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A Framework for Analyzing Categorical Survey
Data with Nonresponse
David A. Binder'

Abstract: A general framework for analyz-
ing multidimensional contingency tables
with nonresponse is discussed. Emphasis is
placed on modelling the complete data and
the nonresponse mechanism. The implica-
tions of general log-linear models are dis-

1. Introduction

In most surveys, in spite of all reasonable
follow-up efforts and careful control of the
survey process, nonresponse occurs. This
nonresponse may be at the unit level (com-
plete nonresponse) or at the item level. A
concise discussion of various methods for
nonresponse adjustment is given in Platek,
Singh, and Tremblay (1977). Little (1988)
mentions the three general strategies for
handling nonresponse in survey data. These
are:

— direct analysis of the incomplete data,
- imputation, and
- reweighting complete cases.

Many of the methods available are des-
cribed in Little and Rubin (1987). In prac-
tice, direct analysis is usually avoided
because of its complexity; reweighting is
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used for unit nonresponse and imputation is
used to handle item nonresponse.

In some cases direct analysis will lead
to reweighting procedures, especially for
ignorable response patterns. One of the
most popular reweighting methods in prac-
tice is poststratification or weighting class
adjustment; see Oh and Scheuren (1983).
However, there are some inherent problems
with this method, even for large scale sur-
veys. Some of these are:

a. There may be so many potential
weighting classes that the number of
respondents in some classes is too
small. This is especially true with panel
surveys where the respondents are con-
tacted on two or more occasions, and
much information from the first occa-
sion is available even for nonrespon-
dents to later occasions; see Lepkowski
(1989).

b. In most surveys, nonresponse on dif-
ferent items would imply different
weighting classes for each item, so that
the data file may have different weights
for different items. Because of the
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difficulty in analyzing such data,
reweighting is often restricted to unit
nonresponse.

For item nonresponse, imputation methods
are commonly used. For a discussion of
imputation procedures, see Kalton and
Kasprzyk (1982). Imputation yields individ-
ually clean records which are convenient for
tabulation. If the nonresponse rates are low,
this is probably quite suitable. The problem
with higher nonresponse rates is that (i) we
are adding an imputation variance to the
estimate (see Kalton and Kish 1984) and (ii)
the estimates of variance will usually be
biased, possibly leading to misleading
analytical conclusions. Rubin (1987) dis-
cusses these drawbacks and recommends
multiple imputation to overcome some
of the concerns. Little (1988) discusses
examples of actual survey practices for
imputation.

In this paper, we concentrate on surveys
with qualitative responses. Fay (1986) sug-
gests that when p variables are collected,
some of which may be subject to nonres-
ponse, the analysis proceeds with 2p vari-
ables, where we have p indicator variables
for whether or not each variable had a res-
ponse. A log-linear analysis of the 2p-
dimensional table is then possible. Such
models can include both ignorable and non-
ignorable response patterns. Little (1985)
and Fay (1989) use this framework for the
analysis of longitudinal data. Baker and
Laird (1988) use this framework where only
one variable is subject to nonresponse.

In these papers, emphasis is put on
modelling the nonresponse mechanism,
although log-linear analysis of the complete
data is implicit in the framework. Here, we
shall emphasize the analytic objective,
where the data are to be fitted to a model.
The nonresponse mechanism is included
explicitly in the model. We also extend the
analysis to the case of a complex survey,
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where we wish to incorporate the sample
design weights in the analysis. We find that
by modelling the data and the nonresponse
mechanism we can develop a rich class of
adjustment methods. The models proposed
are extensions of those in Fay (1986).

In Section 3, we generalize the models to
allow for arbitrary multidimensional cross-
classifications. This provides a framework
within which to explore a wide variety of
nonresponse adjustment methods. Examples
of applications can be found in Chen and
Fienberg (1976), Nordheim (1984), Stasny
(1986), Fay (1989) and Little and Su (1989).
In Section 2, we present the simple case of a
two-way table to motivate the ideas of Sec-
tion 3. We also demonstrate the effect of
various model assumptions on a simple

" numerical example. In Section 4, we discuss

the implications of more complex sampling
schemes.

2. Poisson Sampling with One Variable
Subject to Nonresponse

2.1. Notation

First we consider the case where we have a
cross-classification of categorical data,
where there may be nonresponse in only one
of the variables. We let subscript i index the
variables which always have complete res-
ponse and subscript j indexes the variable
which may be subject to nonresponse.
Therefore, for each cell (i, j) we have two
possible response patterns, denoted by P,
and P,. Response pattern P, refers to com-
plete response, so that cell (i, ) is observed,
whereas response pattern P, refers to the
incomplete response case, so that all we can
observe is the row membership, i. Our data
consistof {n;li=1,...,Lj=1,...,J}
for the complete responses and {n;,|i = 1,
..., I} for the incomplete responses. Thus
the data can be displayed as in Table 1.
To exemplify the effect of various model
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Table 1. Observed counts in a two-way table with one variable subject to nonresponse
Complete Incomplete Totals
Responses Responses
ny ny Ry nyy
npn ny ny np
Totals n,, n,, n.y n,,

assumptions for the data, we use the numeri-
cal example which appeared in Little (1985).
Certain special cases of our overall model
framework are exactly those as discussed by
Little. Table 2 shows the frequencies.
Now, it is well known (see, for example
Bishop, Fienberg, and Holland 1985, p. 477)
that maximum likelihood estimates for pro-
portions from a multinomial distribution
are identical to those obtained from inde-
pendent Poisson samples for each cell. We
therefore derive our results for the indepen-
dent Poisson model. In particular, we
assume that, had we observed all the com-
plete responses, the distribution of cell (i, ;)
would be Poisson with mean ;. To model
the nonresponse mechanism, we assume
that given the complete response was in cell
(i, j), the probability of observing a com-
plete response (response pattern P;) is m;;,.
Alternatively, the probability of a nonres-
ponse to the column variable (response pat-
tern P,)is m;,, where m;, + m;, = 1. These
assumptions imply that the observed data

Table 2. Example of a 2 by 2 table with one
variable subject to nonresponse

Complete  Incomplete Totals
Responses  Responses
100 20 40 160
30 50 60 140
Totals 100 300

130 70

{n;, ny} are independent Poisson with
means according to Table 3.

The log-likelihood function for the obser-
vations is

{ = —x+++zznij[10g{)"ij}
i

+ log {m; }] + ) nylog {Z 7»;,%,72}
@.1)

subject to m;, + mw;, = 1.

Now, in general we have 31J unknown
parameters with only 7(J + 1) observa-
tions and 1J restrictions, so that the model
parameters cannot be uniquely estimated
unless there are at least 7(J — 1) further
restrictions. Fay (1986) and Baker and
Laird (1988) point out that having /(J — 1)
restrictions is a necessary but not sufficient
condition for estimability. Problems with
estimability can occur if some of the 7’s (the
response propensities) are estimated to be 0
or 1, in which case a number of boundary
solutions may exist.

The requirement for restrictions on the
parameters leads to some arbitrariness in
the selected models. This is where it becomes
important to use external knowledge or belief
about the response mechanism. Although
producers of official statistics tend to avoid
methods which depend on model assump-
tions, for problems such as nonresponse
such models are inevitable, even if they are
used implicitly rather than explicitly. It is
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Table 3. Means of Poisson random variable in a two-way table with one variable subject to

nonresponse
Complete Incomplete Totals
Responses Responses
Ay AT z Ao My
J
Ay, AT Y AT My
J
Totals Y A ¥ AT PIDIRE Ayt
i i i

desirable, though, to use methods which are
not too sensitive to the model assumptions.
The framework of this paper allows -suffi-
cient flexibility to include a wide variety of
models which might be considered.

In the following, we assume that A; =
;(0)and m;, = m;, (B), where the unknown
parameters 0 and B are distinct; that is, the
parameter space for {0, B} can be represented
as a Cartesian product, ® x B. One impor-
tant consequence of this is that if m;,(B)
is independent of j for all i, then the maxi-
mum likelihood estimates for {A;} will
not depend on the estimated my’s, so
that the model for the m;’s is inconse-
quential for estimating {A;}. This is a
special case of Rubin’s (1976) notion of
“missing at random.” In particular, the
maximum likelihood estimator for {A;} is a
solution to

Sy

i+

) ) ;;ae

2.2)

We see that this may be solved via a straight-
forward application of the EM algorithm
(Dempster, Laird, and Rubin 1977), where
the complete data are estimated by {n; +
(X JA;, )n;y } on each iteration, using the cur-
rent estimates for {&,}. A more efficient
algorithm such as Newton-Raphson itera-

tion may be preferable in practice; see Sec-
tion 2.3.

We call the model for the {A;} the data
model, whereas the model for {r;,} will be

_referred to as the response model.

2.2. Saturated data model

We now demonstrate that a saturated model
for {A, } and a missing-at-random model for
{m;.} lead to weighting class adjustment or
poststratification adjustment methods. In
the saturated data model, A;(8) = 0, so
that (2.2) yields

_ A

Ay = n; + X_U

i+

Ry

This implies that

i & 1y
where
n1+ + nlU
ai - )
n;,
J
ni, = Z ;i

Thus each row i of {n; } is reweighted by the
factor a.

Little (1985) showed that the missing-at-
random response model with the saturated
data model, for the data given in Table 2,
yields the estimated means in Table 4.
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Table 4. Estimated means under the Table 6. Estimated means under a response
missing-at-random response model model with diagonal|off-diagonal effects
Estimated Means Totals Estimated Means Totals
133.33 26.67 160 100 60 160
52.5 87.5 140 90 50 140
Totals 185.83 114.17 300 Totals 190 110 300

An alternative response model to that of
missing-at-random is one where m;, (B) =
B, (B2 = 1 — B;;). This model is identi-
fiable only when J < I. If J = I, the obser-
vations will fit the estimated cell means
exactly. In this case the data cannot be used
to assess the relative merits of this model
against the model where m;, (B) = B;. This
decision must be based on external consider-
ations. Now, for m;(B) = By, the maxi-
mum likelihood equations may be simplified
to

- B,
)\'1 = ny + Ny - 13
’ ’ Z Xi(B/Z
/

B = T

ﬁjl X_H.’

sz = 1- le

where
i, = YA,

Little (1985) showed that, for the data
given in Table 2, this model specification
yields the estimates given in Table 5.

Other models for nonresponse could also
be plausible for these data. For example, we

Table 5. Estimated means under a response
model with column effects

Estimated Means Totals
118.18 41.82 160
35.45 104.55 140
Totals 153.63 146.37 300

might suppose that
Tje = Bu ifi=
= sz ifi # j.

This model might be used in a longitudinal
survey where the probability of nonresponse
to the second occasion depends only on
whether there is a change of classification
from the previous occasion. In this case we
obtain estimates given by Table 6.

As can be seen from these examples, the
final estimates can be sensitive to the
assumed response model and the data alone
cannot be used to judge which model is most
appropriate. Each application must be
assessed on its own merits to decide on the
appropriate adjustment method.

2.3. Log-linear data models

In the previous section we considered only
the case where the data model was saturated.
This is the implicit model when the complete
cross-classification is produced (at least
when there is no nonresponse). As we have
seen, this can severely limit the range of
nonresponse models which are estimable. In
data analysis, though, nonsaturated models
are often considered. We now consider the
implications of various log-linear model
assumptions on the {A; } to accommodate a
rich class of nonsaturated models. We first
consider the case where the response mech-
anism is assumed to be a missing-at-random
model, so that attention is focused on the
data model.

Suppose log {A,,(0)} = x;;0, where x;; and

/)
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0 are g-dimensional column vectors. This
general formulation includes the analysis of
main effects and interaction effects for con-
tingency tables; see Bishop, Fienberg, and
Holland (1975). It also includes more gen-
eral models. Now, the estimating equations
(2.2) may be written as

XA-N-M) =0 (2.3)
where X is an IJ x ¢ matrix with (i, j)th
row being x;, Aisan IJ x 1 vector of {1},
Nis an IJ x 1 vector of {n;}, and M is an
1J x 1 vector of {nyA;/X;, }. Fuchs (1982)
suggested using the EM algorithm to solve
this system of equations, when direct esti-
mates are not available.

This would result in the following scheme:

1. For current estimate 8, compute M®

as described above;
2. Obtain new estimates A*" by solving

XA™Y = XN+ M©),

Since the second step is itself often itera-
tive for many models (for example, iterative
proportional fitting), this could result in
many calculations to obtain convergence.
However, for data models where direct esti-
mators are available (e.g., independence of
rows and columns, or the saturated data
model), the EM algorithm may be prefer-
able to alternatives such as Newton-Raphson
iterations.

For the iterative Newton-Raphson
approach, the (1 4+ 1)th iteration, §“*V,
satisfies

Ut = g0 — [j(t)]—l X’[K(’) ~N— M")]
2.4
where
JO = Xx'[DY — bY + CYD,CY X
for

pY = diag{10},

N
diag {niU Ai} >
)

DY
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Table 7. Estimated means under no two-
Sactor interactions and a missing-at-random
response model

Estimated Means Totals
104 56 160
91 49 140
Totals 195 105 300
D, = diag {niu},
éy 0
& = ,
0 &
&0 = __1_ [X(}) X(})]/
1 X(‘) il =9 V-
i+ A

An initial starting point §© must be iden-
tified. Normally the first component of 6
represents an intercept term; that is, x;; = 1.
If so, a convenient value for 0© is
(logn,,,0,...,0).

Returning to the data given in Table 2,
suppose the data model contains no two-
factor interactions, so that A; = A, A,/
A, .. A missing-at-random response model
leads to estimating equations given by

iy = n, +ny

(2)

ny;

n,,

so that the estimates are given by the values
in Table 7.

Now, if the missing-at-random response
model is assumed, the hypothesis of no two-
factor interaction is testable. The expected
cell counts under the model are given in
Table 8.

A Pearson y’ test yields X* = 54.85 on
one degree of freedom, which is highly sig-
nificant, so we would reject the hypothesis
of no two-factor interactions under a mis-
sing-at-random response mechanism.

Ay =
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Table 8. Estimated means under no two-
factor interactions and a saturated response
model

Complete  Incomplete Totals
Responses  Responses
78 42 40 160
52 28 60 140
Totals 130 70 100 300

We now turn to the situation where the
response mechanism is not assumed to be
missing-at-random. There are many models
which may be used to explain the nonres-
ponse mechanism. Here, we suggest consid-
ering those models which fit within the
general framework of log-linear models for
categorical data. This provides a rich class
of alternatives from which to choose. In
particular, the models suggested by Fay
(1986) all fit into this class. However, the
general log-linear framework allows for
more arbitrary explanatory variables than
are available in Fay’s framework. For
example, a logistic response function on
continuous or discrete variables can be
accommodated within this class.

The models we propose have the form

log m (B) = zjuB

where z;;, and B are r-dimensional column
vectors. We define Z, and Z, to be the
matrices with elements {z;, } and {z,,,}, res-
pectively, each having dimension 1J x r.
Now, the log-likelihood function (2.1) may
be written as

¢ = — ) Y exp {x;6}
i
+ 3 % ny(x;0 + 2, B)
ij

+ Z ny log {Z eXp (x({je + zsz B)}
i J
subject to

exp {z;,B} + exp {zj,B} = 1. (2.9
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Differentiating with respect to @ and B, we
obtain the following likelihood equations

XA -N-M) =0, (2.6a)
Z{(N — D,A) + Z;(M — D,4A) = 0,

(2.6b)

D, + D, = (2.6¢)

where X, A, and N are defined in (2.3), M is
modified to the IJ x 1 vector of {n,-Uft,.ﬂX,.j/
%, fiphi}, Dy = diag {#;,}, D, = diag {f;,}
and 4 is an IJ x 1 vector of Lagrange
multipliers.

Identity Matrix

3. Selecting Response Patterns — The
Multidimensional Case

3.1. Structure

In the previous section, we considered only
the case where one of the variables is subject
to nonresponse. We now extend this to more
general situations.

For a p-way table, Fay (1986) considered
a response pattern as defining which vari-
ables are observed and which variables are
missing. However, in general, a response
pattern could be defined as simply the cell or
combination of cells to which the observa-
tion is known to belong. Complete response
gives information on the specific cell. Unit
nonresponse indicates that the observation
can be in any cell. Item nonresponse iden-
tifies a “slice” of the table to which the
observation belongs. In general, though, we
need not restrict ourselves to only these
structures. For example, we may know that
some observation belongs to one of the cells
which have been collapsed. This may be
used for variables such as income where the
respondent is unwilling to fully disclose the
exact category, but is willing to give the
information when the available ranges are
broader.

The set of all response patterns is denoted
by {P,, . . ., Px}. For example, in the case
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of only one variable subject to nonresponse,
discussed in Section 2, P, refers to complete
response and P, refers to nonresponse on
the one variable.

In general, for response pattern P, there
are associated subsets of cells within which
the observations are known to belong,
denoted by {A4,,}. For a given response
pattern P, {4,,} consists of all observable
cell combinations. For example, with com-
plete response, this set contains all indiv-
idual cells; whereas in the case of one vari-
able having nonresponse, this set contains
all subsets of cells where the variables with
response are specified. We see, therefore,
that for a particular response pattern, P,
the observations consist of counts corres-
ponding to the number of times each of the
subsets {4,,} is selected.

These observations are denoted by {n,,}
where n,, is the number of times subset A4,,
is selected. To model these observations, we
start with all indices i = 1, ..., I corres-
ponding to complete response. We assume
that before imposing the nonresponse mech-
anism, the cell counts are independent Poisson
samples with mean A, for the ith cell. To
model the nonresponse mechanism, we denote
by m; the probability that we obtain res-
ponse pattern P, given that the complete
observation belongs to cell i. Note that

Z n',-k = 1

k

Given this structure, we see that {n,, } are
independent Poisson with means

Y ATy

i€ Ay

Kee =

Therefore the log-likelihood function for
these data is

= 3YN+ XY ny 10g< y Xin,»k> (3.1
i k ¢

i€ Ay

subject to

Z TC,~k = 1.
k
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We see that for a given k and 7, if &, is
constant for all i € 4,,, then we have an
ignorable response mechanism.

3.2. Log-linear model

The categorical data models used to analyze
the data will again be assumed to have a
log-linear structure, so we have log A; =
x/0. In general, we have K response patterns.
We consider here the implications of assum-
ing a log-linear model for the response
structure

log m; = ziP
subject to

Znik= 1, (l=l,.
k

This log-linear model for the response pat-

, ).

" terns admits a rich class of models. For

example, in a longitudinal survey, we might
assume a logistic regression model for non-
response to certain sets of variables, using
variables from previous waves. We can
include a number of variables, without
requiring that the response probabilities
depend on all the interaction terms, which is
the implicit assumption in reweighting using
poststratification.

The vectors x; and 0 are g-dimensional;
the vectors z; and P are r-dimensional.
Assuming the parameters are estimable, we
estimate ® and B by setting to zero the
derivatives with respect to 0, p and o of

S exp (x0)
+ ) Z Ny, <10g Z exp {x/0 + zz{kﬂ}>
k ¢ i€ Ay,

Ll <; exp {7iB} — l>.
(3.2)

This results in the following likelihood
equations

X’(/‘ - Z Mk) = 0,
k

(3.3a)
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Y Z(M, — DA) = 0, (3.3b)
k

Y. D, = Identity Matrix, (3.3¢)
k

where X is the I x ¢ matrix with ith row
being x;, A is an I x 1 vector of {&;}, M, is
an I x 1 vector with ith component

Nt
an({ Z 7: Xy },

ae Ay,

Z,isthe I x rmatrix with i th row being zj;,
D, = diag{#,} for fixed k, and 4 is an
I x 1 vector of Lagrange multipliers {4, }.

We see that if the response mechanism
is ignorable, the ith component of M,
becomes

A
an[{ ZA Xak}

Thus, (3.3a) gives the estimator for {A;}
which is identical to that described in Fuchs
(1982) and in Haberman (1974).

In general, expressions (3.3) define a sys-
tem of I + g + r equations in [ + g + r
unknowns, which must be solved iteratively.
However, for the case of ignorable response
probabilities, expression (3.3a) contains
only ¢ equations in ¢ unknowns, so it is
easier to solve. For example, consider a
saturated two-way cross-classification as a
data model where either variable is subject
to nonresponse and an ignorable response
mechanism. The data consist of {n;} for
complete response, {n,; } for nonresponse in
the row variable, {n,;,} for nonresponse in
the column variable, and n,, for complete
unit nonresponse. The parameters of interest
are denoted by {A;}. Equation (3.3a) yields

—n 7»,-, =0
UUX - Y.

(3.4)

>

|Q‘.:

A —

ij n

A
i — Ny ——-n.
ij N Ui
x

>

+J

3.5

Consider now a nonignorable response
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mechanism where
Em;) = Mmy,
Eny) = ;anjz,
E(ny) = Zi:)»ijni3,
E(ny) = Z;X,nﬂ

1t| + njz + 1t,~3 + Tt,-j4 = l.

The estimating equations for this model are

X X TlZ n Xund
. — R.. — RN c _ . J
ij ij iU Z )\'ijnjz Uj Z )\'ijf[i:;
J i
Ry
'y = 0, 3.6a
" o Z Z )"ij ftl:l“ ( )
[
PIDIIEE D IDI A1) (3.6b)
L i j
Ry
Z ny ’A IA _ ft 2 Z a = O,
7 A IRy
; ij %2
(3.6¢)
Xijﬁi3 N n
Ry = —_ ﬂi al = 0,
; N Z ij“is } ; d
(3.6d)
Ay o
Ryuy A — My = Oa
AR, ij4 Lij
Z,:; ij "ij4
(3.6¢)
Ry + Ry + Ry + Ry = L (3.6f)

We see that although these equations can be
solved, the assumed nonresponse mechan-
ism is unusual in that the probability of
complete response is constant, whereas
the probability of complete nonresponse
depends on the cell (i, j). The analyst must
decide whether this is indeed reasonable.
The choice of model within this framework
will be somewhat specific to the context of
the data, as a number of models will yield
similar fits. It is important, therefore, for the
analyst to choose the model carefully.
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4. Other Sampling Schemes

In Sections 2 and 3 we derived the maximum
likelihood estimates for @ and B under
Poisson sampling models. By standard
treatments, the covariance matrix for these
estimated parameters could be estimated,
thus making available methods for con-
structing confidence intervals and perform-
ing tests of hypotheses. However, suppose
that the {n,,} defined in Section 3 are not
actual cell counts, but instead are popula-
tion estimates of cell totals denoted by {N,,},
based on a complex sample design. The esti-
mation techniques de.cribed in Sections 2
and 3 could still be applied, yielding
“pseudo maximum likelihood estimates™ of
the parameters 0 and B. One rationalization

for this is that we would obtain similar par- -

ameter estimates as we would have obtained
under simple random sampling for the as-
sumed model, provided the {N,,} are design
consistent. The nonresponse probabilities
are estimated using a design consistent esti-
mator. This may offer some protection
against model failure. In particular, the
population parameters which are being esti-
mated are defined to be the maximum likeli-
hood estimate if the whole population is
surveyed under the same nonresponse
mechanism as the mechanism for the actual
data at hand. If a consistent estimate of the
covariance matrix of {N,,} is available, the
covariance for § and f could be obtained by,
for example, using Taylor linearization. The
derivation would be analogous to that given
in Binder (1983).

For example, for the ignorable case given
by (3.3a) where M, is defined in (3.4), we
have

V; = BVyB’
where
B = C'D,
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- alx(s -y

D is a matrix with columns

Y Ax

i€ Ay,

2 A

i€ Ay,

5. Discussion

In this paper we have proposed a framework
which allows for a rich class of models to
adjust for nonresporise when analyzing cate-
gorical survey data. However, because of
problems of estimability, alternative models
may fit the data equally well. Many of the
models used for nonresponse adjustment
which are discussed in the literature are
special cases within this framework. The
choice of model must be made based on
external considerations. It is important here
to try to model the causes of the nonres-
ponse mechanism, and not just do the data
analysis blindly.

Without some external information, it is
virtually impossible to determine whether
the nonresponse is ignorable. For example,
suppose the analyst fits the data under
the assumption of an ignorable response
mechanism. Assuming that this résults in
some reduction of parameters compared to
the saturated model, extra parameters
which result in a nonignorable response
pattern could be added. However, since the
model under ignorable nonresponse already
fits the data, any test of significance for
ignorability would generally have fewer
degrees of freedom than that used to fit
the ignorable model. Therefore, the test
would not reject ignorability. The exception
to this would occur if {z;} in the ignor-
able model includes variables which are
additional to {x;} used to fit the ignorable
model.
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