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A Bayesian Loglinear Model Analysis of
Categorical Data

Robert M. Leighty' and William J. Johnson’

Abstract: We illustrate a two-staged Baye-
sian strategy for making inferences about
the loglinear model parameters that sum-
marize the interaction structure in a multi-
dimensional contingency table. In the first
stage, we locate full and reduced uniformly
ordered models whose parameter vectors
enclose all important parameters. In the
second-stage, posterior regions are used to
identify important loglinear model terms.
Parameters in these terms are estimated by
Bayesian posterior means that compromise
full and reduced model maximum likelihood
estimates (MLE’s). The likelihood is sum-
marized by the approximate normal distri-

1. Introduction

A principal objective in categorical data
analysis is to summarize the interaction
structure in a contingency table with a
set of parameters. Assume that the con-
tingency table possesses ¢ cell frequencies,
n;, that have been generated by an indepen-
dent Poisson, multinomial, or product-
multinomial sampling model. Let m;;, repre-
sent the corresponding expected cell means.
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bution of the sufficient full-model MLE.
A hierarchical normal-Cauchy-tail prior,
centered at the reduced-model MLE, is
assumed. A relative precision hyper-
parameter measures our belief in the
reduced model. We illustrate three methods
of approximating the posterior moments:
the Laplace method, an empirical Bayes
method, and the diagonalized covariance
method. Our Bayesian strategy is then used
to reanalyze the Ries-Smith detergent
preference data.
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We choose to summarize interaction with
the parameters of the loglinear model
because of the desirable margin-free
property of these parameters (Altham
1970a, 1970b). For government and social
science studies that focus on interactions
involving ethnicity, this margin-free
property is especially important. In these
studies, margin-dependent parameters,
which are characteristic of most models,
may be misleading. For instance, a margin-
dependent parameter measuring asssociation
for a minority will be smaller than an inter-
action parameter measuring association
for a nonminority, merely because of the
inequity in the size of minority and non-
minority populations. To avoid this
unappealing dependence on the marginal
levels of ethnicity, we use the logliﬂéar
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model

F(m) = XB (L.1)

Here, F (m) is the vector of the logarithm of
expected means, with components log m;;,
and B is the p-dimensional (p < ?) parameter
vector and X is the full-rank design matrix
associated with a full model. The full model
will seldom coincide with the saturated
model, but rather, shall be a hierarchical
model with more terms than required to
provide an adequate fit to the data.

We assume that the likelihood is
adequately approximated by the asymptotic
normal distribution of the maximum like-
lihood estimator b, which is sufficient for §
in model (1.1). The MLE b maximizes the
likelihood L (B) of the sampling model. The
estimator’s covariance matrix V; equals the
inverse of the Fisher information matrix,
— E(d* log (L(B))/dB?). We evaluate the
covariance matrix ¥ at b to obtain the
consistent estimate ¥;. Both the MLE b and
the covariance estimate ¥, are invariant
under the conventional sampling models
that we assume, and our approximate like-
lihood is proportional to

LBb) oc exp {—1(6 — BV, (b — B)}.
(1.2)

Our analysis is based on a hierarchical
Bayesian model for the loglinear model par-
ameters. The first stage of our prior model is
conveniently chosen to be the conjugate
multivariate normal distribution for f
centered about a reduced-model MLE p =
(b,, 0). In this data-dependent mean p, the
first r entries are the elements of the
reduced-model MLE b,, while the remain-
ing p-s entries are zeros. We measure the
uncertainty of this reduced-model with a
hyperparameter in the spirit of Leonard and
Novick (1986). Inferences about p are based
on credible regions centred about posterior
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means that compromise the prior mean p
and the full-model MLE associated with our
approximate likelihood (1.2). Since both
the prior mean and the full-model MLE
represent hierarchical loglinear models, the
preliminary stage in our analysis identifies
these reduced and full hierarchical models.
If abundant prior knowledge is available,
identification of these hierarchical models
may be accomplished through an elicitation
of prior beliefs about the parameters and
cell probabilities. This article addresses the
problem when only vague information
about the parameters is available. In this
instance, we suggest the posterior distribu-
tion of our hyperparameter be used to help
screen for the order of the parameter vector.
All hierarchical models of uniform order,
the constant probability, the main effects,
and the kth order interaction models, are
considered. Two models of uniform order
are identified which have associated par-
ameter vectors that enclose the nonnull par-
ameters. The smaller model is designated
the reduced model associated with the prior,
while the larger model is referred to as the
full model that determines the likelihood in
(1.2). Use of this larger hierarchical model,
rather than the saturated model, to represent
the likelihood (1.2) both reduces dimension
and improves the accuracy of the normal
distribution approximation to the likeli-
hood. Fitting a loglinear model as a pre-
liminary smoothing device to increase the
efficiency of the primary inferences is an
integral part of functional asymptotic
regression methodology (Imrey et al. 1981
and Koch, Imrey, Freeman, and Trolley
1976). We feel this preliminary screening
should be distinguished from the rest of the
analysis, and it will, therefore, be referred to
as the first stage of our strategy.
Frequentist approaches employ multiple
significance tests to determine the important
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summarizing terms that are included in their
models (Agresti 1984 and Fienberg 1980). In
these tests, the significance probability
provides an inflated assessment of the
evidence for nonnull terms (Berger and
Selke 1987), and hence the frequentist model
fitting strategy identifies too many import-
ant terms. Our analysis, which employs an
informative prior on the loglinear model
parameters, identifies fewer nonnull terms
than identified by frequentist methods.
Leonard (1975) and Laird (1978) have
previously used the normal distribution in
the first stage of their prior when they
analyzed two-way contingency tables.
Recent Bayesian approaches typically
model the cell means rather than directly
modelling the parameter vector, (Albert
1988; Leonard and Novick 1986; and Kass
and Steffey 1989). Our approach is intended
for high-dimensional contingency tables
where prior knowledge is absent. Our choice
of hierarchical prior facilitates a preliminary
screening for the order of the table’s struc-
ture, which enables us to specify a reason-
able prior mean.

The more detailed description of the
Bayesian analysis begins in Section 2,
where we provide the assumptions of
our prior distribution. Section 3 describes
the posterior analyses, upon which our
Bayesian strategy is based. Section 4 dis-
cusses the stages of our strategy that permit
inferences about the loglinear model
parameters. Three methods of approxi-
mation are illustrated in Section 5: an
empirical Bayes method, the diagonalized
covariance method, and Laplace’s method
(Tierney and Kadane 1986; Tierney, Kass,
and Kadane 1989; Leonard 1982; and
Kass and Steffey 1989). In Section 6,
we reanalyze the Ries-Smith detergent-
preference data. This Bayesian analysis
reveals fewer important parameters than
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typically identified by frequentist analyses.
In particular, the water softness term is not
identified as important, and hence the table
is collapsed over softness resulting in a
simpler structure. :

2. The Prior Distribution

Our specification of the parameter vector’s
prior distribution assumes that we have
located P between the parameter vectors of
two hierarchical models of uniform order. If
B, and B, represent the r-dimensional
reduced-model and p-dimensional full-
model vectors, then we believe the number
of important parameters is between r and p.
In Section 4, we describe a method of ident-
ifying these models, which relies on a rela-
tive precision hyperparameter.

A two-stage normal-Cauchy-tail prior
distribution is assumed for the parameter
vector B. Conditional on the relative pre-
cision parameter, a, the first-stage distribu-
tion for B is assumed to be the informative
conjugate normal distribution

n(Pla) oc o~

1 1
X exp {— E(B - u)T& C'(p - ll)}-
Q.1

The prior mean, p, is assumed to be equal to
the MLE, b,, associated with the reduced
hierarchical model found in the first stage of
our analysis. When possible, we advocate a
subjective elicitation of the structure of the
prior covariance matrix C. Here, we examine
the situation where little or no information
is available, and we assume C is proportional
to the identity matrix, C = ¢I. We define ¢
to equal p/tr(¥,™") so that the trace of C~!
agrees with the trace of ¥,', the precision
matrix associated with the likelihood.

The uncertainty of the first-stage nosmal
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prior is measured by a second-stage prior on
the overall precision parameter o, or equi-
valently, on the reparameterized version
1t = 1/(1 + a). If the precisions of the prior
and the likelihood distributions are sum-
marized by the trace of their precision
matrices, then t = 1 represents equal preci-
sion between the prior and the data. More
generally, the relative precision parameter t
measures the proportion of the posterior
precision that is attributable to the con-
jugate multivariate normal prior. Values of
1 and O for t represent extreme belief and
disbelief in the reduced prior model. We use
Leonard’s uninformative uniform prior for
1t (Leonard 1977; Leonard and Novick
1986), which is centered at 1 reflecting a
neutral position concerning our belief in the
reduced model. We then permit the data to
help us update our knowledge of t in the
posterior analysis. The uniform prior on 1
implies that the second-stage distribution
for a is the Cauchy-tail prior with density
1
(1 + o)?*

We often find it computationally more
convenient to express the prior distribution
givenin 2.1 and 2.2 in terms of T rather than
o

pl2
n(Bl7) oc [—T ]
1 —1

1
X exp {— B - ——C' B - u)}
2 1 -1
2.3)

n(t) = 1 (2.4)

Although we view the relative precision
parameter T as being analogous to Leonard’s
shrinkage proportion parameter, an impor-
tant distinction in the parameter’s inter-
pretation should be mentioned. Leonard’s
shrinkage proportion parameter, in the
Gamma or Dirichlet distributions, actually

(o) = (2.2)

0<t< .

Journal of Official Statistics

measures the proportion by which the MLE
is shrunk towards the mean when one forms
a Bayes estimate of the cell mean. In our
Bayesian estimation of the loglinear model
parameters, the components of the MLE are
shrunk a variable amount so that T cannot
be interpreted as the constant proportion of
shrinkage. This is the case either if C is
specified to be proportional to the identity
matrix, or if C is specified through an
enlightened subjective elicitation procedure.
Only if C were to be defined to equal the
likelihood covariance ¥,~', would 1 repre-
sent the constant proportion of shrinkage.
Fortunately t does represent the relative
precision and, therefore, may be interpreted
as the typical shrinkage of the coordinate
MLE’s towards the prior mean.

We are indebted to Professor Leonard for
the splendid tutorial (1987), in which we
learned how the shrinkage proportion
parameter could be employed in model-
checking. Our choice of the Cauchy-tail
second-stage prior was influenced by our
need to identify a reasonable reduced-model
MLE to serve as prior mean. The second-
stage prior provides us with a sensible pro-
cedure for this initial screening (see Section
4.1). Other assignments for second-stage
prior distributions have been used by
researchers analyzing discrete data. These
include the uniform prior (Leonard 1976;
and Laird 1978), and the inverse chi-
squared distribution (Leonard 1972, 1975).
Lindley and Smith (1972), Box and Tiao
(1973), Broemeling (1985), Berger (1980a,
1980b), and Press (1989) are among the
authors who present Bayesian hierarchical
methods for analyzing normal linear
models.

We observe that a log uniform or uniform
distribution would possess flatter tails than
our Cauchy-tail distribution, and would,
therefore, provide greater protection against
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a misspecified prior model. This robustness
is of vital concern to us, since our analysis is
intended to be used when little prior infor-
mation is available. In addition to providing
a measure of robustness, the Cauchy-tail
prior helps us to identify a reasonable prior
mean. For this reason we believe it is prefer-
able to other alternative distributions.

3. The Posterior Analysis

3.1. The posterior analysis for B given ©

A price is paid for using a uniform prior on
the relative precision hyperparameter t. The
posterior analysis for the parameter vector B
does not have a simple analytic representa-
tion. Our choice of a conjugate first-stage
prior for B, however, leads to the familiar
multivariate normal posterior distribution
when we condition on 1. That is, when the
prior distribution in (2.3) and (2.4) is
updated by the multivariate normal likeli-
hood (1.2) of the full-model MLE, the
posterior density of B given 1 is

n(Blb,, T) oc |R,| '
x exp {—3(B — BT R'(B — B}
G.1)

where the conditional covariance matrix
and conditional mean are

-1
R = [V,,-' g ir) c-'] (3.2)
and
T
= R |V, 'b -1
ﬁt tI:b /+(1—T)C p:l
(3.3)
respectively.

3.2, The posterior density of T and B

The posterior density of t and B is given by
n(t, Blb;) = m(Blby, n(clhy) (3.4)
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where n(B|b,, 1) is given in (3.1) and where
ni(t|b;) is conveniently proportional to the
multivariate normal distribution of b, con-
ditional on t

1_
c

’—1/2

n(tlb) oc |V, +

 exp {40~

1 — 1t \!
x<n+—7~C>(@—m}
(3.5)

3.3.  The unconditional posterior analysis

The unconditional posterior density of B, a
mixture of multivariate normal densities, is
itself assumed to be approximately normal
with mean § and covariance matrix R

n(lby) oc |R| ™"

x exp {—3B — H'R'GB - B}
(3.6)

The two-staged prior distribution given in
2.3 and 2.4, is positive and continuous in a
neighborhood of the limit of the maximum
likelihood estimators. It follows that for a
large number of observations, the posterior
pdf is proportional to the approximately
normal density of the likelihood (DeGroot
1970, ch. 10). Although this supports 3.6,
when the likelihood does not dominate
the posterior, this approximation is less
accurate than the normal approximation for
the conditional density displayed in 3.1. The
mean f and covariance matrix Rin 3.6 must
be approximated before posterior regions
can be formed, and the important loglinear
model terms identified. Similarly, the par-
ameters of the posterior distribution of t
need approximating before an inference
concerning a model’s fit can be made. The
posterior parameters, whose approximation
are needed for Bayesian inferences, involve
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posterior expectations of functions of p and
1, G(B, 1). that may be represented as
(p + 1)-dimensional integrals

E(G(B, 1)
= [ G, DIy, Vn(x|b)dpdr. (3.7)

Fortunately, when the posterior expectation
of G given 1 is known to be g(t), the expecta-
tion (3.7) reduces to the one-dimensional
integral

EGP. 1) = | gomGlbyde.  (38)

Most of the posterior moments used in our
analysis may be simplified in this way. The
approximations of these moments is des-
cribed in Section 5.

4. The Two-staged Analysis

Both stages of the analysis are based on the
posterior hierarchical Bayesian distribution
described in the preceding section. In the
first stage, the posterior distribution of the
relative precision parameter is used to ident-
ify the full and reduced models of uniform
order, whose parameter vectors enclose the
vector of nonnull parameters. In the second
stage, the posterior distribution of the par-
ameter vector PB, is used to identify impor-
tant nonnull terms and to provide posterior
regions for the parameters of these terms.

4.1. Stage I: Identifying full and reduced
models

Our belief in a model is reflected by the
concentration of the parameter vector’s
distribution about the prior mean, the
model-based MLE. A great deal of belief in
the model is represented by a highly con-
centrated distribution for B, which results
when the overall precision parameter is very
small (& ~ 0), or when the relative precision
parameter 1 is very large (t ~ 1). Con-
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versely, great disbelief in the model is
represented by a disperse distribution for g
occurring when o is large and when 7 is
small (t ~ 0). The value t = 1/2 represents
equal precision for the data and prior distri-
butions, as measured by the trace of the
precision matrices. We follow the hierarchical
Bayesian approach advocated by Leonard
and Novick (1986), and specify an uninform-
ative uniform prior on t. This prior is
centered at 1/2, a neutral position for our
belief in the reduced model. We then
observe the data, and let the posterior distri-
bution of t indicate whether an increase or
decrease has occurred in our belief in the
model.

Under multinomial and Dirichlet distri-
bution assumptions, Leonard (1977) used a
posterior quadratic loss argument to suggest
how 1 should be used in model checking. He
concluded that the decision concerning the
model’s fit should be based on the com-

“parison for the posterior mean of t with 1/2.

If for mathematical convenience, we make
the assignment of C = ¥, ', then Leonard’s
argument can be replicated. This covariance
structure alots the same precision as our
assignment C = cl, ¢ = t/tr(V;™'), so 1
may still be interpreted as the proportion of
posterior precision attributed to the prior
distribution. Additionally, Tt represents the
constant proportion that the components of
the MLE are shrunk towards the prior mean
to form the posterior mean, when we
assume the conjugate normal distribution
that possesses this covariance specification.
The argument for comparing the posterior
expectation for T with 1/2 is presented in the
Appendix, Section A.4.

Our objective in the first stage, however,
is not to make a dichotomous decision
about the fit of a model. Instead, we wish to
be confident that any reasonable model will
be nested between a full and a reduced
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model. A more stringent criterion is needed
to ensure this confidence and we, therefore,
base our decision on 95% posterior intervals
for 1. An interval that is above or below 1/2
provides clear evidence that the model fits or
does not fit the data adequately, whereas an
interval containing 1/2 fails to provide a
clear indication as to the model’s fit.

An approximate 100(1 — a)% posterior
interval for T may be formed as

E(t|b) + zSD(t|b) 4.1

where z is the 100(1 — o/2) percentile of the
standard normal distribution, and where b
is the parameter vector MLE summarizing
the likelihood. When screening for full and
reduced models, the parameter vector b is
taken to be the unrestricted MLE, b,,
associated with the saturated model. The
conditional density for 1 (3.5) must be modi-
fied by incorporating b, and its associated
estimated covariance matrix V,. The mean
and standard deviation of 1 in (4.1) require
the approximation of the first two moments
of 1

E@b) = [ tn@lbyk k= 1,2

4.2)

Of course, the posterior distribution of T is
frequently skewed. Hence, when 1/2 is close
to an endpoint of the interval, one should
check the graph of ©’s posterior distribution
as well as posterior tail probabilities to
evaluate the adequacy of the model.

4.2. Stage 2: Inferences for the parameter
vector B

Inferences about P are based on the uncon-
ditional posterior distribution of B, which
we have assumed to be multivariate normal
with mean f and covariance matrix R. The
parameters of the posterior distribution of
B, involve the evaluation of one dimensional
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integrals. Once the parameters of the pos-
terior distribution are found, approximate
highest posterior density (HPD) intervals
and ellipsoids may be formed and used to
identify important terms summarizing the
interaction structure.

The approximate intervals for the one-
parameter terms, B, are given by

ﬁi tz R}i/z 4.3)

where R, is the ith diagonal element of R,
the posterior covariance matrix of f given
b,, and where z is the 100(1 — o/2) percen-
tile of the standard normal distribution.

If B is an s-dimensional vector consist-
ing of the parameters making up a multi-
parameter loglinear model term, then the
posterior region is an ellipsoid. The
approximate marginal posterior distribution
of B, is multivariate normal with par-
ameters f and R, the respective sub-
vector and submatrix of § and R. A
100(1 — «)% ellipsoid for B is given by

{B(l):('}(l) _ ﬁ(l))T

x ROEY — BO) < i) (44

where y%,_, is the 1 — o percentile of the
chisquare distribution with s degrees of free-
dom. A single parameter term is judged
important when the 100(1 — )% HPD
interval fails to enclose 0, and a multi-
parameter term is deemed important when
B = 0 is not contained within the ellip-
soid. The ellipsoid fails to contain the null
vector when the quadratic form Q exceeds
the appropriate chisquare percentile

Q = B(])Tﬁ“)—lﬁ“) ? XS;]—(I'

We note that many classical statisticians,
who are accustomed to evaluating Wald
statistics, will find the examination of quad-
ratic forms to be a familiar procedure.
Formation of these posterior regions and

(4.5)
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quadratic forms require the evaluation of
the posterior parameters of the uncon-
ditional posterior distribution of . Com-
ponents of the posterior mean f, and covari-
ance matrix R, may be expressed as one
dimensional integrals. The ith component
of the posterior mean, f, is given by

B = [ Bn(tlb)dc

and the ijth element of the covariance
matrix, R, may be calculated as

E(Cov(B:, B|b;, 1)

(4.6)

R;

It

+ Cov(E(Bilb;, ©), E(B;lbs, 1)

1 ~ o~
[, (R + B.Bo)ntlb)er — BB,
4.7
where R ; is the ijth element of R. in (3.2).

4.3. Inferences concerning other
parameters

Posterior tail probabilities, parametric
residuals, cell means, and the logarithm of
expected cell means are other parameters of
interest to the researcher. All of these par-
ameters may be expressed as functions of f
and hence their marginal posterior distri-
bution may be approximated by using the
conditional (3.1) or unconditional (3.6)
posterior distributions of B.

4.3.1. Posterior tail probabilities

Our posterior probability regions are based
on the additional distribution assumption
(3.6) that the unconditional posterior distri-
bution of B is approximately multivariate
normal. In cases of questionable judge-
ments, where the null parameter vector is
near the boundary of the posterior region, it
is advisable to calculate a posterior tail
probability. For the contrast ¢"§, this tail
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probability is
P(c"B < z|by)

- jo' P(cB < zlb, Dn(clb)dt  (4.8)

where P (c"B < zlb;, 1) = ®((z — c"B./
(c"R.¢)'?) and ® is the cumulative normal
distribution function.

4.3.2. Parametric residuals, log contrasts,
and parameter vector contrasts

When the reduced and full models differ, it
is useful to examine individual cells to see
where the difference is most prominent,
and to identify outliers. The parametric
residual (Leonard and Novick 1986) is
defined to be the difference between the log-
arithm of the full-model cell mean m,

Py = log (mg) — log (my).  (4.9)

The parametric residual is a special case of
the more general log contrast /7 F(m) =
2l log (my). Under either full or reduced
models, however, the logarithm of the cell
mean is a linear combination of the log-
linear model parameters. The parametric
residual, as well as the more general log
contrast, may therefore be represented as a
parameter vector contrast

= Z’p.

The posterior distribution of this parameter
vector contrast z B is normal with mean z"
and variance z7 Rz.

Pijk (4.10)

4.3.3. Cell means and other nonlinear
differentiable functions of B

Sometimes, a goal of the analysis is to
produce smoothed expected cell means, and
at other times, hypotheses about the cell
means are of importance (e.g., hypotheses of
symmetry or marginal homogeneity). In
these instances, the posterior distribution of
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the cell mean is of interest. The vector of cell
means, m, may be expressed as a nonlinear
differentiable transformation of B. That is,
m = exp (XB) = f(B), where f;(B), the jth
component function of f; is the composition
of the exponential operator with the linear
function of B whose coefficients are the
elements of the jth row of X. The delta
method (see e.g., Bishop, Fienberg, and
Holland (1975)) may be used to approxi-
mate the distribution of any differentiable
transformation f = f(B). Conditional on T,
the posterior distribution of f’is the approxi-
mately multivariate normal

Sloe ~ NP, H.R.H]) (4.11)

where the matrix, H,, has the derivative
df;(B)/dp; evaluated at B, for the ijth element.
The unconditional posterior distribution of
f has parameters, f and qui,,v where com-
ponents f; and 1?,,.]- are obtained by integrat-
ing with respect to the posterior distribution
of T given in equation 3.5

i = [ £Bnlb )dx .12)

Ry = [ (HRHI + f(B) /B

X m(t|b,)dr ——f:fi

Approximate HPD regions may be obtained
by assuming f is normally distributed. For
the special case when f represents the vector
of cell means, f(p) = exp (XB), the par-
ameters of the conditional distribution (4.11)
are f(B,) = exp (Xp,) and H.RH] =
MXR. X" M, where M is a diagonal matrix
with ith diagonal element exp (XB.),.

(4.13)

4.3.4. Belief ratios

In addition to identifying outlying cells, it is
useful to measure a cell’s effect on our belief
in the model. This is done with the belief

ratio

Tk (4.14)
T . '

Vik =
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where 1, is the hyperparameter measuring
our belief in the reduced model after the
outlying cell frequency, n;,, has been set
aside. Removal of a cell frequency that was
inconsistent with the model would increase
the value of our hyperparameter, and conse-
quently, would result in a large belief ratio.
Values of v, greater than 1, therefore, indi-
cate the cell lessens our belief in the reduced
model.

5. Approximating Posterior Moments

The previous section illustrated how pos-
terior regions are used to assess the import-
ance of terms in the model. Formulation of
these regions, however, depend upon the
approximation of posterior parameters p
and R. The one-dimensional integrals 4.6 and
4.7, are difficult to evaluate because the inte-
grands involve the intractable inverses
of matrices such as (V, + (1 — 1) C/t)"",
whose elements involve both the variable
1t and floating-point numbers. We illus-
trate three methods of approximation: an
empirical-Bayes method, the diagonalized
covariance method, and the Laplace method.
Leonard (1972, 1975, 1976, 1982, 1987) has
perhaps contributed most to the numerical
approximation methods used in Bayesian
categorical data analysis. Albert (1988) pre-
sents methods used in generalized linear
models. General methods of approximation
used in Bayesian statistics include analytical
or numerical methods (Lindley 1980;
Tierney and Kadane 1986), numerical inte-
gration methods (Naylor and Smith 1982),
Monte Carlo methods (Kloek and Van Dijk
1978; Zellner and Rossi 1982; Shao 1989;
Gelfand and Smith 1989). A summary of
numerical methods and computer programs
used in Bayesian analysis has been provided
by Press (1989) and Smith, Skene, Shaw,
Naylor, and Dransfield (1985).

-=
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5.1. The empirical Bayes method

We first consider empirical Bayes methods,
which like hierarchical Bayes estimates, are
robust against a misspecified prior reduced
model. In the analysis of discrete data, the
practice of replacing the unknown prior
variance with an approximation in the
formula for the Bayes estimate has been
suggested by both empirical Bayesians and
Bayesians (Leonard 1972; Fienberg and
Holland 1973; Sutherland, Fienberg, and
Holland 1974; Hudson 1974; Efron and
Morris 1975; and Laird 1978). Typically, the
prior parameters have been assumed inde-
pendent. Our approximations are appro-
priate in the more general case involving an
arbitrary symmetric prior covariance struc-
ture C. These approximations are compu-
tationally economical, and therefore are
attractive when analyzing tables of especially
large dimension. Although the estimates
approximate hierarchical Bayes estimates,
the connection with the uninformative
second-stage uniform prior is lost. The
distribution of b, given t

1 — 7

Sbr) oc |V, + c

’—I/Z

X exp {—%(b_f _—

< (n o+ c) @ - w}

6.1
is used to estimate T. An estimate that
generalizes the Efron and Morris estimator
(1973), (Morris 1983), is the iterative sol-
ution to the equations

1 —t \!
o - oy(n+55C) @b

—p—r—1 (5.2)
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We use instead the positive part of an
analytic estimate

. _ OA[Q.—(p—r)]
w0 |

which generalizes an estimate that Oman
(1982) proposed for use in regression analy-
sis. Then % is estimated as T = 1/(1 + &).
When the full hierarchical model is taken
to be the saturated model, the quadratic
form, Q, = (b, — W'V, '(by — p), is the
weighted-least-squares statistic used in
frequentist analyses. Under certain sampling
schemes, this statistic has been shown equal
to the Wald statistic and to Neymann’s
minimum modified chi-square statistic
(Bhapkar 1966; Bemis and Bhapkar 1983a,
1983b). The posterior parameters, f§ and R,
may be approximated by substituting T =
1/(1 + &)into the parameter expressions, B,
and R,. If these approximations are used in
the intervals and ellipsoids given in 4.3 and
4.4, an approximate and computationally
economical empirical Bayes analysis may be
performed to identify the summarizing par-
ameters. It should be noted that the
approximate posterior mean, P., obtained
by substituting © into B, has attractive
frequentist risk properties (Oman 1982).
Simulations (Leighty 1985) suggest that the
other related shrinkage estimators, such as
Stein’s Rule (Efron and Morris 1973) and
Berger’s Stein-effect Rule (Berger 1982),
successfully improve on the frequentist risk
of a vector of maximum likelihood esti-
mators, over a significant region of the
parameter space.

(5.3)

5.2. The diagonalized covariance method

The posterior parameters, f and R, may
be found via one-dimensional numerical inte-
gration, if matrices such as V, + (1 — 1) C/t
and ¥, ' + tC '/(1 — 1) can be inverted
quickly for each new value of the variable t.
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This inversion may be accomplished by
simultaneously diagonalizing the Fisher
information and prior covariance structure
matrices, ¥, and C. Diagonalization is a
common approach used in the estimation of
the multivariate normal mean (Strawder-
man 1978; Nebebe and Stroud 1986). Hence-
forth, we shall refer to this approximation as
the diagonalized covariance method.

Both ¥, and C are symmetric and C, at
least, is positive definite. An iterative
program may then be used to approximate
the nonsingular matrix, P, that simul-
taneously diagonalizes ¥, and C. P satisfies

PTCP = I and PV,P = D (54)

where D is diagonal with ith diagonal
element d, a root of the characteristic
equation det(V, — xC) = 0.

The matrices V, + (1 — 1)C/t and
V,”' + 1C~'/(1 — 1) can now be diagonal-
ized and inverted

(54

-
(5.5)

where Q, and Q, are both diagonal with
ith diagonal element equalling o, =
t(d — Dt + 1) and oy = (1 — 1d/
((d. — Dt + 1). These matrices and the
formula I1%_,®,;, which is proportional to
the determinant det(V, + (1 — 1) C/t)™",
may be substituted into the expressions §,
R., and n(t|b;) in equations 3.2, 3.3, and
3.5. These one-dimensional integrals can
then be numerically evaluated to approxi-
mate the posterior moments of Tt and B,
which are used to make Bayesian inferences.

1 —1

—1
C> = PQ,PT

—1
c! = P 'Q,P!
1 —1 ] 2

5.3. The Laplace method

In this section, we illustrate the Laplace
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method of approximating posterior moments
of parameters with distributions concen-
trated above the origin (Tierney and Kadane
1986; Leonard 1982; Tierney, Kass, and
Kadane 1989). Kass and Steffey.(1989) show
how this method may be used in condit-
ionally independent hierarchical models.
Our illustration uses the diagonalization of
covariance to develop explicit expressions
for the derivatives required in the Laplace
method.

To use the Laplace approximation, one
needs to maximize a modified likelihood
function and evaluate the observed informa-
tion at the maxima. Our convenient choice
of the first-stage conjugate prior reduces our
approximation task to a one-dimensional
problem. Rather than approximating the
(p + 1)-dimensional expectation of a func-
tion G(B, t), we typically need to approxi-
mate the one-dimensional integral

E(G) = E(G@B, v)lby)

[, g@m(elb)de

where the function g(t) is the conditional
posterior expectation of G given 1, E(G(B, 1)l
b,, 1), and n(1|b,) is given in expression (3.5).
Expectation 5.6 may then be expressed as
the ratio of two one-dimensional integrals
of altered likelihoods, |e““dt/| e"¥dr.
Upon approximating these likelihoods with
second-order Taylor series expanded about
their maxima, the Laplace approximation is
obtained

(5.6)

1

E@G) = %exp (L*G*) — L®)}. (5.7)

Here the likelihood L(t) equals log & (t|b,),
and the likelihood L*(t) equals L(t) +
log g(t). The modes 1 and * maximize L
and L* respectively, and o and c* represent
the square roots of the observed informa-
tion — 1/L"(%) and — 1/L*"(1*) respectively.
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The posterior means, variances, and covari-
ances of T and p may be approximated in
this manner. For instance, if we let g(1)
equal R,; + B.B.;, expression 5.7 produces
an approximation to E (B;;|,). Using 5.7 to
approximate the means of B, and B;, and
subtracting their product from E(B;B;|b,),
would produce an approximate covariance
of §; and B,.

The Newton-Raphson algorithm, used to
maximize L and L*, requires that we find
expressions for the derivatives of L and L*.
When little or no prior information is avail-
able, we assume the prior covariance C is
proportional to the identity matrix /. This
simplifies diagonalization 5.4 so that P may
be chosen to be orthogonal

PP = I and P'V,P = D (58)

where D is diagonal, now with ith diagonal
element d;, a root of the characteristic
equation det(V, — xI) = 0. This diag-
onalization permits us to evaluate expres-
sions for the derivatives of L and L*. L and
L* are functions of bilinear and quadratic
forms of matrices H, and H, that may be
diagonalized. H, and H,, when expressed in
terms of o = (I — 71)/t, are

H(@ = (V, + acl)™" = PAPT
and
1 -1
Hy(®) = [V + —1]
ac
= PT'AP! (5.9)
WhCI‘C A| = diag()&“, )\112, ceey )\:]p), A-|,' =

1/(d: + ac), and A, = diag(hy, Ay, -+ -5 Agp)s
Ay = acd;/(d; + ac). When expressed in
terms of 1, the log-likelihood L is propor-
tional to

L(t) o« Llog|H,(v)| — Lz" H(1)z
(5.10)
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where z = b, — b, and where H (1) and
H,(7) are the expressions in 5.9 after (1 — 1)/t
has been substituted for a.

The derivatives of L may be found by
applying the chain rule, differentiating first
with respect to o = (1 — t)/t. When we
express the first term, f;(t) = § log | H,(7)|
in terms of o, we obtain fi(a) = —1

?_, log (d; + ac). The derivatives of f with
respect to T are

y Y do
fin = f.(a)a (5.11)
and
v AN o
@ = s F) + Ao
where dojdt = — 1/, d*ald® = 2/7,
filw) = =3 ZL(c/(d; + ac)), and fi(a) =

132 */(d; + ac)’. The same approach is
taken with the second term, fy(t) = —1z"
H (7)z. The function f; is expressed in terms
of o, and the chain rule is applied as in 5.11
to obtain f5(t). Here f,(a) = 12" PQ,P"z =
—132_, (1/(d: + ac)) yi, where y = Pz
Differentiating with respect to o, we obtain
fa(a) = Y20, (c/(d; + ae)?) y} =
s$z'(H@)’z, and  f3(0) = —ZL, (¢*/
d, + ac)®) y? = *z"(H(o))’z. Adding the
derivatives of the two terms of L, we
obtain L'(t) = f1(r) + f5(1) and L"(1) =

7(t) + f5(r). Although the matrix P, of
computationally costly eigenvectors, is used
to derive the derivative formulas, we
observe these eigenvectors are not needed to
evaluate the final expression. Other deriva-
tive formulas, used in the approximation of
the moments of T and P, are provided in the
Appendix.

In the Newton-Raphson iterations, we
use an efficient subroutine for inverting sym-
metric matrices which uses the relationship
between the inverse of a symmetric matrix
with submatrices that form the matrix
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(Searle 1971, pp. 27). It should be noted that
the approximation is intended for positive
functions, g(t), with posterior distributions
concentrated above the origin. The empiri-
cal Bayes approximations described in sec-
tion 5.1 are used to suggest when g(t) is
negative or close to 0. In these special in-
stances, one must approximate E (— g(t)) or
E(g(t) + e), e equalling some positive con-
stant rather than E(g(t)). The empirical
Bayes estimate of T provides a starting value
when maximizing L(t).

6. The Ries-Smith Study

We chose the Ries-Smith study of laundry
detergent preference to illustrate our treat-
ment of a large dimensional cross-classifica-
tion possessing scant prior information. The
variables ‘‘softness”, “‘use”, ‘“preference”,
and ‘“‘temperature” are referred to as vari-
ables 1, 2, 3, and 4 respectively. To sum-
marize the steps of our analysis:

1. We first use posterior probability inter-
vals for the shrinkage proportion, 4.1, to
situate the nonnull parameters between the
parameter vectors associated with the con-
stant probability reduced model, and the
first-order interaction full model.

2. Bayesian estimates that compromise
between the full-model and reduced-model
maximum likelihood estimates are approxi-
mated in three ways: by empirical Bayes
estimation methods, by the diagonalized
covariance method, and by the Laplace
method.
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3. The associated approximate 95% HPD
intervals and ellipsoids are then used to
identify the important loglinear model
terms.

4. The variable water softness is absent
from the model, indicating that it is inde-
pendent of the other variables. Hence, we
collapse the table over water softness, refit
the model with approximate Bayes estimates,
and confirm the selection of terms obtained
from the original data.

6.1. Identifying full and reduced models

The first stage of our analysis begins with
the diagonalization of the estimated asymp-
totic covariance matrix, V,. Then assuming
the covariance structure, C = cI, where
¢ = t/trace(V,""), the posterior density of
1 = 1/(1 + o) in equation 3.5 is calculated
for each model of uniform order. This is
done for each model by setting the prior
mean p equal the the kth ordered model
maximum likelihood estimates. The symbolic
software package Maple was used to plot
these densities. Hand drawn reproductions
of these graphs are displayed in Figure 1.
Estimates of T = E(t|b) and 95% HPD
intervals for T are supplied in Table 1.
After examining Figure 1 and Table 1, it
is unclear to what extent the main effects
model fits the data. Although the posterior
mean of 1 exceeds 1/2, suggesting a good fit,
both the sketch of the density and the 95%
HPD interval suggest that values of t less
than 1/2 are also reasonable. We therefore

Table 1. Posterior means and HPD intervals for shrinkage proportion T

Model T = E®/p) 95% HPD Interval
Constant Probability (C) .0025 (0, .1005)

Main Effects (0) .647 (.387, .908)
First-Order Interaction (1) 936 (.815, 1.00)
Second-Order Interaction (2) .969 (.89, 1.00)
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Main Effects (0)

|

-16.32

1+ 1224

First-Order Interaction (1) —

—+ 8.16

- 4.08

1 0.00

0.00 0.25 0.50

Fig. 1.

recommend that the hierarchical Bayesian
estimation, performed in the second stage of
the analysis, compromise the constant prob-
ability and first-order interaction model
maximum likelihood estimates. The full-
model maximum likelihood estimates of the
loglinear model parameters are functions of
the model-based estimates of cell counts
that are more efficient than the observed
frequencies. The assumed normal likeli-
hood, therefore, is better approximated
when these full-model estimates are used in
place of the unrestricted maximum likeli-
hood estimates. The use of loglinear models
as a smoothing device in the first stage of the
analysis has been referred to as functional

I
0.75 1.00

The posterior densities of T for models of uniform order

asymptotic regression methodology (Koch
et al. 1976; Landis, Heyman, and Koch
1978; and Imrey et al. 1981).

6.2. Bayesian inferences for loglinear-
model parameters

All three approximations to the Bayesian
model fitting strategy fit the same hier-
archical model. The terms included in the
Bayesian model are contrasted with the
frequentist model obtained by using 95%
confidence intervals and ellipsoids instead
of HPD intervals and ellipsoids.

These models are suggested by the Baye-
sian and frequentist model fitting strategies
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Table 2. Important terms identified by Bayesian and frequentist analyses

Parameter u u ) Uy Uy Up Uy Uy Uy Uy Uy
Bayesian model + — - — + - — — + — —
Frequentist model + — - - + — — + + 9 -

(Bishop, Fienberg, and Holland 1975; Fien-
berg 1980; and Goodman 1971).

(a) [4123]
(b) [4)(23][14]
(o) [4]123][14][24]

Model (a), suggested by Bayesian 95%
probability regions, includes only the use x
preference interaction term, uy;. All these
models appear to fit adequately since the
posterior densities of T associated with these
models are all shifted to the right of 1/2.

The models differ, however, with respect
to the decision to include the softness x
temperature, u,,, and the use x temperature,
u,,, interactions. The u,, parameter, having
a frequentist significance probability of
P = .055, is usually included in the fre-
quentist model arising from other model
fitting strategies (Bishop, Fienberg, and
Holland 1975; Fienberg 1980; and Good-
man 1971).

The more important conclusion is the
absence of the softness x temperature

T 13.30

+ 985

-+ 6.40

~2.95

0.50

‘ : |
0.00 0.25 0.50

Fig. 2.

1.00

The posterior densities of t for candidate models
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Table 3. Approximate means and HPD intervals for important parameters

Posterior Means, f;
Original Data Estimates (Collapsed Data Estimates)

Method

Empirical Bayes
Diagonalized Covariance
Laplace

Term: Uy

— 2366(—.2529)
— 2303(— .2474)
— 2304(— .2476)

Up; Uy

—1223(—.1317)  —.0544(— .0589)
—1192(—.1290)  —.0530(— .0575)
—.1192(—.1291)  —.0530(— .0576)

95% HPD Intervals

Original Data Intervals

Collapsed Data Intervals

Method

Empirical Bayes

Term: U,

Diagonalized Covariance

Laplace (—.2972, —.1636)
(—.3132, —.1820)

Term Method

Uy Empirical Bayes

Diagonalized Covariance

Laplace

(—.2965, —.1767)
(— 3146, —.1912)
(—.2972, —.1635)
(—.3131, —.1817)

Uy Uy

(—.1809, —.0637) (—.1148, .0061)
(—.1920, —.0715) (—.1211, .0033)
(—.1791, —.0592) (—.1130, .0071)
(—.1898, —.0682) (—.1193, .0042)
(—.1791, —.0593) (—.1131,.0071)
(—.1899, —.0683) (—.1192,.0042)

Wald-like Quadratic Form

Q = 4.429
Q = 4.085
Q = 4.080

term, u,,, in the Bayesian model: the 90%
ellipsoid encloses the null value. The
absence of this term and every other term
involving variable 1 suggests collapsing over
this variable, (Bishop, Fienberg, and
Holland 1975, theorem 2.5.1). After collaps-
ing and redoing the estimation the same
model is implied, confirming that collapsing
was the correct step in the analysis. The
three approximations of the posterior
means and intervals are shown in Table 3
for both the original and collapsed data.
The computationally economical empiri-
cal Bayes estimates agree with the hier-
archical Bayes approximations to the
second decimal place in the example, while
the two hierarchical Bayes approximations

typically agree to the third place. There is
agreement concerning which of the four
parameters are to be included in the model
by the 95% posterior region criterion. Only
the intervals and ellipsoids associated with
u,, and uy, contain the null value. The largest
hierarchical Bayes posterior intervals that
fail to contain 0 have probabilities .916 for
the original data and .932 for the collapsed
data suggesting that u,, might be included if
the 90% posterior region criterion were
employed. The largest ellipsoid for u,,
which fails to include 0, has probability .870
suggesting u,, be excluded from the model.

Our assumption, that the unconditional
posterior distribution of B;; is normal,
suggests the posterior tail probability be
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Table 4. Parametric residuals for the collapsed Ries-Smith data

High Temperature

Low Temperature

Brand Preference X

Previous M —.450*
(=)

Use X —.181

(=)

b ¢ M
—.056 105 268*
(+)
—.304* A485* 132
(+)

Starred residuals are more than three standard deviations from zero.

used to see if this normality assumption
effects our conclusion concerning u,,. Using
the Gaussian assumption, the tail probability
is P = PP, =0lb) =(— 916)2 =
.042. When we use equation 4.8 we obtained
P = .0412, which agrees closely with the
Gaussian percentile.

Some frequentist models include the
three-factor softness x use x preference
interaction, u;y;. In consideration of this
finding, we also performed the hierarchical
Bayes estimation, equating the full model
with the second-order interaction model.
This alteration had little effect. The same
terms were identified as important, and u;
was not identified as significant by either the
95% or 90% posterior probability region
criteria. The largest HPD ellipsoid for u,,,
that failed to contain 0 had probability .855.

The pattern of the parametric residuals is
displayed in Table 4. Four residuals are
especially important because their means
are at least three standard deviations away
from 0.

These residuals reflect the difference
between the full and reduced models that is
largely summarized by the important terms,
temperature and use x preference. The low
temperature residuals are the only positive
residuals reflecting the comparatively small
number of low temperature observations.
Within the strata defined by temperature,

the sign of the important residuals form a
pattern consistent with the use x preference
interaction: those who have previously used

"brand M are more apt to prefer brand M.

We summarize the use x preference
interaction, u,;, by focusing on the ratio
of the odds of preferring brand X at the
two levels of use. This margin-free associa-
tion is peculiar to the loglinear model, and is
unaffected by the relative sizes of the vari-
able levels. The inequity in the number of
low temperature versus high temperature
observations, for instance, has no effect on
the odds ratio, or the loglinear model par-
ameter u,;. We observe that yy = 4f; is the
average of the logarithms of our summariz-
ing odds ratios, or cross-product ratios,
evaluated on the six strata defined by levels
of water softness x temperature. Further-
more, since none of the higher-order relative
terms of u;, were identified as important, the
odds ratios may be assumed constant over
the strata, and hence,  also represents the
common log odds ratio. An estimate of \ is
4f; = —.516. Exponentiating  provides
the common odds ratio. Using the delta
method (4.11), followed by one-dimensional
integration with respect to T, we may
approximate the moments of this parameter.
The mean of exp () is .596. Previous expo-
sure to brand M is, therefore, associated with
a 60% reduction in the odds of preferring
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brand X over brand M. Ninety-five percent
HPD intervals for the common log odds
ratio and the typical odds ratio are (—.759.
—.273) and (.448, .737), respectively.

7. Conclusions, Enhancements, and
Generalizations

We have presented a general Bayesian
analysis of higher-dimensional contingency
tables. The analysis is appropriate when cell
sizes are sufficiently large to warrant the
assumption of normally distributed par-
ameter maximum likelihood estimates.
Inferences are based on regions and quad-
ratic forms that are reminiscent of those
regions and Wald statistics used in classical
analyses. These familiar procedures may
appeal to the researcher who is concerned
about the inflated assessment of parameter
importance that results when classical signi-
ficance tests are used to fit a model (Berger
and Selke 1987).

Although the regions may be familiar to
many researchers, one enhancement is to
use Bayes factors, or lower bounds for
Bayes factors, to evaluate loglinear model
terms. Another improvement in the pre-
cision of our inferences would result from a
more careful elicitation of our prior distri-
bution. The incorporation of a prior covari-
ance matrix results in striking gains in the
precision of estimating the multivariate
normal mean (Berger 1980a, 1982). Eliciting
a prior covariance matrix, then, should
produce similar gains in the precision of
estimating loglinear model parameters.

Our analysis easily generalizes to complex
sample survey data. Bayesian or classical
methods may first be used to obtain the
parameters of the approximately normal
parameter estimates. Then, apart from the
slight alteration in the likelihood assump-
tion, our Bayesian analysis remains the
same.
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A. Appendix

Here we provide more detail on the Laplace

‘method of approximation. The common

posterior moments that need approximating
are %, p;, and R',.j. For the proper choice of
conditional posterior expectation g(t) =
E(G, 1)lb;, 1)), each moment may be
approximated by expression (5.6): E(G) =
o*/c exp {L*(1*) — L(1)}. First and second
derivatives of L and L* are incorporated
into the Newton-Raphson algorithm that
maximizes these altered likelihoods. In
Section 5.3, the diagonalization (5.9) was
used to develop the derivatives of L. To
obtain the derivatives of L*(t) = L(t) +
log g(1), it is sufficient to find the first and
second derivatives of g. With these deriva-
tives, L* and L*” are
L¥(t) = L'(1) + glt)
g(1)

and (A.1)

g(t)g"(v) — g’(r)z‘

L*(t) = L'(v) + e

A.l1. The relative precision
hyperparameter T

Letting g(t) = 1, the derivatives of L*
are L*¥(t) = L'(t) + 1/t and L*(x) =
L'(t) — 1/

A.2. The posterior mean f

To approximate ff;, we assign g(t) equal to
the ith component of the conditional pos-
terior mean B,. To find the derivatives, we
first express B, in terms of o as P(a) =
H,(a)z() where H,(o) = [V, + (1]
ac) I = PA,PT, and where z(a) =
V,"'b, + (1/ac)p. The chain rule may then
be applied by initially differentiating with
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respect to o

d

o dao. A
;EIL = B(a)E (A.2)

d L, do\? . dla
b= re(g) +re L

where doj/dt = — 1/t and d’o/dt® = 2/7°.
The vector of derivatives of f(a) with respect
to o is given by

B = Hy(wz(o) + Hy(0)z' ()

and (A.3)
(@) = Hi()z(e) + 2H;(o)z' (o)
+ Hy(2)z"()
where z'(2) = —(1/e’c)p and z'(a) =

2/’ c)p and where the matrices of deriva-
tives with respect to o are expressed in terms
of ¥, and H (o) = (V, + acl)™!

Hy(w) = cViH, (o)
and (A.4)
Hy(@) = =20V H (0’

The diagonalization (5.9) may be used to
verify these last expressions. For instance,
H;(«) = (d|/do)PA,P" = P Diag((d/dou),,
(d|do)hy, - - - , (d]do)),,)PT, where (d]do)),; =
(dldw)ocd; [(oac + d;)) = —cd?(1](oc +
d)?). Hence H;(®) = —cPD*AIP" =
Vi Hy ().

A.3. The posterior covariance R

The ijth element fiU equals E(B,B;|b,) —
BB, Choosing g(r) = R,; + B.B;, permits
us to approximate the first term of 1?,,,
E (B;B;| b/). The derivatives of g are the sums
of the derivatives of R, = H,(t) and of
B..B,. Applying the chain rules once again

do.
Hy(v) = Hi(o) o
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and (A.5)

d*a

4 4 da 2 7
H;(t) = H;(w) ;e + Hy(o) e
where H;(o) and Hj(a) are given in (A.4).
To obtain the derivatives of BB, the
product rule is applied

d

d d
E BriBtj = Bri E B‘L’j + ﬁtj E B‘ti

and

d? a’ d d
P ﬁtiBIj = Bti Z_EE Brj + 2 a Bti a ﬁti

(A.6)

2

+ B‘L’j :1? ﬁti'

Although the matrix P of eigenvectors is
used to derive these derivatives, it is not
required to evaluate them.

A.4. Leonard’s preliminary test of
significance

Leonard (1977) proposed a sensible alterna-
tive to the significance test for examining the
null hypothesis that the cell probabilities of
a contingency table are equal to a set of
hypothesized values. The argument for this
procedure, which is based on minimizing
expected squared error loss, applies to
hypotheses about the loglinear model par-
ameters if the prior covariance structure is
assumed to equal ¥}, the covariance matrix
associated with the likelihood. Suppose that
we must decide whether to accept or reject
the null hypothesis H, that the log-
linear parameters B,, B,, ..., B, equal the
hypothesized values p;, p,, ...., p, that
form the components of our prior mean.
Typically this procedure is used in classical
statistics to make the simplified choice
between estimators: choosing either the
hypothesized values p, or the unrestricted
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MLE b,. That is, we estimate B by f, which
has ith coordinate

B. = b, for b, e C (A7)
and
B = u, forb, ¢C

where C is the critical region. The quadratic
loss

L@, p = Zl @ - B’ (A.8)

-

gives equal importance to the type I and
type II errors. We find the optimal critical
region C by maximizing the posterior expec-
tation of the loss. When the prior covariance
structure is assigned equal to V,, the
posterior mean conditional on t given in
equation (3.3) reduces to

B. = (1 — )b, +

The posterior expected loss given T is

(A9)

1|M~

(B EBb,, 1)’ +
(A.10)
When b, ¢ C and B, = p,, this reduces to

(1—-1% b, —
j=2

(A11)

When b, € Cand B, = b,;, (A.10) reduces to

1:2 ZI (buj _uj)z

J

+ i var (B;1b,, 7).
j=1
(A.12)

After taking the expectation with respect to
the posterior density of 1, we find that the
critical region C consists of the values of b,
for which the expectation of (A.11) is less
than the expectation of (A.12). Hence,
b, € C when

E(tb,) > 1)2. (A.13)

E’: var (B;1b,, 7).
i=1

W+ Yvar (b, v
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