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A Cdmparison of Two Approaches to
Classification of Air Pollution Data
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Abstract: Weather and emissions are the
primary determinants of air pollution. The
classification of days into categories in terms
of their meteorological potential for pro-
ducing harmful air pollution aids scientists
in understanding air pollution and help
regulators in controlling it. The Texas Air
Control Board (TACB), the state agency
whose responsibilities include monitoring
and controlling air pollutants in the State of
Texas, recently classified a selected set of
days into nine well-defined categories (WPC)
for this purpose. Guided by a written proto-
col and the exercise of professional judgment,
meteorologists assigned each day to a WPC
category on the basis of their examination of
the weather chart for the day and indepen-
dently of the air pollution level. This is a
laborious, time-consuming task. The cate-
gories are then used in understanding the
movement of air and relating the weather
pattern classification to formation of ele-
vated levels of ground-level ozone, a signifi-
cant air pollutant.

1. Introduction

Air pollution is an important problem afflict-
ing modern urban civilization. In many
cities, ambient concentrations of air pollu-
tants regularly exceed levels thought to
threaten human health. The economic costs
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The aim of this paper is two-fold: (1) to
imitate the labor-intensive judgmental WPC
as nearly as possible by a purely automatic
statistical classification based on discrimi-
nant analysis, and (2) to determine the
extent to which either WPC or the statistical
classification (called STATCLASS) success-
fully discriminates high- from low-ozone-
potential days. It is found that STATCLASS
was able to assign about 60-70% of the days
to the same category assigned by WPC - an
agreement rate comparable to that of the
TACB in cross-validation checks made on
WPC. We also found that both schemes
were reasonably successful in discriminating
high-ozone from low-ozone days but that
STATCLASS was more successful than was
WPC.

Key words: Discriminant analysis; multiple
regression,; stepwise discrimination; stepwise
regression; selection of variables; weather
pattern classification; air pollution data.

of controlling air pollution are a sizable
burden for many governmental units.
Ground-level ozone is a major air pollu-
tant. A bluish, irritating gas of pungent
odour, ozone is beneficial in the strato-
sphere, where it neutralizes ultraviolet
radiation, but is maleficent at the earth’s
surface, where it reacts with plant tissue,
building materials, lung tissue, etc., and
degrades them. The literature on air pollu-
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tion and its effects, and ozone in particular,
is extensive. A few recent articles are Bedi,
Horvath, and Drechsler-Parks (1988) on the
pulmonary effect of ozone and Bambawale
(1986) on crop injury attributable to ozone.

Ozone is a secondary pollutant. It is not
emitted directly into the atmosphere but
arises as a by-product of complex chemical
reactions involving precursor pollutants
(such as nitrogen oxides and volatile organic
compounds) in the presence of sunlight.
Therefore, weather can markedly aggravate
or mitigate ozone levels. Among the sub-
stantial literature documenting the relation-
ship between various weather variables and
ozone are Ludwig and Shelar (1978), Kelly,
Ferman, and Wolff (1986), Vukovich and
Fishman (1986), and Altshuller (1988).
Hot sunny days with stagnant air-and low
inversion layers promote the formation of
ground-level ozone. Storms and precipita-
tion clean the air of ozone.

In order to protect human health, the
U.S. Environmental Protection Agency
(EPA) has set National Ambient Air Quality
Standards (NAAQS) for major pollutants.
The NAAQS for ozone is that an area shall
not experience an ambient concentration
greater than 12 parts per hundred million at
any monitoring site more than three days in
any three-year period. About 90 urban areas
in the U.S. are in violation of this standard.
In Texas, there are four areas in violation.
States with areas in violation of NAAQS are
required to submit State Implementation
Plans (SIPs) showing by EPA-approved
modelling methodology how they will bring
their areas of violation into compliance. The
Texas Air Control Board (TACB), the state
agency charged with developing the required
SIPs for Texas, expects to spend two years,
1990-1991, in the modelling endeavor and
then begin to implement SIP controls in 1992.
Other states will have parallel endeavors.
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The relationship between weather patterns
and ozone levels plays a major role in SIP
modelling strategies for reducing ozone. In
the two major models (Empirical Kinetic
Modelling Approach and the SAI Urban
Airshed Model) sanctioned by the U.S. EPA
for use in achieving NAAQS, required reduc-
tions are tuned to the historical meteoro-
logical conditions and emissions inventories
that prevailed on specific typical days when
exceedances of thresholds occurred. Weather
is an externality in these models. Reductions
in ozone can be effected only indirectly by
reducing emission levels of precursor pollu-
tants. Thus, if weather patterns become more
favorable to ozone formation, there may be
no change in ozone levels in spite of success-
ful controls on anthropogenic sources of
precursor pollutants. Therefore, erroneous
evaluations of the effectiveness of SIP ozone
control policies may result unless ozone-
favorable weather patterns can be identified
and incorporated into the data analysis.
Evidence of declines have been found, for
example, in weather-adjusted ozone in
southern California (Davidson (1986)). EPA
procedures currently do not make provision
for weather considerations in evaluating
compliance.

Several attempts have been made to adjust
air pollution measurements for weather.
Most of these attempts do not use advanced
statistical methodology. Frequencies and
bar charts are often used to discretize weather
classes. Heidorn and Yap (1986) examined
summer versus winter ozone within similar
weather events. In a subsequent paper, Yap,
Ning, and Dong (1988) analyzed ozone
episodes under various weather classes.
Pollack (1986) presented an index based on
temperature, wind speed, and cloud cover to
gauge high ozone potential. A few studies
have included precursor pollutants. Hough
and Derwent (1987) disaggregated ozone



Narayanan and Sager: Classification of Air Pollution Data

among different chemical species of hydro-
carbons. Balentine and Carter (1987), to
which we refer later, did use advanced
methodology: principal components followed
by cluster analysis to identify patterns of
weather and precursor pollutants that were
favorable to ozone formation.

At the TACB, meteorologists have
developed a Weather Pattern Classification
(WPC) scheme (Zimmermann, Tropp, and
Barta (1987)). This labor-intensive scheme
classifies each day into one and only one of
ten different categories (nine defined cate-
gories and one unclassified or miscellaneous
group). Discussed more fully in Section 2,
the categories were defined as regularly
recurring bundles of reasonably distinguish-
able meteorological characteristics that
are thought by meteorologists to be useful
covariates in distinguishing high-ozone-
potential from low-ozone-potential days.
Only weather variables are used to classify
days in the WPC scheme - neither ozone nor
other pollutants are used, nor even known
to the classifier. For example, a day will be
classified as category 2 if there is a tropical
storm in the Houston area. This classi-
fication is made independently of ozone
measurements for the day; but storms are
known to be associated with reduced ozone.

Some of the important questions asso-
ciated with the WPC scheme are: Can the
classification be routinely applied? Does
WPC effectively discriminate days with high
ozone from days with low ozone? In other
words, can WPC serve as a basis for adjust-
ing ozone for weather? And, can WPC be
improved? The difficulty with routine appli-
cation of WPC is that, although based on
objective criteria, the classification of days
by WPC requires judgment and evaluation
by trained professionals. This is so time-
consuming and labor-intensive that only
Houston has been classified and then only
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for the high ozone season (May-October)
for certain years. If the classification pro-
cedure could be automated, considerable
time of scientific personnel could be freed,
the research programs based on WPC could
be advanced, and modelling efforts for regu-
lation could be more soundly based. But
incorporating the scientific insights of human
classifiers into an expert system is not
yet feasible, given existing constraints on
resources. As an alternative, the possibility
of classifying days by purely statistical
criteria is an attractive option. The Radian
Corporation recently performed a study
under contract to investigate the feasibility
of a statistical approach (Balentine and
Carter (1987)). This study produced an alter-
native classification scheme based on cluster
analysis after preliminary variable screening
and a principal components analysis on the
selected variable set. The purpose of their
study was to find “natural” clusters in the
data and select precursor pollutant data to
see if the resulting clusters nevertheless
retained the ability to discriminate high
from low ozone.

In our paper, the focus is somewhat dif-
ferent. We have two main objectives: (1) to
mimic the labor-intensive judgmental WPC
as nearly as possible by a purely automatic
statistical classification (called STATCLASS)
based on discriminant analysis, and (2) to
determine the extent to which either WPC
or STATCLASS successfully discriminates
high- from low-ozone-potential days. If a
computer-based automatic classification
scheme can describe weather patterns that
usefully distinguish high from low ozone
and that agree reasonably well with the
judgments of meteorologists, then the remain-
ing Houston data and other sites in Texas
and throughout the U.S. can be quickly
classified. This may make it feasible to
incorporate weather adjustments into scien-
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tific input to the administrators who will be
evaluating the progress of SIP attainment in
the coming years. Section 2 discusses WPC
in detail; Section 3 discusses STATCLASS.
In Section 4, we compare and evaluate the
two classifications. In Section 4, we also
offer some observations on improving WPC
for predictive/explanatory purposes.

To anticipate the conclusions, we found,
in brief, that STATCLASS was able to
assign about 60-70% of the days to the
same category assigned by WPC - an agree-
ment rate comparable to that of the TACB
in reassignment checks made on WPC. We

also found that both schemes were reason-,

ably successful in discriminating high-ozone
from low-ozone days but that STATCLASS
was more successful than was WPC.

1.1. Data

The data for the statistical classification
scheme (STATCLASS) of this study were
collected in Harris County, Texas. This
region includes the Houston metropolis,
second only to Los Angeles among U.S.
cities in significance for ozone pollution.
The data were collected through the com-
bined efforts of the Houston Regional
Monitoring (HRM) authority, Texas Air
Control Board, and the City of Houston.
HRM has performed continuous ambient
air quality analysis of the Harris County
area since 1981. At present the HRM pro-
gram consists of several monitoring sites in
and around Houston which take continual
meteorological and air pollution measure-
ments throughout the day. Currently,
weather, air pollution, and WPC data are
simultaneously available only for the years
1982 and 1983. Because WPCs have been
assigned only for days in the ozone season
(May-October), only those six months were
analyzed. Thus, daily data for two six-
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month periods totalling 368 days are
available. A few of those days have miss-
ing values in one or more variables; a
day was omitted from any analysis using
a variable for which the day’s value was
missing.

The variables we used are widely recog-
nized as influential covariates in analyses of
ozone (e.g., Altshuller (1988), Ludwig and
Shelar (1978), Kelly, Ferman, and Wolff
(1986), Pollack (1986), and Balentine and
Carter (1987)). In fact, we began with the
same 20 meteorological and non-ozone pollu-
tion variables as in the Balentine-Carter
study. To this list we added precipitation,
which was effective in lowering the misclassi-
fication rate. And we deleted the area aver-
age diurnal temperature range because it
was collinear with two of the other variables,
being equal to AVGTMAX-AVGTMIN.
Table 1 lists the 20 variables we used. Five
are non-ozone pollution variables; 15 are
meteorological; none involves ozone. The
pollution variables are various chemical
species and measures of nitrogen oxides,
which are chemical precursors of ozone.

2. The WPC Classification Scheme

The TACB meteorologist begins his or her
other classification of a particular day with
an examination of the daily surface synoptic
weather charts for the day. The meteoro-
logist also has access to hourly weather
observations from Houston airports, wind
direction changes, local sea breeze forma-
tion, etc. But the meteorologist has no
access to ozone or to any other pollution
data. After following the objective classi-
fication protocol (shown in Figure 1) and
exercising professional judgment where
required, the meteorologist will classify that
day into one and only one of ten broad
categories, shown with their descriptive
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Was there a frontal passage at Houston Yes — Active
within past 24 hours? " Front
No
Was there a tropical storm in the area? I Yes Tropical
: p : Storm
No
Was there widespread, general precipitation Yes —— General
over the area? Precipitation
No

Is there an air mass influencing the
Houston area that is centered in the
central U.S. AND has a front passed
within 24 to 48 hours AND are the winds
generally from the north?

Yes — Continental
High

No

Is there an air mass influencing
Houston that is centered in the eastern
U.S. with ridging into northern Texas
AND are the winds at Houston north-
easterly or easterly?

Yes —— Coastal
Return

No

Is Houston under the influence of an
air mass centered off the Atlantic
Coast with ridging along the northern

Yes —— Gulf

Gulf Coast AND are the winds at Houston Return
southerly or southeasterly?
No
Is there an air mass centered over the
Gulf or is the Bermuda High ridging Yes —— Gulf High

through the central Gulf AND are the
winds westerly at Houston?

No

Is there a weak pressure gradient over
Houston resulting in erratic or extremely
weak air flow?

Yes —— General
Stagnation

No
I Unclassified I

Fig. 1. Protocol for weather pattern classification
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labels:

Active Front

Tropical Depression or Storm
General Precipitation
Continental High

Coastal Return without Sunshine
Coastal Return with Sunshine
Gulf Return

Gulf High

General Stagnation

Unclassified.

+
WX AR =

Each of the above categories is described in
detail by Zimmermann, Tropp, and Barta
(1987). For the purpose of our analysis only
the category numbers are important. Thus
the WPC for a day is one of the above ten
numbers. Each of the 368 days of this study
has a WPC number available to us. Because
category 9 is a group of “leftover” days,
which did not fit into any of the other cate-
gories and which do not follow a well-
defined meteorological pattern, we elected
to omit category 9 and its 9 days from our
analysis. Thus, the maximum number of
observations used in an analysis is 359.
Since the WPC classification procedure
intends maximal objectivity, it is required
that the meteorologist have no personal bias
or preconceived notions of what the weather
might be on that day. He or she is trained to
be objective and consistent. It is particularly
crucial that the meteorologist have no
knowledge of the ozone level for the day to

be classified, so that he or she assigns the

WPC independently of knowledge of the
ozone level.

However, the definition of the nine WPC
categories is not independent of ozone. That
is, the weather types shown above were
chosen for their presumed ability to discri-
minate ozone, not simply because they also
represent identifiable, recurring types of
weather. In fact, we shall see that the WPCs
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do have power to discriminate ozone.
Because of the strong dependence of ozone
formation on weather, when similar weather
patterns recur, similar ozone levels tend to
recur as a response.

3. The Statistical STATCLASS
Classification Scheme

The basis for the statistical classification of
days into meteorologically significant cate-
gories is multiple discriminant analysis
(Krzanowski (1988)). In discriminant analy-
sis a rule is devised through a function
which maps the values of explanatory
weather and precursor pollutant variables
into the nine categories given above. The
objective of this STATCLASS rule is to
minimize the disagreement of STATCLASS-
assigned categories with WPC-assigned cate-
gories among the 359 days. In the classi-
cal Fisherian formulation of discriminant
analysis, the rule is to assign a day to the
closest group in the sense of Mahalanobis
distance: (x — %X;)’'S™'(x — X;). Thus, aday
with covariate values x would be assigned to
the group i which minimized the Mahalanobis
distance, where X; is the vector of mean
covariate values for group i and S is the
pooled within-group covariance matrix.
This classification rule is equivalent to
selecting the group with maximum posterior
membership probability when using multi-
variate normal likelihood and equal priors
on the groups. We used a slightly different
version of this rule, with priors proportional
to number of WPC days in the groups, after
examining the reasonableness of the assump-
tion of similar within-group covariance
matrices. Classical discrimination works
best when the explanatory variables follow a
multivariate normal distribution. In other,
nonparametric formulations of discrimi-
nant analysis, the category assignment of a
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Table 1. List of variables used*
sr  AVGNXRAT Average of 06-09 CST site NO,/NO, ratios
s DIFFUSIV Vertical eddy diffusivity for 14 CST (m?*.sec™")
s DLSLOOZ 24 hour sea level pressure change (kPa) at 00 UTC
s MAZ10 Height change (m) of 100 kPa surface from 00 UTC to 12 UTC
s MAZ85 Height change (m) of 85kPa surface from 00 UTC to 12 UTC
sr OPQAVG Average total opaque sky cover for 07-11 CST
st RAIN Precipitation in inches at Houston International LCD
s SEAM?2 Wind speed component of ARWSAM? from the southeast
s ZARSTGAM LOG (ARSTGAM?2) where ARSTGAM2 is inverse of area
average resultant wind speed for 06-09 CST
st ZARVWSAM LOG (ARVWSAMD) where ARVWSAMD is area average
resultant wind speed for 10-13 CST
st ZAVGITNR LOG (775-AVGITNR) where AVGITNR is area average non-
negative daily net radiation (W)
ZAVGNOXM LOG (AVGNOXMX) where AVGNOXMX is area maximum
I-hour NO, concentration (ppb)
r ZAVGPNO LOG (AVGPNO + .5) where AVGPNO is area average 06-09
CST NO concentration (ppb)
st ZAVGPNOX LOG (AVGPNOX + .5) where AVGPNOX is area average
06-09 CST NO, concentration (ppb)
r ZAVGPNO2 LOG (AVGPNO2 + .5) where AVGPNO?2 is area average
06-09 CST NO, concentration (ppb)
st ZAVGTMAX LOG (100-AVGTMAX) where AVGTMAX is area average
daily maximum temperature (°C)
st ZAVGTMIN LOG (85-AVGTMIN) where AVGTMIN is area average daily
minimum temperature (°C)
st ZHOZ71 LOG (3100-HOZ71) where HOZ71 is thickness (m) between
100 kPa and 70 kPa levels at 00 UTC
r ZINDEXTO LOG (65-INDEXTO) where INDEXTO is K index computed
from 00 UTC sounding
st ZTOZ10 LOG (35-TOZ10) where TOZ10 is temperature (°C) of 100 kPa

(1000 mb) level at 00 UTC

*¢g” in first column indicates variable was used in STATCLASS.
“r” in second column indicates variable was also used in regression analysis.

day is based on the WPC assignments of pursue such alternative approaches because
days that are nearby in the space of the they did not seem as promising in prelimin-
explanatory variables (nearest neighbor or ary analysis as the classical approach.

kernel discriminant analysis). We did not The covariates used in the discrimination
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are shown in Table 1. The inclusion of pre-
cursor pollutant measurements in STAT-
CLASS and their exclusion in WPC may
give STATCLASS an advantage. But both
WPC and STATCLASS are unbiased in
excluding ozone from classification criteria,
since each is intended to discriminate high
ozone days. As noted in the introduction,
the meteorological variables are thought to
be among the more significant ones for
ozone formation.

In order to better match the assumption
of multivariate normality, several of the
covariates were transformed so that their
univariate histograms appeared more nor-
mal (i.e., symmetric and bell-shaped). Each
transformation reduced the Kolmogorov-
Smirnov distance between the transformed
covariate distribution and a normal distri-
bution with same mean and standard devia-
tion to under 0.10. Although this does
not guarantee multivariate normality, the
transformations significantly improved the
explanatory power of STATCLASS models
and increased the agreement between
STATCLASS and WPC. In a few cases, no
transformation was applied, even though
the covariate distribution was obviously non-
normal. For example, precipitation (RAIN)
has a very large probability mass at zero, and
opaque sky cover (OPQAVG) is U-shaped.

4. Analysis of STATCLASS and WPC

Our primary objective is to match the WPC
classifications as nearly as possible with
STATCLASS. But we are also mindful of
the likelihood of information redundancy
among our covariates. Therefore, we first
ran a stepwise discriminant analysis (PROC
STEPDISC in SAS), at each step of which
variables may enter or be removed if the
significance of their partial F-test is less than
or greater than 0.15, respectively. The result-
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ing model retained 16 of the 20 variables
and correctly matched 220 of the 342 possible
days on WPC. See Table 2; entries on the
main diagonal tally correct matches. Note
that the posterior assignment proportions
closely match the prior (empirical) WPC
proportions.

Interestingly, three of the four variables
eliminated in the STEPDISC procedure
were air pollution variables: ZAVGPNO,
ZAVGPNO2, and ZAVGNOXM (the
fourth was ZINDEXTO). Because WPC
assignments are made without explicit
knowledge of any air pollution variables, it
is perhaps not surprising that air pollution
variables are of relatively little value in dis-
criminating WPC assignments. However,
the question is raised as to whether the WPC
scheme could be improved in terms of discri-
minating ozone by explicitly including non-
ozone pollutants as covariates. We return to
this question at the end of this section.

Some of the remaining covariates may be
eliminated without unduly increasing the
misclassification rate. For example, if TOZ10
and AVGPNOX (another air pollution vari-
able) are eliminated, the resulting STAT-
CLASS correctly matches 215 of 342 WPC
assignments. If MAZ85 and AVGITNR are
also removed, the number of correct matches
falls to 208 of 342. Interestingly, if all 20
covariates are retained, the number of
correct matches is only 215 of 342. If the 15
weather variables are the only covariates,.
the number of correct matches is 212 of 342.
If the 5 air pollution variables are the only
covariates, the number of correct matches is
only 120 of 342; and a disproportionate 198
days are assigned to category 6. The rela-
tively good performance of the all-weather-
variables discrimination in comparison with
the all-pollution-variables discrimination
further emphasizes the close connection of
WPC with meteorology and its independ-
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Table 2. Discriminant analysis classification summary
Number of observations and percent classified into WPC
From 1 2 3 4 -5 +5 6 7 8 Total
WPC
1 15 0 3 0 1 3 3 1 6 32
2 0 3 0 0 0 0 2 0 1 6
3 3 0 16 0 2 0 8 0 2 31
4 0 0 0 22 2 7 0 0 0 31
-5 1 0 1 1 18 5 5 0 4 35
+5 0 0 0 6 3 28 2 2 1 42
6 0 0 1 2 1 5 68 5 8 90
7 0 0 0 0 0 1 3 17 7 28
8 1 0 3 1 1 4 0 4 33 47
Total
20 3 24 32 28 53 91 29 62 342
585 088 7.02 936 819 1550 26.61 848 18.13 100.00
Priors
32 6 31 31 42 35 90 28 47 342
0.09 002 009 009 0.12 0.10 0.27  0.08 0.14 1.00

ence of precursor pollutants. We chose to
retain the original 16 variables selected by
PROC STEPDISC in order to allow greater
flexibility in subsequent analyses.

How well does STATCLASS (based on
the 16 selected variables) compare with
WPC in terms of ability to discriminate

ozone? In Table 3, we have given the mean
and standard deviation of area peak ozone
(ARO3PK) by category for STATCLASS
and WPC. One-way analyses of variance of
LOGO3PK (the natural log of ARO3PK)
on the STATCLASS and WPC categories
have R? values of 0.41 and 0.31, respect-

Table 3.  Summary statistics of ozone by STATCLASS and WPC

Variable: ARO3PK

STATCLASS WPC
Class N Mean Standard N Mean Standard
deviation deviation
| 20 11.700 6.25 32 12.906 7.52
2 3 12.667 6.65 61 1.667 4.76
3 24 7.833 3.44 31 7.839 4.04
4 32 11.500 4.66 31 11.645 4.81
-5 28 11.464 3.47 35 11.742 291
+5 53 14.641 4.48 42 14.642 5.25
6 91 7.219 2.63 90 7.967 3.39
7 29 11.068 4.63 28 12.071 6.34
8 62 15.830 6.06 47 15.255 4.76
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ively. Area peak ozone is the maximum of
all the hourly ozone measurements at all of
the monitoring sites in the Houston area.
Taking the log of ARO3PK helps make it
more nearly normal.

From Table 3, we see that both classifica-
tions achieve a reasonable spread of the
mean ozone values across the categories. Six
of the nine standard deviations are smaller
for STATCLASS. The mean levels tend to
be elevated when expected on meteorologi-
cal grounds. For example, categories + 5
and 8 have the highest mean ozone levels in
each classification. Both are meteorologi-
cally favorable to the formation of elevated
ozone levels (no recent frontal passage or
rain, and plenty of sunshine or stagnant air
masses or both). Categories 3 and 6 have the
lowest mean ozone levels in each classifica-
tion. With clean air blowing in from the
Gulf of Mexico or cleansing general precipi-
tation, both categories favor reduced ozone
levels. In the analysis of variance, WPC
explains 31% of the variation of LOGO3PK,
whereas STATCLASS explains 41%. By
comparison, the discriminant classifications
based on all 20 variables, on only the weather
variables, and on only the air pollution
variables explain 39%, 37%, and 23%,
respectively, of the variation of LOGO3PK.

The TACB recently tested its WPC
assignment procedure by cross-checking the
assignments for 1981, a year not available
for our study because of the lack of match-
ing covariate data. A meteorologist indepen-
dently reclassified each day, using the same
WPC definitions but a somewhat different
protocol. We then achieved 60% agreement
between the original WPCs and reclassified
WPCs. Since STATCLASS matched 64%
of the original WPCs (albeit for 1982 and
1983, which were not cross-checked), we
judge its performance to be at least acceptable.

However, it must be remembered that
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STATCLASS has been tuned to the WPCs
assigned in 1982 and 1983. The discrimina-
tion attempts to match those WPC assign-
ments as closely as possible. STATCLASS
would not be expected to do as well in
attempting to match the WPC assignments
to days for which the WPC assignments
either had not yet been made or were
unknown. To test how well STATCLASS
would perform in such circumstances, we
conducted a cross-validation. The 359 days
from 1982 and 1983 were split into two
nearly equal groups by randomly assigning
one of each pair of consecutive days to a
training set group and the other day in the
pair to a test group. The STATCLASS dis-
crimination rule was developed on the train-
ing set in the usual way, with the 16 cova-
riates previously chosen and with access to
the WPC assignment for the days in the
training set group. Then the STATCLASS
rule developed on the training set was
applied to the test group without knowledge
of the WPCs assigned to the test group.
After STATCLASS had made its assign-
ments to the test group, the STATCLASS
assignments were compared with the WPCs
actually assigned to the test group. In the
training set group, STATCLASS correctly
matched 110 of 169 days. In the test group,
as expected, STATCLASS matched fewer
days correctly. But 93 of 173 days were still
matched correctly in the test group, for a
54% success rate. In addition, the training
set classification explained 36% of the vari-
ability of LOGO3PK for the days covered
by the training set. And the test set classi-
fication explained 32% of the variability of
LOGO3PK for the days covered by the test
set. In view of our previous remarks about
the TACB cross-check, we view these results

as acceptable.
The question of whether there are syste-
matic differences between the years 1982
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and 1983 that affect the discrimination may
be answered in a similar manner. The dis-
crimination may be developed in one year as
a training set and applied to the other year
as a test set. When the discrimination is run
on 1982 as a training set (again using the 16
variables previously selected), there are 107
correct matches out of 177 within the 1982
training set year, for a 60% success rate.
When the rule developed for 1982 is applied
to 1983, there are 66 matches out of 165
days for a 40% success rate. The corre-
sponding results from using 1983 as training
set are 117 matches out of 165 for a 71%
success rate within the training set year, and
75 of 177 for a 42% rate when 1983 is
applied to 1982. In view of the somewhat
lower success rate on the years as test sets
(40%, 42%) than on the test set as a pair-
wise random split (54%), there may be
some meteorologically significant differences
between 1982 and 1983.

Throughout the analysis, we have utilized
the pooled within-group covariance matrix
in spite of the rejection of a formal test for
homogeneous covariance matrices at the
10% level (although the test was accepted at
that level for each year separately). In
this case we judge the use of the pooled
covariance matrix to be conservative. An
alternative procedure which uses separate
covariance matrices initially occasioned
great excitement when it obtained 261
matches out of 342, for a 76% success rate.
And even more so for separate-covariance
rules developed on each year separately:
1982 had 163 of 177 matches, and 1983 had
155 of 165> However, it soon became
apparent that these miraculous rates were
the result of overfitting due to loss of degrees

3 Sometimes the number of possible matches varies
when using a different set of explanatory variables. The
reason is that only complete observations are used in
the analysis.
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of freedom. When the rule developed on
1982 as a training set was applied to 1983,
there were only 18 of 165 matches; and for
1983 applied to 1982, only 32 of 177. These
results are consistent with the frequently
noted phenomenon in discrimination studies
that separate-covariance rules often yield
higher matching rates with a training set
than will pooled-covariance rules, but lower
rates with a test set. This illustrates the
importance of validation studies. In the pre-
sent study, there are sufficient data for
analysis based on pooled matrices but not
on separate matrices. In order to use the
approach based on separate covariances,
it seems necessary to eliminate more
covariates. When this is done, the number
of matches in the test set increases, but
the number of matches in the training
set decreases. For example, suppose that
the 7 covariates ZAVGTMIN, OPQAVG,
SEAM2, RAIN, ZAVGTMAX, ZARST-
GAM, and DLSLOOZ are retained and all
others eliminated. Then with 1982 as train-
ing set, 101 matches out of 182 are achieved
in 1982, but 59 of 166 in 1983. And with
1983 as training set, there are 102 successes
of 166 in 1983, but 66 of 182 in 1982. The
success rate for these seven covariates on
1982 and 1983 combined is 193/348 =
55%, again based on separate covariances.

Can WPC be improved? It seems likely
that at least three lines of work might be
profitable. First, we note that if the purpose
of WPC is to provide a predictive or
explanatory model for ozone, then a multi-
ple regression model is called for. (For
example, see Langstaff and Pollack (1985)
on variable selection for regression and
classification, and Inoue, Hoshi, and Taguri
(1986) on predicting nitrous oxide by
regression.) One does not expect indicator
variables for categories, whether they be
WPC or STATCLASS categories, to account
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for variation in ozone as well as continuous
predictors can. To this end of prediction or
explanation, all relevant predictors should
be included, not just weather variables. The
analysis can provide for separating out and

measuring the relative contribution of

the weather variables vis-a-vis the others.
Second, if the purpose of WPC is to provide
readily identifiable and readily interpretable
clusters of weather and other variables
which have some predictive or explanatory
power for ozone, then the issue is whether
better clusters can be found. Presumably,
the advantage of nominal categories over
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continuous regression models lies in the
greater understandability of the former by
the public and by political overseers. Cluster
analysis may prove useful here (Balentine
and Carter (1987)). Third, a hybrid approach
which combines the meteorologist’s insight
with statistical models may prove most
fruitful of all, particularly if the labor of the
meteorologist can be significantly reduced.
We shall illustrate the possible improve-
ments resulting from the first line of work
(regression). We began with a stepwise
regression of LOGO3PK on all 20 predic-
tors in Table 1, using the MAXR procedure.

Table 4. Regression results on predicting ozone

Dependent variable: LOGO3PK

Analysis of variance

Source DF Sum of squares Mean square F value Prob>F
Model 13 58.70 4.51 64.4 0.0001
Error 332 21.97 0.07
Total 345 80.67

Root MSE = 0.25 R-Square = 0.73
Parameter estimates

Parameter Standard T for Hy:

Variable DF estimate error Parameter=0 Prob>|T|
INTERCEP 1 3.64 0.23 15.83 0.000
ZAVGPNO 1 —0.07 0.04 —-1.75 0.050
ZAVGPNO2 1 0.55 0.12 4.58 0.000
ZAVGPNOX 1 —0.26 0.13 —2.00 0.054
ZAVGITNR 1 —0.08 0.03 —2.66 0.007
ZAVGTMIN 1 0.35 0.07 5.00 0.000
ZAVGTMAX 1 —0.40 0.09 —4.44 0.000
RAIN 1 —0.05 0.03 —1.66 0.144
ZARVWSAM 1 —0.66 0.05 —13.20 0.000
ZTOZ10 1 —0.11 0.07 —1.57 0.095
ZHOZ71 1 0.10 0.05 2.00 0.049
OPQAVG 1 —0.20 0.01 —2.00 0.010
ZINDEXTO 1 —0.11 0.05 —2.20 0.024
AVGNXRAT 1 0.48 0.10 4.88 0.000
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Foreachk = 1, ..., 20, MAXR produces
the “best” k-variable model in the following
sense: Having found the “best” k — 1 vari-
able model, MAXR adds the variable which
produces the greatest increase in R* as in
ordinary forward stepwise regression. With
the k model variables thus preliminarily
identified, MAXR then examines the effect
on R? of each possible pairwise replacement
of a model variable with a variable not in the
model. MAXR then makes the replacement
that produces the greatest gain in R?. When
this process has been completed for each &,
the user then chooses one of the 20 models.
In making this choice, we were guided by
standard criteria such as Mallows’ C,. The
final model selected is shown in Table 4.
Standard diagnostic checks support the
adequacy of the model, (cf. Cook and
Weisberg (1982) for details on these diag-
nostics.) Plots of the residuals against the
predictors are absolutely featureless. The
Kolmogorov-Smirnov distance between the
distribution of the residuals and the normal
distribution with the same mean and vari-
ance is 0.028, which is consistent with nor-
mality at a significance level better than
0.15. There are no noteworthy outliers
or influential points (using Cook’s D).
Multicollinearity is not a problem (using
condition numbers and variance propor-
tions). There is a small amount of first-order
autocorrelation (0.226), which is significant
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by the Durbin-Watson statistic (1.545).
Addition of one-day-lagged LOGO3PK as a
predictor largely eliminates the autocorre-
lation, but has little effect on the other
coefficients, little effect on the residuals, and
little effect on the R-square (0.744). Con-
ceivably, lagged ozone might prove modestly
useful in a classification scheme.

We cross-validated the model in two dif-
ferent ways. First, we randomly split each
pair of consecutive days into a training set
and a test set. We developed the regression
model on the training set (R*> = 0.77), then
calculated the residuals when the training
model was fit to the test set. These “residuals”
had a distribution with slightly heavier than
normal tails, but very close to zero mean. A
“quasi-R>” (1-SS “residuals”/SS Total) was
calculated to be 0.59. Second, the data from
1982 was treated as a training set and the
resulting model applied to 1983 as a test set.
Then the roles of the years were reversed.
The R* values were 0.76 and 0.71 and quasi-
R*s 0.56 and 0.71. Again, the “residual”
distributions were slightly heavier-tailed
than normal, but with means very close to
zero.

In Table 4, we note that 4 of the 5 air
pollution variables were selected for the
regression, in contrast to the stepwise dis-
crimination procedure, which eliminated
three of them. We also note that the 13
variables selected explain a relatively high

Table 5. List of abbreviations used in the text

EPA

HRM
NAAQS

SAI

SAS

SIP
STATCLASS
TACB

WPC

Environmental Protection Agency

Houston Regional Monitoring Authority
National Ambient Air Quality Standards
Systems Applications Inc.

Statistical Analysis System

State Implementation Plans

Statistical Classification/Discrimination Scheme
Texas Air Control Board

Weather Pattern Classification
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73% of the variation in LOGO3PK. Since
WPC explained 31% and STATCLASS
explained 41% of the variability of this vari-
able, there is room to improve nominal
classifications. We also observe that the
regression model weathered cross-validation
somewhat better than the discriminant analy-
sis. Differences between 1982 and 1983 in
terms of the interaction between weather
and precursor emissions may account for
this. On the basis of our analyses, we would
recommend that a classification scheme
oriented toward ozone discrimination include
precursor variable considerations. The ozone
variation within weather classes shown in
Table 3 is too large relative to the between-
class variation for precursors not to play an
important role.

5. Discussion

We set out with the objective of duplicating
by an automatic, statistical means the time-
consuming judgmental classification of days
into categories based on their meteoro-
logical potential for ozone formation. The
STATCLASS scheme matches the judg-
mental WPC about as well as does another
judgmental classifier. STATCLASS has
somewhat greater ability to discriminate
high-ozone from low-ozone potential days
than does WPC. Part, but not all, of that
advantage results from the use by STAT-
CLASS of precursor pollutants and their
exclusion from WPC. In general, weather
seems to play a primary role in explaining
ozone, with precursor pollutants secondary.
This is seen more clearly in the regression
model of Section 4. There, the first few
predictors of ozone that enter are weather
variables. The regression model indicates
that weather and precursor variables together
can account for a substantial proportion of
the variability of ozone. We conclude that
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both WPC and STATCLASS are useful in
categorizing days in terms of ozone poten-
tial if simple indices are desired, but that for
predictive or explanatory purposes, con-
tinuous models can offer substantial gains.
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