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A Fast and Simple Algorithm for
Automatic Editing of Mixed Data

Ton de Waal and Ronan Querel

In order to automate the data editing process the so-called error localisation problem, i.e., the
problem of identifying the erroneous fields in an erroneous record, has to be solved. A new
algorithm for solving the error localisation problem for mixed data, i.e., a combination of
continuous and categorical data, has recently been developed. This algorithm is based on
constructing a binary tree, and subsequently searching this tree for optimal solutions to the
error localisation problem. In the present article we provide a mathematical description of
the algorithm, and prove that the algorithm determines all optimal solutions to the error
localisation problem. We also provide computational results for several realistic data sets
involving only numerical data.

Key words: Branch-and-bound; data editing; Fellegi-Holt method; Fellegi-Holt paradigm;
Fourier-Motzkin elimination.

1. Introduction

Traditionally, statistical agencies have put a lot of effort and resources into data editing
activities. They have considered it a prerequisite for publishing accurate statistics. In
traditional survey processing, data editing was mainly an interactive activity designed
to correct all data in every detail. Detected errors or inconsistencies were reported and
explained on a computer screen. Clerks corrected the errors by consulting the form, or
by contacting the supplier of the information. It has long been recognised, however,
that it is not necessary to correct all data in every detail. Several studies (Granquist
1995, 1997; Granquist and Kovar 1997) have shown that generally not all errors have
to be removed from a data set in order to obtain reliable publication figures. It suffices
to remove only the most influential errors. These studies have been confirmed by many
years of practical experience at many different statistical offices.

Of course, it is true that for a data set to be suitable for statistical analysis the significant
errors in the data have to be corrected. However, it is not necessary that each record, i.e.,
the data of an individual respondent, should be absolutely correct. Statistical offices
publish aggregate data, often based on samples of the population. This implies that small
errors in individual records are acceptable. First, because small errors in individual records
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tend to cancel out when aggregated. This is reported in the literature (see e.g., Granquist
1995), and is confirmed by our own experiences at Statistics Netherlands. Second, because
if the data have been obtained by means of a sample from the population there will always
be a sampling error in the results, even when all collected data are completely correct. In
this case an error in the results due to incorrect data is acceptable as long as this error is
small in comparison to the sampling error.

In our opinion, the ideal edit strategy is a combination of selective (or significance)
editing (cf., Lawrence and McKenzie 2000; Hedlin 2003), automatic editing, and
macro-editing (cf., Granquist 1990). After data entry, simple checks and simple automatic
corrections should be applied. Examples of simple checks are range checks. Examples of
records to which simple corrections can be applied are cases in which it is clear that a
respondent filled in a financial figure in Euros instead of the requested thousands of Euros.
After that phase selective editing should be applied to split the data into two streams: the
critical stream and the noncritical stream. The critical stream consists of those records that
are the most likely ones to contain influential errors; the noncritical stream consists of
records that are unlikely to contain influential errors. The records in the critical stream
are edited in a traditional, manual manner. The records in the noncritical stream are either
not edited or are edited automatically. In practice, the number of records edited manually
often depends directly on the available time and resources. Macro-editing, i.e., verifying
whether figures to be published seem plausible, is an important final step in the editing
process. Macro-editing can reveal errors that would go unnoticed with selective editing
or automatic editing.

Editing the records in the noncritical stream automatically has our preference over not
editing these records at all. The sum of the errors in the noncritical records may have
an influential effect on the publication figures, even though each error itself may be non-
influential. Moreover, many noncritical records will be internally inconsistent if they are
not edited, which may lead to problems when publication figures are calculated. Auto-
matic editing helps to reduce the errors in the data, and makes sure that the records become
internally consistent.

More than a quarter of a century ago Fellegi and Holt published their landmark paper on
automatic edit and imputation in the Journal of the American Statistical Association
(Fellegi and Holt 1976). That paper can be considered to be the starting point for modern
systems for automatic data editing. It describes a paradigm for identifying errors in a
record automatically. According to this paradigm the data of a record should be made
to satisfy all edit rules (edits for short) by changing the values of the fewest possible
number of variables. In due course the original Fellegi-Holt paradigm has been generalised
to: the data of a record should be made to satisfy all edits by changing the values of the
variables with the smallest possible sum of reliability weights. A reliability weight of a
variable is a nonnegative number expressing how reliable one considers the values of
this variable to be. A large reliability weight corresponds to a variable of which the values
are considered trustworthy, and a small reliability weight to a variable of which the values
are considered not so trustworthy. The (generalised) paradigm can be successfully applied
to detect random, nonsystematic errors. A system based on the (generalised) Fellegi-Holt
paradigm will in the remainder of this article be referred to as an FH-system.

Only a few statistical offices in the world have implemented an FH-system for
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automatic edit and imputation. Examples of FH-systems for continuous data are GEIS
(Kovar and Whitridge 1990) by Statistics Canada, SPEER (Winkler and Draper 1997)
by the U.S. Bureau of the Census, AGGIES (Todaro 1999) by NASS, a SAS program
developed by the Central Statistical Office of Ireland (Central Statistical Office 2000),
and CherryPi (De Waal 1996) by Statistics Netherlands. Examples of FH-systems for cate-
gorical data are SCIA (Barcaroli et al. 1995) by ISTAT and DISCRETE (Winkler and Pet-
kunas 1997) by the U.S. Bureau of the Census. It is quite surprising that so few statistical
offices have developed FH-systems considering the potential benefits of such a system.
Two reasons for the limited number of FH-systems can be pointed out. The first reason
is that some statistical offices distrust the quality of automatically edited and imputed
data. This is an important reason for not applying automatic editing and imputation. We
feel, however, that if automatic editing is used in combination with selective editing
and macro-editing, data of sufficiently high quality can be obtained.

The second reason for not developing and implementing a system for automatic editing
and imputation is that this is considered too complicated by many statistical offices. In
fact, even the offices that have developed a system for automatic editing and imputation
have developed that system for either categorical data or continuous data. Developing an
FH-system that can handle mixed data, i.e., a mix of categorical and continuous data, is
generally considered too hard. To our knowledge only Sande (Sande 2000) has developed
an FH-system for mixed data. That system is based on a vertex generation approach
(Sande 1978; De Waal 2003a). GEIS, AGGIES, the SAS program developed by the
Central Statistical Office of Ireland, and CherryPi are also based on Sande’s ideas, but
can handle only continuous data.

The hardest part of developing an FH-system consists of building a solver for the
so-called error localisation problem, i.e., the problem of identifying the erroneous fields
in an erroneous record. In their paper Fellegi and Holt already described a method for
solving this problem. The method is based on the generation of so-called implicit, or
implied, edits. These implicit edits are logically implied by the explicitly specified edits.
After the so-called complete set of explicit and implicit edits has been determined it is
fairly straightforward to solve the error localisation problem. For each faulty record one
begins by determining the violated (explicit and implicit) edits. Now, any set of variables
that covers the violated edits, i.e., any set of variables such that in each violated edit at least
one variable from this set is involved, can be imputed consistently, i.e., such that all edits
become satisfied. According to the (generalised) paradigm of Fellegi and Holt a set of vari-
ables with the minimum sum of reliability weights among the sets of variables that cover
the violated edits should be selected for imputation. A drawback of the method of Fellegi
and Holt is that there may be extremely many implied edits. In such a case the method may
be impractical to use. In particular, generating the complete set of explicit and implicit
edits for linear inequality situations for continuous data remains too computationally
expensive for moderate to large size problems.

In the present article we consider the error localisation problem for mixed data. The aim
of the article is to dispel the myth that a solver for the error localisation problem has to be
very complicated. After we have given a mathematical description of the error localisation
problem for mixed data in Section 2, we present an algorithm for solving this problem
in Section 3. The proposed algorithm is rather simple, and for most statistical offices



386 Journal of Official Statistics

implementing this algorithm should not be a major problem. The algorithm is based on a
similar algorithm for purely numerical data (Quere 2000). Section 4 gives an example
illustrating the algorithm. A proof that our algorithm finds all optimal solutions to the error
localisation problem for mixed data is given in Section 5. Section 6 discusses performance
issues related to the algorithm, and Section 7 contains a short discussion.

2. The Error Localisation Problem for Mixed Data

In this section we give a mathematical formulation of the error localisation problem for
mixed data. We start by introducing some notation and terminology. We denote the cate-
gorical variables by v; (i = 1,...,m) and the continuous variables by x; (k = 1,...,n). For
categorical data we denote the domain, i.e., the set of possible values, of variable i by D;
. The edits that we consider in this article are of the following type:

IF vl-EFij (foralli=1,...,m)

THEN (x;,...,x,) € {x|a;;x; + ...+ a,x, + b; =0} (1a)
or

IF v,»EFij (foralli=1,...,m)

THEN (xy,...,x,) € {x|a;;x; + ...+ a,x, + b; = 0} (1b)

where F ,’ c D;. All edits (j = 1,...,J) given by (1) have to be satisfied simultaneously.
We assume that the edits can indeed be satisfied simultaneously.

Examples of edits of Type (1) are:

a) IF (v; € D; for i = 1,...,m) THEN Turnover = Profit + Costs
This edit expresses that the turnover of an enterprise should equal the sum of profit and
costs. It is in fact an example of a purely numerical edit.

b) IF ((Gender = Male) AND (Pregnant = Yes)) THEN
This edit expresses that males cannot be pregnant. It is an example of a purely categorical
edit.

¢) IF (Activity € {Chemical Industry, Car Industry}) THEN (Turnover = 1,000,000
Euros)
This edit expresses that an enterprise in the chemical industry or in the car industry
should have a turnover of at least one million Euros.

A variable such as Age can either be considered to be a categorical variable or a continuous
one, depending on the kind of edits involving Age. However, a variable cannot be
considered to be a categorical variable in one edit and a continuous variable in another.

The condition after the IF-statement of (1), i.e., “‘v; € F,-j foralli=1,...,m,” is called
the IF-condition of the edit. The condition after the THEN-statement is called the THEN-
condition. If the IF-condition does not hold true, the edit is satisfied, irrespective of the
values of the continuous variables. A categorical variable v; is said to enter an edit j
given by (1) if Flj c D; and Fij # D, ie., if Flj is strictly contained in the domain of vari-
able i. That edit is then said to involve this categorical variable. A continuous variable x;, is
said to enter the THEN-condition of edit j given by (1) if a;; # 0. That THEN-condition is
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then said to involve this continuous variable. If F / in the IF-condition of (1) is the empty
set for some i = 1,...,m or the set in the THEN-condition is the entire n-dimensional real
vector space, then the edit is always satisfied and may be discarded.

In many practical cases, certain kinds of missing values are acceptable, for instance
when the corresponding questions are not applicable to a particular respondent. We
assume that for categorical variables such acceptable missing values are coded by special
values in their domains. Nonacceptable missing values of categorical variables are not
coded. The optimisation problem formulated below will identify these missing values
as being erroneous. We also assume that numerical THEN-conditions are only triggered
if the value of none of the variables involved may be missing. Hence, if — for a certain
record — a THEN-condition involving a numerical variable of which the value is missing
is triggered by the categorical values, then either the missing numerical value is erroneous
or at least one of the categorical values.

For each record (v?, e, vg,,x?, e ,xg) in the data set that is to be edited automatically
we have to determine a synthetic record (vy,..., v, X],...,X,) such that (1) becomes

satisfied for all edits j = 1,...,J and such that
> o wisf o)+ Y whd(, xi)
i=1 k=1

is minimised. Here w{ is the nonnegative reliability weight of categorical variable i
(i=1,...,m), w; the nonnegative reliability weight of numerical variable k
k=1,...,n), 60°%y) =1if y* # y, and 6(y°,y) = 0 if y* = y. The variables of which
the values in the synthetic record differ from the original values plus the variables for
which the original values were missing together form an optimal solution to the error loca-
lisation problem. Note that the above formulation is a mathematical formulation of the
generalised Fellegi-Holt paradigm. Note also that there may be several optimal solutions
to a specific instance of the error localisation problem. Our aim is to find all these optimal
solutions.

By generating all optimal solutions to the mathematical error localisation problem, we
gain the option to later select one of these optimal solutions, using a secondary, more sta-
tistical criterion. The variables involved in the selected solution for which the values in the
synthetic record differ from the original values are set to missing. The original values of
these variables are considered to be incorrect and have to be imputed later by means of
more appropriate values.

3. A Simple Algorithm for Automatic Editing of Mixed Data

In this section we give a mathematical description of our algorithm. The basic idea of
the algorithm is that for each record a binary tree is constructed. Following Cormen,
Leiserson, and Rivest (1990), we recursively define a binary tree as a structure on a finite
set of nodes that either contains no nodes, or comprises three disjoint set of nodes: a root
node, a left (binary) subtree and a right (binary) subtree. If the left subtree is nonempty, its
root node is called the left child node of the root node of the entire tree, which is then
called the parent node of the left child node. Similarly, if the right subtree is nonempty,
its root node is called the right child node of the root node of the entire tree, which is



388 Journal of Official Statistics

Wﬁl

fix V, eliminate V,
fix V; eliminate V3
fix V3 eliminate V; fix V, eliminate Vz
fix V; eliminate V3 fix Vs eliminate V,

then called the parent node of the right child node. All nodes except the root node in a
binary tree have exactly one parent node. Each node in a binary tree can have at most
two (nonempty) child nodes. A node in a binary tree that has only empty subtrees as its
child nodes is called a terminal node, or also a leaf. A nonleaf node is called an internal
node.

In Figure 1 we have drawn a small binary tree involving 15 nodes. Node N is the root
node of the entire binary tree. The child nodes of N, are N, and Ny. The terminal nodes are
nodes Ny, N5, N7, Ng, N1, N2, N4, and Nys.

In each node of the binary tree generated by our algorithm a variable is selected that has
not yet been selected in any predecessor node. If all variables have already been selected in
a predecessor node, we have reached a terminal node of the tree.

We first assume that no values are missing. After selection of a variable two branches
are then constructed: in one branch the selected variable is fixed to its original value, in the
other branch the selected variable is eliminated from the set of current edits. In each
branch the current set of edits is updated. For instance, in node N; of Figure 1 variable
V is selected. In the left-hand branch variable V is fixed to its original value, and in
the right-hand branch V is eliminated. A variable that has either been fixed or eliminated
is said to have been treated (for the corresponding branch of the tree). The set of edits
corresponding to the root node of our tree is the original set of edits. In this article we treat
all continuous variables before any categorical variable is selected and treated. Fixing a
variable to its original value corresponds to assuming that this original value is correct,
and eliminating a variable from the set of current edits corresponds to assuming that the
original value of this variable is incorrect and has to be modified.

Updating the set of current edits is the most important step in the algorithm. How the set
of edits has to be updated depends on whether the selected variable is fixed or eliminated,

&

Fig. 1. A binary tree
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and also on whether this variable is categorical or continuous. Fixing a variable, either
continuous or categorical, to its original value is easy. We simply substitute this value
in all current edits, failing as well as nonfailing ones. Note that, conditional on fixing
this variable to its original value, the new set of current edits is a set of implied edits
for the remaining variables in the tree. That is, conditional on the fact that the selected
variable has been fixed to its original value, the remaining variables have to satisfy the
new set of edits. As a result of fixing the selected variable to its original value some edits
may become satisfied, for instance when a categorical variable is fixed to a value such that
the IF-condition of an edit can never become true any more. These edits may be discarded
from the new set of edits. Conversely, some edits may become violated. In such a case this
branch of the binary tree cannot result in a solution to the error localisation problem.

Eliminating a variable is a relatively complicated process. It amounts to generating a set
of implied edits that do not involve this variable. In this generation process we need to
consider both the failing edits and the nonfailing ones in the current set of edits. The
generated set of implied edits becomes the set of edits corresponding to the new node
of the tree. If a continuous variable is to be eliminated, we basically apply Fourier-Motzkin
elimination (Duffin 1974) to eliminate that variable from the set of edits. Some care has to
be taken in order to ensure that the IF-conditions of the resulting edits are correctly
defined. In particular, if we want to eliminate a continuous variable x, from the current
set of edits, we start by copying all edits not involving this continuous variable from
the current set of edits to the new set of edits. Next, we consider all edits in format (1)
involving x, pair-wise. Suppose we consider a pair of edits s and . We start by checking
whether the intersection of the IF-conditions is nonempty, i.e., whether the intersections
F} N F/ are nonempty for all i = 1,...,m. If any of these intersections is empty, we do
not have to consider this pair of edits anymore. Now suppose that all intersections are
nonempty. We then construct an implied edit. If the THEN-condition of edit s is an
equality, we use the equality

1
X = _airs (b? + Z aisxi> )

i#r

to eliminate x, from the THEN-condition of edit ¢. Similarly, if the THEN-condition of edit
s is an inequality and the THEN-condition of edit ¢ is an equality, the equality in edit 7 is
used to eliminate x,.. If the THEN-conditions of both edit s and edit ¢ are inequalities, we
check whether the coefficients of x, in those inequalities have opposite signs. That is, we
check whether a,, X a,, < 0. If that is not the case, we do not consider this pair of edits any
more. If the coefficients do have opposite signs, we can write one inequality as an
upper bound on x, and the other as a lower bound on x,. We generate the following
THEN-condition for our implied edit:

(X1s.. s x,) E(X|ayx) + ...+ a,x, + b =0}
where

a; = la.s| xXa; + |a,| Xa; foralli=1,...,m

and

B = |ars| th + |art| X bx
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Note that x, indeed does not enter the resulting THEN-condition. The IF-condition of the
implied edit is given by the intersections F; N F/ foralli =1,...,m.

Note that if we eliminate a continuous variable in any of the ways described above, the
resulting set of edits is a set of implied edits for the remaining variables in the tree. That is,
this resulting set of edits has to be satisfied by the remaining variables in the tree.

In our algorithm, categorical variables are only treated, i.e., fixed or eliminated, once all
continuous variables have been treated. This is done in order to keep our algorithm as
simple as possible. If categorical variables were treated before all continuous ones have
been treated, we could obtain edits that are more complex than the edits of Type (1)
(see De Waal 2003b). So, once the categorical variables are selected, the edits in the
current set of edits all have the following form:

IF‘vl»EFij (fori=1,...,m) THEN (x{,...,x,) € & 3)

To eliminate categorical variable v, from a set of edits given by (3), we start by copying all
edits not involving this variable to the set of implied edits.

Next, we basically apply the method of Fellegi and Holt to the IF-conditions to generate
the IF-conditions of the implied edits. In the terminology of Fellegi and Holt, field v, is
selected as the generated field. We start by determining all index sets S such that

\JFi=n, 4)
JjES

and
N F+#@ foralli=1,....r—Lr+1,...m )
jes

From these index sets we select the minimal ones, i.e., the index sets S that obey (4) and
(5), but where none of their subsets obey (4).
Given such a minimal index set § we construct the implied edit given by

IFv, €D, v € |F/ (fori=1,.,r—1Lr+1,..,m)
JjES
THEN (x,,...,x,) € & (6)

Note that if we eliminate a categorical variable in the way described above, the resulting
set of edits is a set of implied edits for the remaining variables in the tree. That is, this
resulting set of edits has to be satisfied by the remaining variables in the tree. We have
now explained how the current set of edits changes if we fix or eliminate a variable.

If values are missing in the original record, the corresponding variables only have to be
eliminated (and not fixed) from the set of edits, because these variables always have to be
imputed. A natural choice is to treat the variables in the following order:

e climinate all continuous variables with missing values;
e fix or eliminate the remaining continuous variables;
e climinate all categorical variables with missing values;
e fix or eliminate the remaining categorical variables.

After all categorical variables have been treated we are left with a set of relations involving
no unknowns. This set of relations may be the empty set, in which case it obviously does
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not contain any self-contradicting relations. A self-contradicting relation is given by
IF v, €D, (fori=1,...,m) THEN (x{,...,x,) € J

The set of relations contains no self-contradicting relations if and only if the variables that
have been eliminated in order to reach the corresponding terminal node of the tree can be
imputed consistently, i.e., such that all original edits can be satisfied (cf. Theorems 1 and 2
in Section 5).

In the algorithm we check for each terminal node of the tree whether the variables that
have been eliminated in order to reach this node can be imputed consistently. Of all the
sets of variables that can be imputed consistently we select the ones with the lowest
sum of reliability weights. In this way we find all optimal solutions to the error localisation
problem (cf. Theorem 3 in Section 5).

Equalities in THEN-conditions can be handled more efficiently than we have described
so far. For instance, if the numerical variable to be eliminated is involved in an equality
that has to hold irrespective of the values of the categorical variables, i.e., is involved
in an edit of the following type:

IFv;,€D; (fori=1,...,m)
THEN (x;,...,x,) € {x|aj;x; +...a,,x, + b, = 0} @)

then we do not have to consider all edits pair-wise in order to eliminate this variable.
Instead, we only have to combine (7) with all other current edits. So, if there are J current
edits, we do not have to consider J(J — 1) pairs, but only J — 1 pairs. Furthermore, the
number of resulting implied edits is generally less than when all pairs of current edits
are considered. We refer to this rule as the equality-elimination rule.

The algorithm sketched in this section is a so-called branch-and-bound algorithm. In a
branch-and-bound algorithm a tree is constructed and bounds on the objective function are
used to cut off branches of the tree. In Section 6 we explain how branches can be cut off
from our tree.

4. Example

In this section we illustrate the algorithm presented in Section 3 by means of an example.
We will not build the entire tree, because this would take too much space. Instead we will
only generate one branch of the tree. Suppose we have to edit a data set containing two
categorical variables v; (i=1,2) and two numerical variables x; (k = 1,2). The domains
of the two categorical variables are D; = {1,2} and D, = {1,2,3}, respectively. The
set of explicit edits is the following.

IF (v, = 1 AND v, € D,) THEN & (8)
IF (v, € D, AND v, € D,) THEN x; — 12= 0 )
IF (v; €D, AND v, € {1,3}) THEN x, = 0 (10)
IF (v, € D; AND v, = 2) THEN x, — 1,250 =0 (11)
IF (v; € D, AND v, = 2) THEN —875x, + 12x, = 0 (12)

IF (v, € D, AND v, = 2) THEN 1,250x, — 8x, =0 (13)
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Now, suppose that a record with values v, =1, v, =2, x; =25, and x, =3,050 is to be
edited. Edit (8) is violated, so this record is inconsistent. We select a numerical variable,
say x1. Two branches are generated: one branch where x; is fixed to its original value, and
one branch where x; is eliminated from the current set of edits. Here we only consider the
branch where x; is eliminated. If we combine, for instance, edits (9) and (12), we first take
the intersection of their IF-conditions. This intersection is given by ‘“‘v; € D; AND
v, = 2.”” This intersection is nonempty, so we proceed. The THEN-condition of the result-
ing implied edit is given by 12x, = 875 x 12, or equivalently by x, = 875. The resulting
implied edit is hence given by

IF (v; € D; AND v, =2) THEN x, — 875 =0 (14)
The new set of (explicit and implicit) edits is given by (14),
IF (vi € D; AND v, =2) THEN x, =0 (15)

and (8), (10), and (11).

We select the other numerical variable x, and again construct two branches. Here we
only consider the branch where x, is fixed to its original value. In this case, for instance
edit (11) becomes satisfied and is discarded from the current branch of the tree. The result-
ing set of edits obtained by fixing x, to its original value is given by:

IF (v, € D, AND v, € {1,3}) THEN & (16)

and (8). Edit (16) arises from edit (10) by substituting 3,050 for x,

All numerical variables have now been treated, and we start treating the categorical
variables. We select a categorical variable, say v;, and again split the tree into two
branches. Here, we only consider the branch where v, is eliminated. The resulting set
of edits is given by edit (16) only. We select the other categorical variable, v,, and again
construct the two branches. Here, we only consider the branch where v, is fixed to its
original value. The resulting set of edits is empty, which implies that the set of explicit,
original edits can be satisfied by changing the values of x; and v; and fixing x, and v,
to their original values. That is, a (possibly suboptimal) solution to the error localisation
problem for this record is: change the values of x; and v,. Possible values are v; =2 and
x1 =40. By examining all branches of the tree, including the ones we have skipped here,
we can obtain all optimal solutions to the error localisation problem for the record under
consideration.

5.  An Optimality Proof

In this section we prove that the algorithm described in Section 3 indeed finds all optimal
solutions to the error localisation problem. We do this in three steps.

1. Each time we eliminate or fix a variable the current set of edits is transformed into a
new set of edits. The new set of edits involves at least one variable fewer than the
current set of edits. We start by showing that the current set of edits can be satisfied
if the new set of edits can be satisfied. This is the content of Theorem 1 below.

2. Using this result we show that if and only if the relations involving no unknowns in a
terminal node do not contradict each other, we can impute the variables that have
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been eliminated in order to reach this terminal node consistently, i.e., such that the
original edits become satisfied. This is the content of Theorem 2.

3. The final step consists of observing that the terminal nodes correspond to all poten-
tial solutions to the error localisation problem, and hence that the algorithm deter-
mines all optimal solutions to the error localisation problem. This is the content of
Theorem 3.

Steps 2 and 3 are trivial once the first step has been proved. The proof of the first step is
similar to the proof of Theorem 1 in Fellegi and Holt (1976). The main differences are that
the edits considered by Fellegi and Holt differ from the edits considered in the present
article, and that Fellegi and Holt assume that the so-called complete set of (explicit and
implied) edits has been generated. We will not make this assumption.

THEOREM 1. Suppose the index set of the variables in a certain node is given by T}, and
the current set of edits corresponding to that node by ;. Suppose furthermore that to
obtain a next node a certain variable r is either fixed or eliminated. Denote the index
set of the resulting variables by 7 (T}, =T, — {r}) and the set of edits corresponding to
this next node by ;. Now, if there exist values u; for i € T that satisfy the edits in Q,
then there exists a value u, for variable r such that the values u; for i € T, satisfy the edits
in Q.

Proof. We distinguish between several cases. First, let us suppose that the selected vari-
able is fixed. This is a trivial case. It is clear that if there exist values u; for i € T that
satisfy the edits in Q;, there exist values u; for i € T, that satisfy the edits in Q. Namely,
for the fixed variable r we set the value u, equal to the original value of r.

Let us now suppose that a categorical variable r has been eliminated. Note that in our
algorithm all continuous variables have then already been either fixed or eliminated. Sup-
pose that there exist values u; for i € T that satisfy the edits in Q;, but there does not exist
a value u, for the selected variable r such that the values for i € T, satisfy the edits in €.
Set the values for i € T} to u;, and identify a failed edit in €, for each possible value of
variable r. The index set of these failed edits need not be a minimal one. We therefore
remove some of the failed edits such that the corresponding index set S becomes minimal.
We then construct the implied edit given by (6). Edit (6) is an element of ;. Moreover, the
values u; for i € T; do not satisfy this edit. This contradicts our assumption that these
values satisfy all edits in £;. So we can conclude that a value u, for the selected variable
r exists such that the values u; for i € T, satisfy the edits in .

Now, let us suppose that a continuous variable r has been eliminated. Suppose that there
exist values u; for i € T that satisfy the edits in ;. Each edit in Q, is obtained either from
copying the edits in { not involving variable r, or from two edits in , involving variable
r that have been combined.

It is clear that if the edits in 2, that have been obtained from copying the edits in £,
not involving variable r are satisfied by the values u; for i € T}, these edits in €, are
also satisfied by the same values for i € Tj,.

It remains to be proved that if the edits in ©,; that have been obtained by combining two
edits in Q are satisfied by i € T, there exists a value u, for variable r such that all edits in
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Q, involving variable r can be satisfied. To prove this statement, we substitute the values u;
for i € T into the edits in . As a result, we obtain a number of constraints for the value
of the selected variable r. Such a constraint can be an equality involving x,, a lower bound
on x,, or an upper bound on x,. That is, these constraints are given by:

x, =M (17)

X, =M (18)
and

x, <M/ (19)

where MJE s MjL and MjU are certain constants, and j is an index for the edits in €y involving
variable r.

A constraint of type (17) has been obtained from an edit j in @, of which the THEN-
condition can be written in the following form

X, = ajx;+b (20)
i#r

by filling in the values u; for i € T;. Similarly, constraints of types (18) and (19) have been

obtained from edits in €, of which the THEN-conditions can be written as

X, =Y, a;x+ b and x, < >, aj;x; + b, respectively, by filling in the values
fori € T;.

If the constraints given by (17) to (19) do not contradict each other, we can find a value
u, for variable r such that this value plus the values u; for i € T; satisfy the edits in €.
Namely, select any value u, for variable r such that all constraints (17) to (19) are satisfied.
Suppose the constraints given by (17) to (19) contradict each other. These constraints can
only contradict each other if there are constraints s and ¢ given by

1. x, = MF and x, = MF with MF # MF
2. x, = MF and x, = M* with MF < MF,
3. x, <MY and x, = MF with MY < MF

or
4. x, <MY and x, = M* with MY < M*

In Case 1 constraints s and ¢ have been derived from edits in €, of which the THEN-
conditions are equalities. The IF-conditions of these edits have a nonempty intersection,
because both edits are triggered when we fill in the values u; for the categorical variables
in T;. So, these edits generate an implied edit in Q; if we eliminate variable r. The THEN-
condition of this implied edit can be written as

Z digX; + by = Z diyX; + by

i#Fr i#r
where we have used (20).

Filling in the values u; for i € T, in this implied edit, we find that M, f should be equal to

ME. In other words, we have constructed an edit in Q, that would fail if we filled in the
values u; for i € T). This contradicts our assumption that these values satisfy all edits



de Waal and Quere: A Fast and Simple Algorithm for Automatic Editing of Mixed Data 395

in Q;, and we conclude that two constraints given by (17) (Case 1 above) cannot contradict
each other.

For Cases 2, 3, and 4 we can show in a similar manner that we would be able to construct
a failed implied edit in Q;. This contradicts our assumption that the values u; for i € T}
satisfy all edits in Q;, and we conclude that the constraints given by (17) to (19) cannot
contradict each other. In turn this allows us to conclude that a value u, for variable r exists
such that this value plus the values u; for i € T; satisfy the edits in Q.

Finally, note that if an edit (7) has been used to eliminate a continuous variable r by
means of the equality-elimination rule, the value given by

1
Xr = T4 (bs + Z ais“i)
s i#r
plus the values u; for i € T satisfy the edits in Q.
In the Appendix below, we give the last part of the proof of Theorem 1.
This concludes the proof of Theorem 1.

THEOREM 2. If and only if the set of edits corresponding to a terminal node — a set of
relations involving no unknowns — is consistent, then the variables that have been elimi-
nated in order to reach this terminal node can be imputed in such a way that the original set
of edits is satisfied.

Proof. This follows directly from a repeated application of Theorem 1, and the fact that
eliminating a variable amounts to generating a set of implied edits for the remaining
variables.

THEOREM 3. The algorithm described in Section 3 determines all optimal solutions to the
error localisation problem.

Proof. The terminal nodes of the tree correspond to all possible combinations of fixing
and eliminating variables. Thus, according to Theorem 2 above, the algorithm checks
which of all possible sets of variables can be imputed consistently. The algorithm simply
selects all optimal sets of variables that can be imputed consistently from all possible sets
of variables. Therefore we can conclude that the algorithm finds all optimal solutions to
the error localisation problem.

6. Computational Results

We have demonstrated in Section 5 that our algorithm determines all optimal solutions to
the error localisation problem for mixed data. At first sight, however, the developed algo-
rithm may seem rather slow because an extremely large binary tree has to be generated to
find all optimal solutions, even for moderately sized problems. Fortunately, the situation is
not nearly as bad as it may seem. First of all, if the minimum number of fields that has to be
changed in order to make a record pass all edits is (too) large, the record should not be
edited automatically in our opinion. We consider the quality of such a record to be too
low to correct it automatically. In our opinion, such a record should either be edited manu-
ally, or be discarded completely. By specifying an upper bound on the number of fields
that may be changed, the size of the tree can drastically be reduced.
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Table 1. Characteristics of the data sets

Data Data  Data Data Data Data

set A set B set C set D set E set F
Number of variables 90 76 53 51 54 26
Number of nonnegativity constraints 90 70 36 49 54 22
Number of balance edits® 0 18 20 8 21 3
Number of inequality edits” 8 2 16 7 0 15
Total number of records 4,347 274 1,480 4217 1,039 1,425
Number of inconsistent records® 4,347 157 1,404 2,152 378 1,141
Total number of missing values 259,838 0 0 0 2,230 195
Number of records with more than 6 4,346 7 117 16 136 8

errors or missing values

Errors per inconsistent record 0.2 2.5 2.6 1.6 5.8 3.0
Number of optimal solutions per 6.1 12.0 6.9 233 1.2 11.6

inconsistent record

? A balance edit is an edit of Type (1b).
" Excluding nonnegativity constraints.
¢Including records with missing values.
4Excluding missing values.

The size of the tree can also be reduced during the execution of the algorithm, because it
may already become clear in an internal node of the tree that the corresponding terminal
nodes cannot generate an optimal solution to the problem. For instance, by fixing the
wrong variables we may make the set of edits infeasible.

The value of the objective function can also be used to reduce the size of the tree. This
value cannot decrease while going down the tree. So, if the value of the objective function
in an internal node exceeds the value of an already found (possibly suboptimal) solution,
we can again conclude that the corresponding terminal nodes cannot generate an optimal
solution to the problem. These terminal nodes need not be examined, and can be cut off the
tree.

Because the size of the tree, and hence the computing time of the algorithm, can be influ-
enced by the order in which the variables are treated, this ordering is very important in prac-
tice. The ordering must not be fixed before the execution of the algorithm as this would lead
to an extensive average computing time. Instead the ordering should be determined dyna-
mically, i.e., during the execution of the algorithm. Each time a variable is to be treated
the “‘best’’ variable, according to a suitable ordering strategy, should be selected.

The algorithm described in this article has been implemented in a prototype program
called Leo. This program has been compared to two other programs. For Statistics Nether-
lands improving the efficiency of the data editing process for economic, and hence mainly
numerical, data is much more important than improving it for social, and hence mainly
categorical, data. Therefore the developed programs have only been evaluated for purely
numerical test data. For our evaluation experiments we have used six realistic data sets. In
Table 1 we give a summary of the characteristics of the six data sets.

The numbers in the last two rows of Table 1 have been determined by comparing the
number of fields involved in the optimal solutions, respectively the number of optimal
solutions, of the three algorithms. The number of fields involved in the optimal solutions
is assumed to be equal to the actual number of errors.
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The six data sets come from a wide range of business surveys, such as a survey on labour
costs, a structural business survey on enterprises in the photographic sector, a structural
business survey on enterprises in the building and construction industry, and a structural
business survey on the retail sector. Besides these data sets we have used two business data
sets, the Swiss Environmental Protection Expenditure survey (data set E) and a subset of
the UK Annual Business Inquiry (data set F), from the EUREDIT project, a research
project under the Information Society Technologies Programme of the Framework
Programme 5 of the European Union. The numbers of variables, edits and records are
in most of the six data sets quite realistic for business surveys at Statistics Netherlands.
Exceptions are data set A, where the number of edits other than nonnegativity edits is
very small and the number of missing values is very large (almost 60 missing values
per record on average, and only one record has fewer than 6 missing values), and data
set B, where the number of records is very small. At Statistics Netherlands a very large
and complex data set to be edited automatically may involve slightly more than 100
variables, about 100 edits, and a few thousand records.

For a detailed description of the edits of the six data sets, we refer to De Waal (2003b).
For some data sets, for instance data sets C and E, all variables are interconnected by edits.
Some of the other sets of edits, for instance those of data sets A and D, can, in principle, be
split up into subsets involving disjoint sets of variables. This has not been done, however,
which means that the applied algorithms (represent an attempt to) solve the entire error
localisation problem at once rather than solving it for each subset of edits separately.

The first algorithm we consider is based on a standard mixed integer programming
(MIP) formulation for the error localisation problem for continuous data (cf. De Waal
2003b). This algorithm has been implemented in Visual C++ 6.0, and calls routines of
CPlex, a well-known commercial MIP-solver, to actually solve the MIP problems
involved. We refer to this program as ERR_CPLEX in the remainder of this article.
ERR_CPLEX finds only one optimal solution to each instance of the error localisation pro-
blem. To find all optimal solutions we could — once an optimal solution to the current MIP
problem has been determined — iteratively add an additional constraint that basically states
that the present optimal solution is excluded but other optimal solutions to the current MIP
problem remain feasible, and solve the new MIP problem. This process of determining an
optimal solution to the current MIP problem and adding an additional constraint to obtain a
new MIP problem goes on until all optimal solutions to the error localisation problem have
been found. We have not implemented this option, however. Resolving the problem from
scratch for each optimal solution would be very time-consuming. The alternative is to use
a so-called hot restart, where information generated to obtain an optimal solution to a MIP
problem is utilised to obtain an optimal solution to a slightly modified MIP problem. A
problem with this possibility is that experiences at Statistics Netherlands with CPlex so
far, on linear programming problems arising in statistical disclosure control, shows that
CPlex becomes numerically unstable if too many hot restarts in a row are applied. Our
results for ERR_CPLEX are therefore only indicative.

The second algorithm is based on vertex generation (cf., Sande 1978; De Waal 2003a).
This algorithm has been implemented in a program, CherryPi, using Delphi 3. The
implemented algorithm uses a matrix to solve the error localisation problem. The number
of rows of this matrix is implied by the number of edits and the number of variables. The
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actual number of columns is determined dynamically. Owing to memory and speed
restrictions a maximum for the allowed number of columns is set in CherryPi. If the actual
number of columns exceeds the allowed maximum, certain columns are deleted. This
influences the solutions that are found by CherryPi. Owing to this pragmatic rule in
some cases only nonoptimal solutions may be found, and in some other cases no solutions
at all may be found. Another effect of this pragmatic rule is that if columns have been
deleted in order to find solutions to an instance of the error localisation problem, the
optimality of the solutions found is not guaranteed. The larger the allowed number of col-
umns, the better the quality of the solutions found by CherryPi, but also the slower the
speed of the program. Practical experience has taught us that in many instances setting
the allowed number of columns to 4,000 gives an acceptable trade-off between the quality
of the solutions found and the computing time of the program. In the version of CherryPi
that was used for the comparison study the allowed number of columns was therefore set to
4,000.

The third algorithm is based on the branch-and-bound approach proposed in this article.
The algorithm has been implemented in the program Leo, using Delphi 3. The program
requires that a maximum cardinality N,,,x for the optimal solutions should be specified
beforehand. Only if a record can be corrected by N« or fewer changes, are optimal solu-
tions to the error localisation problem determined. For Leo we have performed two kinds
of experiments: for the first kind N,,x was set to 6, and for the second kind N, was set
higher. In Leo the following rule to select a branching variable has been implemented: first
select the variables that are involved in at least one failed edit and a minimum number of
satisfied edits, then select the variable from this set of variables that occurs most often in
the failed edits. If there are several ‘‘best’’ variables to branch on, one of them is chosen
randomly. In Leo, the equality-elimination rule described at the end of Section 3 has not
been implemented. On two data sets, the data sets for which the computing times of Leo
are comparatively bad, we have applied a special, alternative version of Leo in which the
equality-elimination rule has been implemented. Leo sometimes suffers from memory
problems, especially for records with many errors, because too many nodes with too
many edits need to be stored. For records for which Leo suffers from memory problems,
it cannot determine an optimal solution.

ERR_CPLEX, CherryPi, and Leo suffer from some numerical problems. These pro-
blems arise because in (erroneous) records the largest values may be a factor 10° or larger

Table 2. Computational results of the error localisation algorithms for the data sets (in seconds)

Dataset A Dataset B Dataset C DatasetD Dataset E Data set F

ERR_CPLEX' 233 (1) 10 (0) 93 (1) 108 (8) 13 0)  35(0)
CherryPi 570 (38) 96 (1) 540 (7) 498 30) 622 (3) 79 (0)
Leo® 18 (0)  308(10) 531 (4) 21 (1) 59 (34) 7 (0)
Leo (Npae = 6) 7 (0) 51 (1) 94 (2) 19 (0) 4 (1) 8 (1)

! Tests performed on a special server. On this PC the only fully licensed version of CPlex at Statistics Netherlands
has been installed. To compare the computing times of ERR_CPLEX to those of the other programs, they have
been multiplied by a factor of approximately 1.08.

2 To find the results for Leo for Ny, >6, we have set Ny equal to 90 for data set A, to 8 for data sets B and C,
and to 12 for data sets D, E, and F.
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than the smallest values. For instance, because of these numerical problems ERR_CPLEX
occasionally generates suboptimal solutions containing too many variables.

The experiments have been performed on a 1,500 MHz PC with 256 MB of RAM. This
PC is connected to a local area network. Computing times may therefore be influenced by
the amount of data that was transmitted through the network at the time of the experiments.
To reduce and to estimate this influence we have performed five experiments per data set
at various times during the day. In Table 2 we present the average computing times of
these experiments for the six data sets, and between brackets the standard deviations of
these computing times over the corresponding five experiments are provided. In all
experiments, the reliability weight of each variable was set to 1.

The values of N, for Leo have been determined by trial and error. We have set N, as
high as possible without encountering memory problems for many, i.e., 20 or more,
records. The value of N,,,x for data set A was set so high because the number of missing
values for this data set are extremely large. Data set A was the most difficult one for
ERR_CPLEX. It could not find any optimal solution for three records. Data set C was
the most difficult one for CherryPi and Leo: CherryPi did not find a solution for 11 records,
and Leo_8, i.e., Leo with N, = 8, not for 58 records. For 9 of these 58 records Leo_8
suffered from memory problems. Those 9 records were excluded from the computational
results for Leo. Data set E was also difficult for Leo. Leo with N, = 12 suffered from
memory problems for 13 records. For the other data sets Leo did not suffer from memory
problems. Leo_6, i.e., Leo with N,,,x = 6, did not suffer from memory problems for any of
the six data sets.

In the context of special transportation problems and pure fixed charge transportation
problems — problems that are similar to the error localisation problem — McKeown
(1981) remarks that ‘It is unclear in any of these contexts as to what makes a problem
“‘easy’’ or ‘‘difficult’’ to solve.”” This remark has been confirmed for the error localisation
problem. From the characteristics of the data sets it is hard to establish beforehand whether
the corresponding instances of the error localisation problem will be ‘‘easy’’ or ‘‘hard.”’
For instance, in examining the characteristics of data sets B, C, and D, one might expect to
see a similar performance per record, but this is not the case.

As already mentioned, the equality-elimination rule described at the end of Section 3
has not been implemented in Leo. For the two data sets for which ERR_CPLEX is better
than Leo_6, data sets B and C, we have applied a special version of Leo in which this rule
has been implemented. The results are given in Table 3. In this table we present the aver-
age computing times for the two data sets over five experiments, and between brackets the
standard deviations of these computing times are provided.

For data set B the special version of Leo_8 could not find a solution for one record. For
data set C the special version of Leo_8 could not find optimal solutions for 58 records, just

Table 3. Computational results for Leo with equality-elimination rule (in seconds)

Data set B Data set C
Leo with equality—elimination1 14 (2) 77 (1)
Leo with equality-elimination (Ny,x = 6) 4 (1) 19 (1)

' To find the results for Leo for Nmax >0, we have set Np,.x equal to 8 for both data
sets.
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like the standard version of Leo. The version of Leo with the equality-elimination rule did
not suffer from memory problems, however.

Examining the results in Tables 2 and 3, we can conclude that as far as computing speed
is concerned ERR_CPLEX and Leo (either with N,x = 6 or with N, >6) are the best
programs. We note at the same time, however, that this conclusion is not completely
justified as ERR_CPLEX determines only one optimal solution whereas the other
programs (are designed to) determine all optimal solutions. Comparing the results of
Tables 2 and 3, we see that the equality-elimination rule described at the end of Section
3 leads to a substantial reduction in computing time, at least for the two data sets
examined. With this rule, Leo_6 is clearly faster than ERR_CPLEX for all data sets.

Besides computing speed other aspects are, of course, important too. We note that all
programs, even the commercially available CPlex, suffer from numerical problems. As
already mentioned, Leo in addition suffers from some memory problems. Because of its
matrix with a fixed maximum number of columns, CherryPi does not always determine
optimal solutions, but less good, suboptimal solutions. Summarising, it is hard to give a
verdict on the quality of the solutions found by the programs as the programs suffer
from a diversity of problems.

7. Discussion

In this article we have compared computing times of our branch-and-bound algorithm to
those of other algorithms for solving the error localisation problem. It should be borne in
mind, however, that these results do not say anything about the quality of the solutions in
terms of their accuracy and their effects on the data. To evaluate these statistical aspects
of automatic editing, several evaluation studies have been carried out at Statistics
Netherlands and others are in progress. Unfortunately, most of our evaluation reports
on automatic editing are in Dutch. Two exceptions are Houbiers, Quere, and De Waal
(1999), and Hoogland and Van der Pijll (2003).

We consider the branch-and-bound algorithm described in the present article a very
promising one for solving the error localisation problem. The main reason for our choice
is the excellent performance of Leo for records with up to 6 errors. For such records it
determines all optimal solutions very fast. We admit that for records with more than six
errors the results of Leo become less good, just like the other algorithms. The program
begins to suffer from memory problems, and the computing time increases. To some
extent these problems can be overcome by implementing the equality-elimination rule
described at the end of Section 3, and by storing edits in a more compact manner than
we do in our prototype version. Besides, as we argued before, we feel that records with
many errors should not be edited in an automatic manner, but manually. Given this point
of view, Leo seems to be an excellent choice.

The proposed branch-and-bound algorithm is not very complex to implement and main-
tain. One of the reasons for the simplicity of the algorithm is that it is a very ‘‘natural’’ one.
For instance, in the algorithm categorical and continuous variables are treated in almost
the same manner, only the underlying method for generating implicit edits differs. More-
over, searching for optimal solutions to the error localisation problem is also a natural
process. All possible solutions are simply checked, and the best solutions found are the
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optimal ones. Because of the simplicity of the branch-and-bound algorithm discussed in this
article, maintaining software based on it is relatively simple. Not only operations research
specialists can understand the algorithm in detail, but also the IT specialists who develop
and maintain the final computer program based on the mathematical algorithm.

Statistics Netherlands has therefore decided to implement this algorithm in a module of
version 1.5 of our SLICE system (cf., De Waal 2001). This version reads an upper bound on
the number of missing values per record as well as a separate upper bound on the number of
errors (excluding missing values) per record. The former number is allowed to be quite
large, say 50 or more, whereas the latter number is allowed to be moderate, say 10. If the
number of missing values or the number of errors (excluding missing values) in a record
exceeds either of these upper bounds, this record is rejected for automatic editing. Records
that require too much computer memory are also rejected for automatic editing. The module
does not have to be rerun when such records are detected, but simply skips the records
once they are detected. The new module includes the equality-elimination rule. In
addition, it contains a heuristic to handle integer data. Hence the new module solves the
error localisation problem for a mix of categorical, continuous and integer data.

One may argue that some users of SLICE will want to edit records with many erroneous
fields automatically despite our arguments against editing such records. These users might
then be disappointed, because the new module will not be able to handle such records. To
overcome this problem, we propose using a simple heuristic treatment of these records
instead of applying the new module. For purely numerical data one could, for instance,
minimise the sum of the absolute differences between the original values and the final
values subject to the condition that all edits are satisfied. The resulting mathematical pro-
blem can be formulated as a linear programming problem, and can be solved quickly. For
details on this linear programming approach and some suggestions for other heuristic
approaches we refer to De Waal (2003b).

We are willing to admit that our choice of branch-and-bound algorithm is to some extent
a subjective one, but we feel that it is a justifiable one.
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