within the budgetary
constraints of most population surveys.
Common approaches to small domain
estimation, such as synthetic estimators
(Gonzalez and Hoza (1978), and Levy
(1971)) or ratio-correlation estimators
(Schmitt and Crosetti (1954)) have the
shortcoming that they are nearly impossible
to evaluate with respect to the sampling plan
and hence do not directly provide a measure
of error for a given subdomain estimator.
The super-population model approach to
small domain estimation (Holt, Smith, and
Tomberlin (1979), Laake (1979), Royall
(1979)) provides the measure of error and
also gives a new avenue for exploration of
this problem. In this paper, Bayesian
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estimators which are generalizations of the
least-squares estimators of Holt, Smith, and
Tomberlin are derived. The estimators
derived do not depend on the sampling plan,
but rather on an assumed model which
reasonably describes the underlying popu-
lation structure. Such estimators can easily
incorporate auxiliary information from
previous surveys with data from the current
sample. For completeness, in this paper we
have presented all Bayesian estimators with
their corresponding prediction variances in
closed form under most frequently assumed
models for finite population inference,
especially as applied to small area esti-
mation. Discussed also are the effects on the
performance of the estimators of model
misspecification and of using inaccurate
prior information. The derivation of simul-
taneous confidence intervals for several
subdomains is presented. The results are
illustrated with an example using 26 health
districts in Los Angeles County.

2. Notations and Method

We suppose that the finite population is
divided into I mutually exclusive subareas,
labelledi = 1,2, . .., I, for which we wish
to produce estimates. Within each sub-
domain, units are further classified into J
subgroups (for example, socio-economic
class, age, etc.); these are labelled j = 1,
2, ..., J. The cell sizes N, resulting from
this cross-classification are assumed to be
known. Let y; (k = 1,2, ..., Ny) be the
measurement on the kth individual in the
ijth cell and let

Z
<

T.:

1

I M~

Yijk

1 k=1

J

be the total for the ith subdomain. The

primary focus is to estimate the T;’s.
Letting s; denote the n; sampled units in

the jjth cell, we use X, y to denote the
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sample sum, and j; for the average of the
sampled units in cell §j. Standard dot notation
will be used for sample averages and sums.

2.1. Generalized synthetic estimators

Holt, Smith, and Tomberlin (1979), incor-
porating the implicit assumptions of the
synthetic estimator, 77 = X, N, 7, derived
the modified synthetic estimator, denoted
by TMS. This estimator follows from the
following model for the population structure:

Yijk B + &ies

where ¢’s are uncorrelated with mean 0 and
variance o°. Its form is

=Y Y yu+X X Vi

J kes; J kés
with prediction variance

V(T:'MS -T) = Z (Nq - nij) o’
J

+ Y (N — ny)* o*/n,.
7

The estimator 7MS cannot take advantage of
the information about 7; from earlier
surveys or censuses; hence it is natural to
extend the model by assuming B; to be a
random variable possessing some known
distribution, incorporating knowledge from
previous surveys into this distribution. In
the terminology of ‘‘borrowing strength” we
borrow not only from the other cells of the
current surveys, but also from previous
surveys and censuses.
We assume that

= B + &y, where gy iid N(0, c?),
(1.1)
j* iid N(ﬁjs G%),

Yijk

and that g, and B* are independent. Then
the uniformly minimum variance unbiased
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(UMVU) estimator of T; is
j-;'GSJ = Z Z Vijk +Z Z [(a- )“j)ﬁj

J kes; J késy
+ A7, 1.2)

where the superscript GSJ denotes the
generalized synthetic estimator in the situ-
ation of J different prior means. Its predic-
tion variance is

V(IS = T) = ¥ (N; — ny) o
j

+ Z (Ny - nij)2 >“j 0l/”‘.ja (1.3)
J

where A, = n; x/(n; x + 1),

and x = c}/c%.

The estimator T°%' results when we alter
model (1.1) by making B, =B, =... =
Bo- Its prediction variance is the same as that
of 7SS/, These results follow immediately
from standard Bayesian techniques (Scott
and Smith (1969)). Ghosh and Meeden
(1986) discussed this estimator in a study of
empirical Bayes estimation. The following
lemma which gives the general form of
Bayes estimates for finite population is
presented for future reference.

Lemma

Partition the population Y’ = (Y., Y)),
where Y, and Y, are the vectors of the meas-
urements for the sampled and non-sampled
units, respectively. Assume

MEHMN
B* + and
Y, X, €,
B* = AB + €2,

where B is a constant vector, (X, X;) and 4
are known matrices of auxiliary variables,

& Zss 2sr
~ N| 0,
€, Zr: er
€

and €? ~ N(0, V) independent of l: s].
8’

I
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Then the UMVU predictor of 'Y =
Y, + 1Y, is given by .Y, + 1, E(Y,|Y,),
where v/ = (i, 1)) is a vector of 0’s and 1’s,
and

E(Y,|Y,) = X E(B*|Y,)
+ I, 50 (Y, — X E(B*[Y))
= XA4B + (X VX + %)
x (X, VX + Z,)7' (Y, — X, 4B)

Proof: The expression for E(Y,|Y,) fol-
lows from E(Y,|Y,, B*) = Xp* +
T, 7' (Y, — X, B*). The result giving
E(B*|Y,) is an immediate consequence of
writing the joint distribution of Y, and B*

N
~ N ,
p* AP
X VX, + 2, XV
[ 24 4 ”

Note that in both 7°%/ and 7', a
weighted average of prior information and
current data is used to predict the unobserved
Y’s: (1 —M)B + Ay, for T and
(1 — A)Bo + A7, for TPS'. These esti-
mators become the modified synthetic esti-
mator TMS when k = o%/c® - co. Since A,
is an increasing function of k, the less
accurate the prior information is (relative to
the current), the larger the prediction vari-
ance becomes (see (1.3)).

Ghosh and Meeden (1986) discussed
methods for estimating k. We note the
following result on the robustness of the
Bayesian estimator when using a specified
value of k. Often one can provide a guess as
to the value of k, say k. It is easy to see that
even if x, is incorrect, the true prediction
variance of 7%/ and T7' (using ;) is
smaller than that of 7S as long as k, > /2.
Thus, it is not necessary to have exact prior
information regarding the variance of B* to
improve the simple least-squares predictor
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TMS. Since an incorrect value of k, does not
bias the generalized synthetic estimators,
the condition «, > x/2 is sufficient to
guarantee that 7°%/ and 7°5' are superior
to TMS with respect to the MSE.

If the parameters B, (or B,) are unknown,
we can substitute in the formulae for 7:°5’
and T°%' the UMVU estimators B, = j;
aﬁnd B, = Ef N7 IE A giving pre(iictors
755’ and T°S', respectively. Now T.°57 is
identical to the least-squares estimator TS
and even knowing k makes no difference in
predicting 7;. The empirical Bayes predictor
TOS! is still superior to the least-squares
predictor if x, > x.

These properties of the generalized syn-
thetic estimators are valid even when some
cells have n; = 0. Calculating 7587 requires
only that the stratum sample sizes n; =
T, n; > 0 so that B; can be estimated. The
variances in our models need not be con-
stant; if we allow o* to vary among the
different strata, all that changes are the par-
ameters ;. Note that 7%’ and 7°%' become
the best linear unbiased estimators when the
normality is not satisfied. Discussion on the
robustness of the normality assumption for
the empirical Bayesian estimator related to
TS%' has been published recently (Ghosh
and Lahiri (1987)). The model used by Scott
and Smith (1969) for multi-stage sampling is
equivalent to (1.1) when B, =8, =
... = P, are unknown.

2.2. Generalized expansion estimators

For notational convenience we keep the
classification into IJ cells, although for
defining expansion estimators it is only
necessary to have the I domains defined.
If we suppose the I domains are strata,
then a common estimator for T; is the
stratum expansion estimator, 7% = N,., .

When [ is large, some post-stratified sub-
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domains may have a small or zero sample
size. In this situation, the use of prior
surveys in forming Bayes predictors is an
intuitively appealing way of estimating the
T;’s.

We consider the following models:

yijk = a;lt +Sijka

@.1)

where g, iid N(0, 6) independent of o* iid
N(w;, ©2), and

= of + &y, (2.2)

where &, iid N(0, ¢?) independent of o* iid
N(oy, ©3).

Application of the Lemma gives predic-
tors which are generalizations of the expan-
sion estimators

YVijk

TiGEI =2 2 Yijk
J kes,-j
+ Z Z (M=) o + A 3],
T Késy
2.3)
]"-;GEI — Z Z yijk
J kesij
+ kz (1= A)o + A jd,
J ¢Sij
2.4)

where A, = n;, 62/(n; 6% + o?).
The prediction variances are
V(TS - T) = V(I - T)

= (N, —
+ (N, — n, ) A, &/n,.

If the o, are not known, substituting &, = y,
in TC% leads to the simple expansion esti-
mator T°% = TF = N, j, with prediction
variance N? (1 — n, /N,) ¢*/n; (Holt, Smith,
and Tomberlin (1979), model II). Substitut-
ing & = Z, A, 5,/ Z, ), into TCE' gives

f;GE' =Y 2 Y

J kes;

+ Z Z (= 2)d + My

J okésy

n;) o’
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with prediction variance
VI - T) = (N, — n) o
+ (N, — n,)* ) o%n,

+uw—mfa—nfdﬂggy

This can be shown to be smaller than the
variance of the expansion estimator. Thus,
when o, are nearly equal, one may prefer the
smaller MSE of TCE! to that of TF even
though the former has a bias under (2.1)
when o; are unknown.

2.3. Generalized direct estimator

The simple direct estimator, TP = X N,y
although intuitively appealing, is of little
practical use since it will frequently be the
case that at least one of the n; is zero. A
Bayesian approach to generalizing this esti-
mator assumes a distribution for the mean
of each of the ijth cells. We list several
examples of models for this situation.
Assume
Vie = W+ €
where & iid N(0, 0®), &; and p¥ are
independent, and

2.5)
(2.6)
Q.7
(2.8)

p¥ iid N(py,, o3), or

u} iid N (o, 0}), or

p iid N(py, o7), or

p iid N(py, o2).
Applying the Lemma, we find the general
form for the Bayesian (or the empirical
Bayes) estimator, resulting from these
models with known parameters (or when
the parameters are unknown), is

T}Dr‘zzyijk
J

kes;

+ 22 [ =2y 05 + Ay 35l

J k¢s,»j
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where O, is the known prior mean E(u}) (or
its corresponding estimate under the model
when the prior means are unknown). The
results corresponding to models (2.5)
through (2.8) are summarized in Table 1.

We can see that when n; = 0 (A; = 0),
we use O; to predict the non-sampled
individuals in cell ij and if n; > 0 we use a
weighted average of O, and the cell sample
means.

3. Covariate Models

There are situations in which the average
value of the elements in a subgroup is

-thought to be a function of some auxiliary

variables. Here we shall discuss several dif-
ferent models which are related to those
discussed in the previous sections, but which
incorporate the auxiliary information.
Other Bayesian univariate models without
considering the effect resulting from the
grouping were discussed by Stroud (1986)
and Dempster and Raghunathan (1986).

3.1.  Covariate models related to synthetic
estimator

As a special case of model (1.1), we consider
the situation where EB} is a linear function
of a known covariate vector X, of dimen-
sion p < J. That is, we assume for i = 1,
2,...,L j=1, 2,...,J, k=1, 2,
..., Nj that

Y = B} + &5 where g iid N(0, o?),
and BF iid N(ay + «’X;, 03),  (3.1)

B, € are independent, o’ = (o, ..., ,)
is a vector of parameters, and X’ =
(Xj15 Xj2, - - - » X;,) is assumed to be known.
If oy and «, are known, the UMVU estimator
TSP of T,under model (3.1) can be obtained
by substituting o + a’X; for B;in ;%5 (see
(1.2)); its prediction variance is the same as



Journal of Official Statistics

148

Jojewns?d Jo211p opduws p,
I0)eWNS? uolsuedxa Jdwis pagipowr o,

(0 + 2o"u)/rou =y pue ["£ "y + “D("y — DI("u — ‘N) T + "du

Iojewns?d uotsuedxd odwis g,
I01BWINS? JNIAYIUAS PIYIpow B,

("D)'f soum

O =
(82)
. ﬁ.«..m.sw\..:mﬁ./\‘.nw.mw
..:\ubNA:.: - ) .ﬁ./\..N.amw\NbNAA.ﬁ./\ - CA.N..: - .a..vaNv N =°of azoym| o°rf =
+ +A )z (L2)
-3 53 5] ¢ Oyl /n s s £ ¢ .n..K.nN\..n..%b/x.nN
tuf0,(fu - AN)R MR/ 7o, (Y = 1) (Fu = BN iR Qs = o axaym| o =
+A +A ()i (92)
Px g/ b ueswt
fuf,0.(fu - o) g/ ro(fy = 1) (Flu = )i 2, = forf azoym| forl = 1oud
+°A +A (fr)ir (g'g) jumousupy
fr(ftu = o)
.....:\Nb«Ammt - .a..sznw 4+t A.....lv..'h O =
+A ) (82)
o (fu = N)
1 ()L orf =
2(tu = N) fufofiy (fu— ON) R (L2)
= C4po(tu =) ot ~ N
=A +Mtu Ao.-lv._wh oYyf =
(92)
forl(fru — ) ueowr
+ Yty A.?lv..ww forl = 1oud
(§2)| umouy
g
(1=") (0= ) pue
Iaquinu ueow
=70 0=1320 0199119521 ON =70 0=2z0 UO130119591 ON PPOIN loud

I07BWI}S? JO 3OUBLIRA UOIJIIPal]

![ 10} IojyeUIl}S? UIRWIOPYNS Uelsakeq

A0]DUA1]SI 12241P MNQS.;, 0] pa1v]o4 S[aPOUd 1apun SIIUDIIDA

u01121pa4d 412Y1 YIIM SA0IDUAISI JO dDNULLO “[ 2]qD.T




Lui, Cumberland: A Bayesian Approach to Small Domain Estimation

V(TS — T, given by (1.3). Here the
superscript CSP denotes the covariate
model related to the synthetic estimator
with p variates.

If o, and o are unknown, one uses the
estimates

d,)?m[
and & = (XpAXp) 'Xp A,

where j, = Y A y,,,/z A,
7 7

XD = (le - xml)]xp’
jm[ = Z )\‘j le/z )\'j!
J J
A = (diag(A))sxs
}-/ = (.}-).l.’ .}-).2.a L ’.)_).J.)'

Thus the UMVU estimator, 757, is given
by
S = Y %y

j kesy
+ 3 Y 1= A6 + &x;,
J kgs;
+..0+ 8,x,) + A5
with prediction variance given by

vdsr - 1) = T, - )
J

nij)z Ajln;

+ X Wy —

+ (T = ma - W) /T,

Jj
+ L (X5 A Xp)~' L] x},
where
L= (S0 -n)a-3)
J
X (le

_J—cml)a~~-52(]vij—nij)

x (1 = %) (x, — xo,,,)).
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In particular, when p = 1, we can easily see
that

E(ﬁGS' _ T,)Z < E(ficsn _ T,~)2

if and only if
CVi@&) = VEI/IEG) > 1.

Thus 7', though biased under model
(3.1), can be a better (with respect to the
MSE) estimator of 7; than the UMVU
estimator 7C5' when p = 1; this occurs
when the square of coefficient of variation
CV?(&,) > 1. This result suggests that we
should be careful in deciding whether we
want to include the auxiliary variable in our

estimator for T; or not.

3.2.  Covariate models related to the
simple direct estimator

Following ideas similar to those in the
previous section, we can incorporate the
auxiliary information into the estimator for
T; under models related to the simple direct
estimator. For simplicity, we restrict our
discussion to only one covariate here. The
estimator for the p-variate case can be
derived using similar arguments.

Consider models which relate p; to a
covariate Z; measured for each cell. We
assume for i=1, 2,...,I, j=1,2,

..., k=12,...,N,that
Yig = “;_'_eijk,

where ¢ iid N(0, 6®), g, and p} are
independent and

pi iid N(o + BZ;, o}), or
w¥ iid N(B,Z,, o2).

(3.5)
(3.6)

The UMVU estimator of T, under model
(3.5) or (3.6) can be obtained easily whether
the prior parameters a, B under model (3.5)
or B; under model (3.6) are known or
unknown.
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We mention that the use of the model
(3.6) under certain situations (for example,
in which the sampled units are groups of
households, but the average value per
household of the characteristic measured is
the same within a given jth stratum) is
potentially more realistic than the model
(3.5). Continuing this example, suppose one
wishes to estimate characteristics based on a
sample of blocks, such as the number of
school-aged children, or the number of
dilapidated housing units, for the small
areas. For these measurements, the number
per block will be directly related to the
number of households per block. Intuitively,
we expect that the greater the number of
households in a block, the greater is the
number of school-aged children (or the
number of dilapidated housing units). The
slope of B; in the model (3.6) can be inter-
preted as the expected number of school-
aged children per household in the jth
stratum and therefore B;Z;, where Z;; is the
number of households in the ij th cell, is the
expected number of school-aged children in
the ijth cell.

Note that if Z; are equal, model (3.6) will
be the same as (2.5), and therefore the
corresponding estimators under these two
models will be identical.

4. Variance Estimation

Recall that the formulae for the prediction
variance of the Bayesian estimators related
to the synthetic estimator involve o? and o}.
Since it is often possible to guess the relative
size k = o3/c?, we need only to estimate
one of the variances, and then find the other
from the ratio. We thus rewrite the predic-
tion variance for the generalized synthetic
estimator as o” times a function of k, N; and
n;. Assuming that x is known simplifies the
problem of component variance estimation
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and also allows us to concentrate on esti-
mating c”.

Following the above idea, we assume that
we know the value of x from a previous
survey or one’s own subjective confidence
for the relative sizes of o? and c3. We can
easily get the UMVU estimator of 6* under
model (1.1) when the B; are unknown,

6Gss = ;Z kZ (Y — }_’Jz)z/(n.. - J),

1 ES,’j
which is independent of k. The UMVU esti-
mator of o in this case is x 6%g,.

4.1. Simple interval estimates under the
generalized synthetic model with J
prior means

Assuming model (1.1) in which pB, are
known, we get the estimators 7°%7, given in
(1.2) with the prediction variance given in (1.3)
fori = 1,2,.., I Let the error vector be

ESS/ = (T —T,,..., T - T)).

Then E®’ = WY + o is a linear func-
tion of the elements of Y. The I x N..
matrix W is a function of n;, N;, and
the A;, while the vector @ has elements
 (N; — ny) 1 — &) By

From this it follows that
N(0, 6*C), where Cisan I x Imatrix with

EGS J

~

Ci = Z (Nq - nij) + Z (Nz/ - nij)2 xj/n.j
j j
and
Cir = Z(N,] = ny)(Niyy — ni) (1 — A x
J

fori # i’.

Note that C is of full rank, since W is of
rank 7 and COV(Y) of rank N... It is
straightforward to show that n.. 6%, is dis-
tributed as chi-square with n.. degrees of
freedom, where

6%}5/!( = (Ys - ‘XAB)/ Vr_l(Ys - Xsﬁ)s and
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o’ V,is the COV(Y,). Furthermore, £/ and
6&ss are independent, and hence from
standard theory, we find that T, +
t/c; 6&s s, Where ¢ is the o/2 upper percen-
tile of the Student distribution with n..
degrees of freedom, gives a 1 — a con-
fidence interval for T;.

4.2. Simultaneous interval estimates

In small domain estimation, we are fre-
quently more interested in giving simul-
taneous confidence intervals for all T; than
in giving individual confidence intervals. We
present three methods for constructing sim-
ultaneous confidence intervals for T;. All
methods lead to confidence intervals of the
form T, + h. /c;6%, i= 1,2,...,1
where 4 is determined by the method and o
level.

The simplest method, based on the
Bonferroni inequality, is to use for A the
upper a/(27) percentile of the ¢ distribution
rather than o/2 in calculating each con-
fidence interval.

The second method is the multivariate ¢
method (Graybill (1976)) in which to give
1 — asimultaneous confidence intervals for
T;, we use for A the o/2 upper percentile of
the standard multivariate ¢ distribution.

The third method, related to Scheffe’s
method for confidence intervals, is to use
h = JIF,(, n.) to give the interval esti-
mates. This can be easily derived from
noting that

ESS7 C7V RS ogsu) ~ F(I, n..)
and
Max (l/ EGSJ)Z/(I/C l) — E/GSJ C—l EGSI,

where the Max is over the I dimension Eucli-
dean space, excluding 0. Note that using this
method not only provides simultaneous
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confidence intervals for all T}, but also for
all linear combinations of T;. Therefore, this
method is especially useful when we are also
interested in calculating confidence intervals
for Z,., T;, where g is any collection of
labels from T;.

If the B; under model (1.1) are unknown,
then arguments, similar to those when the f;
are known, can show that:

G = TNy = m) + TN =
and
Cir = ;(N,-,» — ny) (Nyy — nyy)/n,
fori # i’

We then get the simultaneous confidence
intervals as

Ti T he &8ss
where 4 is chosen with degrees of freedom
n.. — J from the appropriate table corre-

sponding to the multiple 7, multivariate ¢,
or Scheffé’s techniques.

5. An Example Using Los Angeles
County Health Districts

The results of the preceding sections show
that the Bayesian approach to small domain
estimation has the potential to be a valuable
tool in the hands of the practitioner. The
ability to “borrow strength” not only from
the current survey, but also from previous
studies and censuses has great appeal. The
ease with which one can get variance esti-
mators and with which one can take advan-
tage of existing procedures for simultaneous
confidence interval estimation make these
methods attractive. Of concern to the user
of these statistics, however, is their robust-
ness to failure of the model assumptions.
Ghosh and Lahiri (1987) has showed that
some of the Bayesian estimators do exhibit
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some robustness to model failure; they may
in fact do rather well even when there are
significant departures from the assump-
tions. Here we use the data from Los
Angeles County as an example to illustrate
the applicability and usefulness of the
proposed Bayesian estimators.

We present the results of a simple study in
which we compared the performance of the
estimators derived in Section 2.1 with that
of some traditional estimators. Samples of
different sizes were taken from a population
consisting of the 1275 census tracts of Los
Angeles county, based on the 1960 census.
Each census tract belonged to exactly one of
26 health districts of L.A. county; these
became the small areas. The response vari-
able, y, chosen for this study was the
number of physicians in each census tract;
hence T; was the number of physicians for
the ith health district. This population
was further classified into four strata,
defined by the median house price from the
1960 census: < $10,000, $10,001-20,000,
$20,001-30,000, and > $30,000. As a result,
the population was cross-classified into 104
cells. The number of tracts per cell, N;
ranged from 0 to 56.

With the tracts themselves as sampling
units, we used a simple random sampling
plan to select our samples. The traditional
estimators used in this study were the syn-
thetic estimator, 7%, and the expansion esti-
mator, TF. The direct estimator was not
used since it is undefined when a cell has
zero sampled units. Three estimators,
related to the synthetic estimator, were
chosen for comparison: 7', T8/ and
75/ These estimators are sensible choices
for this population since it is reasonable to
relate the number of physicians to the tract
median house value. Assuming that within a
stratum, the number of physicians per
census tract is relatively constant leads one
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to consider model (1.1) as representative of
the structure of this population.

Since the estimators 7°%', and T8/
depend on the value of x, several different
values of k were chosen. In this study, we
used 1, 2, 3, 4, 5, and 6, which covered most
values of interest. From a preliminary study
in this particular data, a value of x greater
than 6 led to these three estimators being
almost identical. In fact, if « is greater than
6, the weight A; in the predictors of the
unolzserved Y values: (1 — A)B, + Ny
for 797 and (1 — X)), + A3, for T%', is
close to 1 even for n; as small as 10. This
result suggests that when « is greater than 6
and y ; does not differ much from B; and Bo>
both the Bayesian estimator 7.°/ and the
empirical Bayesian estimator 705! should
be approximately equivalent to the corre-
sponding least-squares estimator fGS’
(=TMS), which does not depend on the
value of k. Furthermore, as pointed out in
Section 2.1, a guessed value kg > x can
guarantee the Bayesian estimator to be
superior to the corresponding least-squares
estimator with respect to the MSE.
Therefore, in practical situations, unless we
are sure to have very precise prior infor-
mation, values of k less than 1 would rarely
be considered. Since the prior mean needed
to calculate 7°%” is not known for this popu-
lation, we chose to use the population
column mean for B; - this represents having
the best possible information on them, and
hence we could evaluate how much efficiency
is lost when one must estimate these pa-
rameters from the sample data. Note that
the column means, as used in this example,
would not be known in practice. However,
the values of B; can either be assigned by the
investigators based on their subjective
knowledge or given from previous surveys
Or Censuses.

To measure the performances of the
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estimators, we used criteria that have been
commonly used to evaluate traditional
small domain estimators (Levy (1971),
Schaible (1979), O’Hare (1976), Gonzalez
(1979), and Crosetti and Schmitt (1956)).
These include the root mean squared error
(RMSE), (ZL_, (T, — T))}I)'?, the sample
correlation coefficient (CORR), and the
mean of percentage absolute difference
(MPAD), 2/_, |T, — T|/UIT).

Four different sample sizes, 255, 128, 64,
and 39 were used. One sample was taken for
each sample size. Note that when n, = 0,
TF is not defined, and therefore, RMSE and
CORR for TF were calculated only based on
the subareas in which there was at least one
sampled unit. Furthermore, the MPAD is
undefined, if for any subarea i, TF is zero.
The results are given in Table 2.

Note that the simple expansion estimator
was the poorest among these five estimators,
especially when the sample sizes were small.
For n = 255, the three Bayesian estimators
were not very different and did not seem to
depend on the ratio k. These results are
concordant with the fact that when n is
large, A, is close to 1 and hence these esti-
mators depend little on the prior knowledge.
When the sample size was moderate, for
example 128, the estimator 7°57 was as
good as the estimator 7.°%/ regardless of .
However, when the sample size decreased to
64 or even less to 39, the estimator 7°% was
the best estimator among these five with
respect to the RMSE. This is expected since
using very accurate information in the
Bayesian estimator is especially useful when
the sample size is small. In our example,
7957 and TS consistently performed better
than either the synthetic or the simple
expansion estimator. A comparison of 75"
with TS, showed that 7°%' was better
when the sample size was large, (255 or 128
in our example), while 7 performed as well
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as TOS'! when the sample size was small
(39 in our example) and k = 1 or 2. Note
that in the above cases, for k > 2, 7! was
still preferable to 7° with respect to the
RMSE. This suggests that if we are not sure
of the true value of x, we are better off using
too large rather than too small a value of «,

especially when the sample size is small.

6. Conclusions

Our example, though limited in scope,
shows that using a Bayesian approach to
derive small domain estimators can often
give a dramatic improvement over tra-
ditional estimators. Bayesian estimators are
generally more flexible in borrowing infor-
mation from related areas than the syn-
thetic estimator. The wide choice of models
allows a practioner to take advantage of
whatever information available about the
population; one can, for example, easily
incorporate auxiliary information into the
estimators. Furthermore, one can get a
measure of error in closed form, which
allows the construction of simultaneous
confidence intervals for T, for each small
area easily. The theoretical and empirical
results suggest the proposed estimators
deserve serious consideration for use in
small domain estimation.
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