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A Bayesian, Species-Sampling-Inspired Approach to the
Uniques Problem in Microdata Disclosure Risk Assessment

Stephen M. Samuels1

1. Introduction

Recognizing that zero-risk requirements for disclosure of statistical records are, in practice,

impossibly high standards, the Panel on Con®dentiality and Accessibility in Government

Statistics recommended, in Duncan, Jabine, and de Wolf (1993), release of information

for legitimate statistical purposes that entail a reasonably low risk of disclosure of indi-

vidually identi®able data. This naturally raises the question of how to measure disclosure

risk. The ®rst item in the Research Agenda of U.S. Of®ce of Management and Budget's

(OMB) Statistical Policy Working Paper 22 (Kirkendall et al. 1994) is the following:

The de®nition and the assessment of disclosure risk in microdata need to be put on a

sound statistical footing. Probability theory provides an intuitively appealing frame-

work for de®ning disclosure in microdata in which we relate disclosure to the probabil-

ity of reidenti®cation. Without a measure of disclosure risk, decisions concerning the

disclosure limitation of microdata ®les must be based on precedents and judgment calls.

Research into probability-based de®nitions of disclosure in microdata should have high

priority.

The report continues: ``One part of this research involves developing a method of

estimating the per cent of records on a sample microdata ®le that represent unique persons

or establishments in the population.'' This is a version of what is sometimes called the

uniques problem.

One important measure of disclosure risk for microdata is the proportion of sample uniques
which are also population uniques. The distribution of this random variable depends on the
population only through its partition structure: the distribution of the numbers of cells of
each size. Partition distributions have been extensively studied in population genetics. Por-
tions of that research can be adapted to provide us with the promise of a mathematical frame-
work based on plausible prior distributions with easy to interpret parameters, and a modi®ed
Polya urn sampling model from which risk assessment is easily obtained.
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The canonical form of the uniques problem (Chen and Keller-McNulty 1996, de Waal

and Willenborg 1996, Fienberg and Makov 1996, Skinner et al. 1994 and others) is this:

there is a microdata ®le containing, say, N records, each of which refers to a person or

establishment, and consists of a list of the values, for that person or establishment, for

each of several categorical variables. When the records are cross-classi®ed according to

a subset of these variables, the database is thereby partitioned into, say, K non-empty cells,

aj of which are of size j., for j � 1; 2; . . .. Those of size one are the population uniques. A

random sample of size n is to be selected, and, presumably, made public. Any population

uniques which are included in the sample ± where they are, of course, sample uniques ±

may constitute an unacceptable disclosure risk, unless they are swamped by relatively

large numbers of sample uniques which are not population uniques.

One important measure of disclosure risk for such microdata is the random variable, p:

the proportion of sample uniques which are also population uniques. If that proportion is

low, then an intruder, attempting to make an identi®cation on the basis of a sample unique,

is very likely to be making a false identi®cation. (This, in itself, is a kind of disclosure risk

that must be addressed. See, e.g., Lambert 1993.) If we ignore the speci®c contents of sam-

ple records, then the distribution of this random variable depends on the population distri-

bution only through its so-called partition structure, a term borrowed from the population

genetics literature, where it has been widely studied. The partition structure is the distribu-

tion of the numbers of cells of each size.

For example, Chen and Keller-McNulty (1996) sample from an 87,95Ç9-element ``com-

plete census from a single geographic region, taken during the 1980 decennial census''

(Zayatz 1991). In one cross-classi®cation of this database according to ®ve variables, there

are 222 cells (Zayatz calls them ``equivalence classes'') of size one (the population

uniques), 111 of size two, 73 of size three, etc. The largest cell-size is 3,649, and there

is one such cell. In all, there are 1,024 non-empty cells. Chen and Keller-McNulty repeat-

edly sample from this cross-classi®ed database, and compute, for each sample, the number

of sample uniques and the number of these which are also population uniques. To perform

this repeated sampling, they need only the partition structure, i.e., the vector

a � �a1; a2; . . . ; an� �1�

where ai is the number of cells of size i,
P

ai � K, where K is the number of non-empty

cells and
P

iai � N, where N is the population size. So, in the above example, a1 � 222,

a3649 � 1,
P

ai � 1;024 and
P

iai � 87;959.

The above observation should not, however, raise false hopes. The mathematical pro-

blem of deriving, from a partition structure, the corresponding distribution of the propor-

tion of sample uniques which are population uniques, is a formidable one, and attempting

to solve it would almost surely be futile, because, undoubtedly, any expression which

could be obtained would be quite intractable. (A simple, arti®cial ± but highly illuminating

± example of the problem is presented in Section 6.) A better approach is the Bayesian

one, in which we treat the sample as a constant and the population as random ± perhaps

as itself a random sample from some superpopulation, which plays the role of a prior dis-

tribution. A favorite choice, in the literature on the uniques problem, has been the Poisson-

Gamma model, by now largely discredited because of the poor performance of estimates

derived from it; see, e.g., Skinner et al. (1994) or Keller and Bethlehem (1992). The model
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I propose is a modi®cation of the Poisson-Dirichlet model. (The name originates in King-

man (1975), though the model was studied earlier.) It comes from population genetics and

species sampling, where it has been shown to play a central role in the study of partition

structures. While researching this article, I was unaware that such ideas had ever been used

in connection with the uniques problem for microdata; however, I subsequently learned of

two other articles which use the Dirichlet-multinomial model to study other formulations

of the uniques problem (see Omori 1998 and Takemura 1998).

To gain an understanding of genetic diversity ± particularly in the so-called neutral

model of evolution in the absence of selection (Kimura 1977) ± population geneticists,

and their allies in mathematics and statistics, have extensively studied the partition struc-

ture of the various allelic states of a gene, or of a number of genes. The partition structure

of alleles is no different from that of cross-classi®ed microdata ®les. Hence much of these

researchers' work is immediately applicable to our problem. This includes the celebrated

Ewens's sampling formula, originally presented in Ewens (1972), and subsequently shown

to arise in numerous contexts. Also included is the Poisson-Dirichlet model ± from which

the Ewens's sampling formula arises naturally ± and a two-parameter generalization

described in Pitman 1996. In applying this work, it is best to begin with a simple model.

2. A Simpli®ed Model

All of our models will be urn models. In this context, it is traditional, customary and con-

venient to speak, not of alleles or of cells arising from cross-classi®cation of a microdata

base, but of colored balls.

The setting is this: we have a population urn consisting of various numbers of various-

colored balls. In the Chen and Keller-McNulty example cited above, there are 87,959 balls

of 1,024 distinct colors, of which 222 colors are each represented by a single ball, while

one color appears on 3,649 balls. In general, the composition of the population urn is

unknown, but has a prior distribution which will be expressed by saying that the popula-

tion is itself a random sample from some superpopulation of colored balls. We also have a

sample urn, whose contents are, indeed, a random sample from the population (and, hence,

a random subsample from the superpopulation). The way we make inferences about the

population from the sample is to imagine sampling the remainder of the population, one

by one, and invoking our prior distribution.

For example, suppose our prior distribution is completely neutral, i.e., is such that,

throughout the process of sampling the remainder of the population, the distribution of

the color of the next ball to be sampled is always simply the so-called size-biased

distribution:

The probability that the next ball to be sampled will be, say, Red, equals the proportion

of Red balls presently in the sample.

Notice that if we do what is commonly called Polya sampling, namely draw a ball from the

urn and replace it, together with another ball of the same color, the distribution of the new

ball's color is exactly this size-biased distribution. Following custom, we call our sample

urn, together with the size-biased sampling, a Polya urn.

Let the sample and population sizes be n and N, respectively. The uniques problem is

then this: given a Polya urn whose initial state is our sample urn, and given N ÿ n draws,
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what proportion of the colors which are unique in the initial urn state will remain unique at

the ®nal state? Conditioned on the initial state (so the denominator in the desired propor-

tion is a constant), the numerator is the sum of the indicator functions of events of the form

``no new balls of this color are added.'' Each such event has probability �n ÿ 1�=�N ÿ 1�.

So the mean of the proportion is just �u�n ÿ 1�=�N ÿ 1��=u, where u is the number of

uniques in the sample. The u's cancel, leaving, essentially, just the ratio of the sample

size to the population size.

[The variance is also easy to compute ± as a sum of variances of indicators plus

a sum of covariances ± and the result is also quite simple. It is approximately

�n=N�f1 ÿ �n=N��1 ÿ n=N��u=n�g which has negligible dependence on u when n=N is

small.]

Is there such a prior distribution? From, e.g., Blackwell and MacQueen 1973 or Hoppe

1986 and Hoppe 1987, it would need to be such that the posterior distribution, given the

sample, is the Dirichlet, D�a1; . . . ;ak� distribution, where k is the number of colors (cells)

in the sample, and the ai's are the numbers of balls of each color in the sample. Such a

prior can almost be achieved by using D�e; . . . ; e� for very small e. The superpopulation

is then an in®nite population in which the proportions of each color are random variables

whose joint distribution is this Dirichlet prior.

So the model exists. But it is far from adequate, for at least two reasons:

± Empirically, we know that the proportion of sample uniques which are population

uniques is often substantially larger than the ratio of sample size to population size.

± Logically, the model is too simple-minded because it makes no allowance for the intro-

duction of new colors. It assumes that the sample already contains all the colors present

in the entire population; hence, in particular, all population uniques are sample uniques.

3. The Poisson-Dirichlet Model

Here is a way of making the urn model more realistic: start with v black balls. Each time a

ball is drawn out, if it is not black do as before: replace it and add another of the same

color. If it is black, replace it and add a ball of a new color, not yet in the urn. This

obviously overcomes the second weakness of the ®rst model, in that new colors will be

introduced. And the expected proportion of sample uniques which are population uniques

is now increased (by similar calculations) to �n � v ÿ 1�=�N � v ÿ 1�, which is at least a

step in the right direction.

The parameter, v, will, of course, need to be speci®ed.

This model has been much studied in population genetics. In particular, Hoppe (1984)

showed that the distribution of the partition structure, say Pn, of the n non-black balls,

after n draws, is given by the Ewens's (1972) sampling formula:

P�Pn � a� �
n!

�v�n

Yn

i�1

vai

iai ai!
�2�

where �v�n � v�v � 1� ´ ´ ´ �v � n ÿ 1� and a � �a1; a2; . . . ; an� is as in (1).

Furthermore, if, starting with just the v black balls, we sample in®nitely many times, and

look at the proportions rather than the numbers of each color in the urn, and, at each stage,

arrange the proportions in decreasing order, then there is a limiting distribution, called the
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Poisson-Dirichlet distribution with parameter v. It works this way. An in®nite superpopu-

lation is constructed, color by color. The proportion of the population with the ®rst color

has a beta distribution, with parameters 1 and v. Then, the proportion of the remainder of

the population with the second color also has a beta �1; v� distribution, independent of the

®rst. And so on: at each stage, the proportion of the remainder of the population with the

next color is another I.I.D. beta �1; v� random variable. It has been shown that if we now

look backward at the sequence of urn drawings which created the superpopulation, then,

conditioned on the values of all these in®nitely many proportions, the colors of those suc-

cessive balls which were added to the urn are I.I.D. from the superpopulation. See e.g.,

Hoppe 1987 or Kingman 1980. This is a very important result, the net effect of which

is that a Poisson-Dirichlet prior distribution/superpopulation implies the validity of this

Polya urn model.

What should v be in this model? Clearly v is related to the number of colors (classes) in

the population. If the population size is N, then the expected number of distinct colors in

the population is

1 �
v

v � 1
�

v

v � 2
� . . . �

v

v � N ÿ 1
< v ln 1 �

N

v

� �
�3�

Hence, prior knowledge of the number of cells could be used to put a prior distribution on

v. Alternatively, one may estimate v from the sample alone. From the Ewens's sampling

formula (2), the maximum likelihood estimate of v is easily seen to be the solution of

k � 1 �
v

v � 1
�

v

v � 2
� . . . �

v

v � n ÿ 1
< v ln 1 �

n

v

� �
�4�

where k and n are, respectively, the number of distinct colors in the sample and the sample

size.

My experience trying this model with the Chen and Keller-McNulty data has persuaded

me that ± at least with a constant v ± it is not suf®ciently ¯exible. The problem is that the

MLE of v is too small, especially for relatively large sampling fractions. Rather than try

mixtures (i.e., put a prior distribution on v), I have opted for another parameter, because

I believe this approach is easier to understand and work with. The two-parameter model

described in Pitman 1996 is tempting because it includes a generalization of the Ewens

formula, which allows the user to compute maximum likelihood estimates. But a closer

examination of this model shows that it, in effect, imposes an even smaller estimate of

v. This is con®rmed by the maximum likelihood estimates for my datasets. The model I

use in the next section provides a much better ®t to the data, but it sacri®ces mathematical

elegance (speci®cally, it lacks exchangeability which makes it much more intractable,

mathematically).

4. An ad hoc Two-Parameter Model

In addition to the v black balls, we start with M colored balls. These may be of various

colors (let us call them primary colors) and are intended to skew the partition distribution

by giving these colors a head start, thereby insuring that the population will have some

very large cells. At each stage, if one of these M balls is drawn, it will, of course, be

replaced, along with another of the same color. However these M balls ± like the v black
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balls ± do not count as part of the population or the sample. Since we are concentrating

on sample and population uniques, and we presume that each of the colors among these

M balls will be far from unique, it is irrelevant just how the M are partitioned among

colors.

Now the expected proportion, p, of sample uniques which are population uniques gets

bumped up still further, to

E�p� � �n � M � v ÿ 1�=�N � M � v ÿ 1� �5�

and the expected number of new colors in the population becomes

v

v � M
�

v

v � M � 1
� . . . �

v

v � M � N ÿ 1
< v ln 1 �

N

M � v

� �
�6�

A task for future research is to derive generalized Ewens and Poisson-Dirichlet distri-

butions for this model.

What are reasonable guesses for M and v? The quantity

L �
M

M � v
�7�

is the expected proportion of primary-colored balls in both sample and population. So it

should be roughly the proportion of records which are in ``large'' cells. But how large

is large? To begin with, we should ask ourselves how well (5) can possibly work as an

estimator of p if we are granted knowledge of how many population uniques are in the

given samples and can choose M � v opportunistically. If it fails to perform well even

in this situation, there is no hope for it in the more realistic setting where we have only

sample information (plus possible prior information for a Bayesian analysis). For the

Chen and Keller-McNulty cross-classi®ed data, cited in Section 1 of this article, I have

opportunistically chosen L to be about .75. Substituting (7) into the right side of (6),

and setting it equal to K, the number of cells in the population, gives

v ln 1 �
N�1 ÿ L�

v

� �
� K �8�

Substituting, L � :75, rounding off N and K to be, respectively, N � 88; 000 and

K � 1; 000, and solving for v, we get, roughly, v � 220, and hence

M � v � v=�1 ÿ L� � 880 �9�

For each of the sample sizes, n, equal to 1%, 5%, 10%, and 50% of N, ten random samples

have been generated, and the numbers of sample and population uniques have been com-

puted. This allows us to compare the actual proportions of sample uniques which are popu-

lation uniques with the predicted values from (5). Here are the results:
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Table 1. Results for example 1

n=N Predicted Observed

.01 .020 .020

.05 .059 .074

.10 .109 .117

.50 .505 .514



(The observed values are the ratios of the total numbers of population uniques to sample

uniques in all ten samples.) These very good results are not too sensitive to the choice of L.

(Virtually the same results are obtained for L � :70 ± in which case v is about 210 and

M � v � 700 ± and for L � :775 ± in which case v is about 225 and M � v � 1; 000.

Indeed, results do not vary much over the whole range: M � v � 900 6 300.)

A slightly less rosy picture emerges from a second cross-classi®ed dataset, from the

same 89,000 record population in Chen and Keller-McNulty 1996. This one uses seven

variables and has about 6,500 non-empty cells, of which about 3,100 are uniques. The lar-

gest cell-size is 2,378. I have again opportunistically chosen L to be .75. Using K � 6;500

in (8), gives v of about 3,200 and, from (9), M � v � 12;800. Again ten random samples

have been generated at each of the same sample sizes as before, and we combine sample

and population uniques from all ten samples to get our observed values, and use (5) to get

our predicted values. Here are the results:

5. Estimation Using Sample Partition Structure

The good news in the previous section inspires us to go on to the more realistic case where

we have only sample information. Suppose we have just one sample from a microdata

population. Here is an ad hoc ®ve-step procedure:

Step 1. Compute Ãv1, the MLE from Model 2 (4); i.e., solve for v in

v ln 1 �
n

v

� �
� k �10�

Step 2. Compute the cell-size threshold value, en � 1 � n=Ãv1

Step 3. Let 1 ÿ , be the proportion of sample records in cells of size #en

Step 4. Recompute Ãv as the solution to

v ln 1 �
n�1 ÿ ,�

v

� �
� k �11�

Step 5. Using Ãv and 1 ÿ , in (9) and (5), estimate the proportion of sample uniques which

are also population uniques by

Ãp �

n �
Ãv

�1 ÿ ,�

N �
Ãv

�1 ÿ ,�

�12�
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Table 2. Results for example 2

n=N Predicted Observed

.01 .135 .100

.05 .171 .188

.10 .214 .273

.50 .563 .675



Here are some comments on the above procedure:

1. The idea behind en, in Step 2, is this. In n draws from the Model 2 urn, the ®rst color

entered has, of course, the largest expected size of any color. That expected value is

far too intractable to derive analytically, but it can be fairly well approximated by

1 � n=v. We arbitrarily declare that any cell size larger than this approximate

mean is ``Large.'' (Abstractly it would seem as if our threshold is on the small

side, but when applied to the datasets, it tends to be if anything too large.)

2. In order to implement Step 3, I needed to generate my own samples because the data

provided by Chen and Keller-McNulty does not include the sample partition struc-

ture need for Step 3. (Also, Laura Zayatz provided me with four additional popula-

tion partition structures.) I used S-Plus software to generate and analyze numerous

samples.

3. If we had a generalized Ewens sampling formula for Model 3, then we could replace

Steps 1 to 4 by the maximum likelihood estimate. This is another subject for future

research. A better approach would be to modify Model 3 in a way which retains its

ease of use while increasing its mathematical tractability.

4. Notice that the number of sample uniques is not explicitly used at all in this proce-

dure. (It enters implicitly when en < 2, in which case 1 ÿ , is the proportion of sam-

ple uniques in the sample.) This is puzzling because obviously the number of

population uniques in the sample is not independent of the total number of sample

uniques. And yet, in the samples I have generated, the lack of dependence is quite

striking (see Table 3). Undoubtedly there is a good theorem lurking here, just waiting

for the right formulation.

5. If we have several samples, all of the same sample size, from a microdata population,

we can combine the output to get a single Ãv=�1 ÿ ,� in a natural way. If we have sam-

ples at various sample sizes (e.g., for n=N � :01, .05, .10, and .50), then how do we

deal with the various Ãv=�1 ÿ ,�'s? One approach is simply to use the one from the

largest sample size (which, in practice, seems also to be the largest value) because

it is based on the most data. Of course, from (12), the larger Ãv=�1 ÿ ,� is, the larger

is Ãp.
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Table 3. Summary of output for example 1

n � 880 n � 4;400 n � 8;800 n � 44;000
up us k up us k up us k up us k

5 104 205 11 157 413 20 175 541 105 212 866
0 94 197 12 171 418 25 198 556 118 213 881
5 110 206 11 169 426 19 182 537 115 212 878
2 99 201 8 161 413 15 173 518 124 231 884
1 88 196 9 166 422 15 179 540 115 234 878
1 111 205 10 150 405 26 193 544 106 221 870
3 112 214 8 149 401 19 175 529 100 214 865
3 110 205 10 171 424 22 193 551 108 215 863
4 107 208 8 158 418 21 190 537 113 207 867
1 102 200 11 159 411 28 200 559 106 208 872

25 1,037 2,037 98 1,611 4,151 210 1,858 5,412 1,110 2,167 8,724



I have applied the ®ve-step procedure to samples I generated from Chen and Keller-

McNulty's Example 1 microdata population. As they did, I generated ten samples at

each of the sample sizes n, equal to 1%, 5%, 10%, and 50% of N. Table 3 is a summary

of the output (n is the sample size, up, us and k are, respectively, the numbers of population

uniques, sample uniques and cells in the sample):

For Step 1, I used the average of the ten k's for each sample size. For Step 3, I used only

the ®rst of the ten samples. Table 4 shows what I obtained. The last column gives Åp, the

overall proportion of sample uniques which are population uniques in the ten samples

being analyzed.

If I now follow my own advice about using the last value of Ãv=�1 ÿ ,�, namely 550, at all

four sample sizes, then the ®rst three predicted values increase to .016, .056, and .106,

respectively. (Recall that I used 880 when I could act opportunistically.)

The case n � 880 (i.e., the 1% sample) deserves special mention because the relative

underestimate of Åp by Ãp is substantial. With 220 population uniques among 88,000 records,

the number of population uniques in a sample is nearly Poisson with parameter

l � 880�220=88; 000� � 2:2. So the mean and standard deviation are 2.2 and�������
2:2

p
� 1:5, respectively. Since there are roughly 100 sample uniques in each sample,

the ratio, up =us, varies quite a bit; e.g., �2:2 ÿ 1:5�=100 � :007, while

�2:2 � 1:5�=100 � :037. So, obviously, a practical method needs much more than just

the point estimates of our ad hoc procedure.

I have also analyzed the other population partition structures with which I was provided.

They all have substantially higher proportions of population uniques, which makes them

less interesting because, even with 1% sampling, up =us, as well as our estimate of it, is so

large that disclosure risk is unacceptably high. For example, for a population with 50,000

records, of which 8,160 are uniques, ten samples of size n � 500 looked as follows:

Again using the average of the k's (which are remarkably stable), we get Ãv1 � 2; 700,

en < 2. If we accordingly call all but the sample uniques ``large'', we have, in the ®rst sam-

ple, 1 ÿ , � :854. But solving for Ãv=�1 ÿ ,� is equivalent to solving

x ln 1 �
n

x

� �
�

k

1 ÿ ,

381Samuels: A Bayesian Approach to the Uniques Problem in Microdata Disclosure Risk Assessment

Table 4. Five-step procedure: Results for example 1

Predicted Observed
n Ãv1 en �1 ÿ ,� Ãv=�1 ÿ ,� Ãp Åp

880 85 11 .49 300 .013 .024
4,400 110 41 .42 400 .054 .061
8,800 125 70 .37 500 .105 .113

44,000 155 285 .36 550 .553 .512

Table 5. Summary of output for another example

up 89 88 81 67 86 84 71 81 86 66 799
us 427 431 429 425 429 426 423 425 428 419 4,262
k 457 459 459 459 461 455 455 461 460 455 4,581

(same notation as in Table 3)



But with k � 457 and 1 ÿ , � :854, there is no solution because the ratio on the right side

is larger than 500, while the left side is an increasing function of x with limit n � 500 as

x " ¥. So our ad hoc procedure forces us to say Ãv=�1 ÿ ,� � ¥, which is equivalent to say-

ing Ãp � 1. The result is that we are acting very conservatively, since the true value (overall

for the ten samples) is 799=4; 262 � :19.

6. A Cautionary Note

If the preceding result seems unsatisfactory, it would be well to consider the challenges

presented by the data set. The sample contains 500 records in 457 cells, of which only

30 have more than one record. Indeed, there is one cell of size 5, three of size 4, four

of size 3 and 22 of size 2. With such partition structure, I claim that no estimate, based

only on the data, can have much predictive value (in which case one needs to be very con-

servative). Here is an example to illustrate the point.

Consider two populations, both consisting of N records. Population 1 has all uniques,

while Population 2 has all cells of size 2, hence no uniques. Now take random samples

of size n from each population. The Population 1 sample will, of course, consist entirely

of sample uniques. In Population 2, each cell has probability nearly �n=N�
2 of having both

of its records in the sample. There are N=2 cells in the population, so the expected number

of sample cells with two records is N�n=N�
2=2, which is �n=2��n=N�, and the expected num-

ber of sample records which are not sample uniques is twice that, or �n=N�n. Thus, if

n=N � :01, we expect 99% of all sample records from Population 2 to be sample uniques,

vs l00% from Population 1. With samples from the two populations looking so similar,

how can we possibly hope to have an estimate, Ãp, close to one for the ®rst sample, yet close

to zero, for the second one? To be safe, we must opt for the former at the expense of the

latter.

7. Future Work

The work described in this article is obviously just a beginning. It explores the possibilities

of adapting ideas and models borrowed from the mathematical theory of population

genetics to provide disclosure risk assessment for microdata. I think it clearly makes a

good case for further exploration. In its present state, the methodology described here

does not take into account the fact that partition structure results from cross-classi®cation.

Nor does it ± as has been pointed out ± yet address itself adequately to the variability

inherent in the sampling process. As we learn more about the processes that produce parti-

tion structures, we should be able to exploit the mathematical ideas of majorization and

convexity to partially order these structures in terms of inherent disclosure risk.
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