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A Method for Variance Estimation of Non-Linear
Functions of Totals in Surveys — Theory and
Software Implementation

Claes Andersson’ and Lennart Nordberg'

Abstract: This paper treats the estimation
of standard errors in survey sampling.
Let #,%,...,1; be linear (e.g., Horvitz-
Thompson) estimators of the population
totals t,%,,...,%;. Simultaneous standard
error estimation for a large number of func-

tions f,(f1,0,-..,1;), ¢=1,2,...,0, is a
common problem at statistical agencies.
Such estimation can be very demanding
even for a mainframe computer as the
number of totals is large and the totals are
allowed to represent completely arbitrary
population domains.

We present a technique which reduces
this problem to a manageable form and
yields asymptotically unbiased variance

1. Introduction

In sample surveys it is often desirable or
necessary to employ estimates that are
non-linear in the observations. Ratios, dif-
ferences of ratios, regression coefficients
and post-stratified means are common exam-
ples of such estimators. Another example is
estimators that use auxiliary information in
some way. Usually, exact expressions for
the sampling variances of non-linear esti-
mators are not available, neither are simple
unbiased estimators of the variances.
Several different methods to compute
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estimates. This technique, which is based
on Taylor approximation and an extension
of the Woodruff transformation method,
has recently been implemented in a com-
puter program developed at Statistics
Sweden. This program, called CLAN,
can handle arbitrary rational functions
of domain and population totals and
auxiliary information can easily be
included. CLAN was written in the SAS
language and works on PCs as well as
mainframes.

Key words: Survey sampling; variance esti-
mation; statistical software.

estimates of these variances have been sug-
gested (for an overview see Wolter 1985).
The variances can be estimated by the use
of a resampling plan, which leads to heavy
computations, or by the use of some kind
of random grouping. Another approach is
to approximate the non-linear statistic
with a linear function, i.e., by using the
well known Taylor linearization method.
The variance formula appropriate to the
specific sampling design for the observed
sample can then be applied to the approxi-
mation. This leads to a biased, but consis-
tent estimator of the variance of the non-
linear estimator.
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The Taylor linearization technique has
been used in survey sampling for a long
time; examples of its applicability are
given by Tepping (1968), Woodruff (1971)
and Woodruff and Causey (1976). The
technique has also been used in general
computer programs for the estimation
of ratios, regression coefficients, etc.,
and their variances. Examples of such
computer programs are SUPER-CARP
(Hidiroglou, Fuller, and Hickman 1976),
SUDAAN (Research Triangle Institute
1989), PC-CARP (Schnell, Kennedy, Sulli-
van, Park, and Fuller 1988), and GES
(Estevao, Hidiroglou, and Sirndal 1995).
Wolter (1985) provides an overview of
available programs contemporary with the
book.

2. A Computational Technique for
Estimation of Standard Errors

2.1. The problem

Consider the problem of estimating a para-
meter 6 of a fixed finite population U of size
N. The parameter 6 is a function of J totals
t=(t,...,¢,...,1;), that is

O=f(t,....t;...,t;) =f(t) (2.1)

where t; = ¥y ;. is the total of the variable
¥; in population U and y;; is the value of y;
for unit k. A sample s is selected from U
under the design p(-) and is used to calcu-
late an estimate of ¢, A natural estimator
of @ is to replace the different totals in f(t)

with their estimates t = (f;,...,4,...,7),
giving
O=r(f,....5,...,0). (2.2)

We note that § is generally not an unbiased
estimator of § when f(t) is non-linear, even
when t is an unbiased estimator of t. It is,
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however, a consistent estimator of 8 if t is
a consistent estimator of t.

The approach discussed in the present
paper cannot be used when the estimate 6
is defined implicitly via the solution of an
estimating equation, for example, the
median. In what follows we assume that
the function f has an explicit form.

Another limitation is that our approach
does not cover cases such as imputation
for non-response where the estimation
weights for non-responding units depend
on the values for the responding units.

In most surveys, we are interested in
estimates of different #s in specific sub-
populations, called domains. Let the
domain of interest be denoted U; where
U; C U and let ¢; be an indicator variable
such that

_{lifunithUj

) (2.3)
0 otherwise.

Cj k
Then we can do the transformation,
Yik = Yi¢jk- The total of a variable y in
domain U is then t; = Zyy; = Zu k-

In the following we will look upon t as a
vector of totals generated by J arbitrary
combinations of y-variables and domains.
At one extreme t might be a vector of
totals of one variable y in J different, pos-
sibly overlapping domains. At the other
extreme t might be a vector of totals in one
domain for J different y-variables.

2.2. A solution

The problem remains to find the design vari-
ance of § when f (t) is a non-linear function.
One approach, which will be adopted here,
is to use the first term in the Taylor series
approximation for the particular function
f. The success of the method depends on
the assumption that the sample size is so
large that the higher order terms of the
Taylor approximation can be neglected. In
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that case we may write
. J
EEDIHOIT
j=1 _

where f/(t) = 9f(t)/01; is the partial deriv-
ative of fevaluated at t.
The mean squared error of 6, MSE(0) is

approximated by
YHOL: >

MSE V(i
=1
J J
PP HOTHOIE )

J
i=1 j=1

(2.4)

(2.5)

where C(f;,1;) is the covariance between ;
and 7;. The sum contains J(J +1)/2 dif-
ferent variances and covariances that nor-
mally have to be estimated.

We note that the mean squared error of ]
is MSE()= V() + Bias*(§). Thus, if
Bias?(6) is “small” compared to V(0), as
is usually the case when the sample size is
“large”, then MSE(f) can be used as an
approximation of V(0). For a comprehen-
sive discussion, see Wolter (1985).

The partial derivatives f1,...,f},..., f;
usually depend on the unknown t. For the
purpose of variance estimation, we substi-
tute sample based estimates of f; and
C(-,+). The f/ is estimated by f; (t), i
the partial derivatives are evaluated at t
and C(,-) is estimated by C(-,+) computed
from the sample. The result is the estimator

(2.6)

In general, V(6) will not be an unbiased
estimator of either the true MSE(§) o

V(6). It is however a consistent estimator
of MSE(f) provided that 7; and C(i;, ;)
are consistent estimators of #; and C(%;, ).
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Suppose that the ordinary ratio estimator
fratio = (1x/1x)1, is used to estimate the total
of y. Obviously 7., is an estimator for a
total but in our approach it will be con-
sidered (and covered) as a function of the
elementary estimators 7, and 7, of z, and
t, and the known ¢,. We will later state the
exact form required of our elementary esti-
mators, but for now we simply assume
that they are linear, ie., 7; = X WiVj
k €s. It is then possible to reverse the
order of summation and use the transfor-
mation

J
2=y Oy 2.7
=1

The total ¢, =Xyz, is estimated by
i, = S, wiz and the variance V(7,) is an
approximation of MSE(6 ) The estimation
of V(t,) has a well known solution, at
least for sampling designs used in practice.
Thus by the use of the single variable z
which is a linear combination of the ori-
ginal variables y;,...,y; we have con-
verted a J-variate estimation problem into
a simple univariate estimation problem.

In order to estimate MSE(6), we replace t
with sample based estimates, resulting in the
variable

J
b= SO (2.8)
j=1

This expression is due to Woodruff (1971).
The variance of 7, is easily estimated for
the appropriate design by using Z; and the
ordinary formulas for estimating the vari-
ance of a total.

In most surveys, we are not interested in
just one function f(t), but in several func-
tions, maybe hundreds, each one with its
own t, 6, =f,(t,), ¢=1,...,0, where t,
contains J, totals. The obvious solution is
to substitute sample based estimates of t,

in f;.
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Organising the calculation of the vari-
ances of éq, g=1,...,0, based on the esti-
mator (2.6) can be a very demanding task
even with a mainframe computer. Two
major problems arise:

i. We must keep track of all pairs
of totals and compute their covari-
ances. The number of pairs is
fgl Jy(J;—1)/2 which can be very
large in many common applications.
The problem is magnified if we allow
arbitrary combinations of domains
and y-variables. This means that a
sample unit may contribute to many
domains, totals and functions.

ii. We must provide partial derivatives of
all functions allowed.

The first problem is reduced by using
Woodruff’s transformation (2.8). The use
of Woodruff’s transformation for an
arbitrary function has been limited by the
computational difficulty of evaluating the
required partial derivatives, problem (ii)
above. In order to solve this problem,
Woodruff and Causey (1976) suggested a
method for the numerical estimation of
first derivatives. However, instead of using
an approximate and cumbersome numeri-
cal method, we are able to evaluate partial
derivatives from the expression of f(t)
alone and by applying (2.8) in a stepwise
fashion.

Using the transformation (2.8) has one
slight drawback. In order to compute the
z-values we need the estimates 7, for each
q. That means we have to make two passes
through the data. In the first pass we
compute the estimaEes 1;, in the second
pass we compute 6,, the z-values and
V(fzq) = V(éq) for each ¢. However, com-
pared to the problem (i) above we consider
this a minor problem.

Problem (ii) can be solved in the follow-
ing manner. Let f(t) be a compound func-
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tion which can be written in the following
form

() = 6(e (1), £2(6)) (2.9)

where g;, g, and G are sufficiently differen-
tiable functions.

Now we can apply Woodruff’s transfor-
mation on g;(t) and g,(t), giving

J
Og (t
21k=z g1 ( ).ij

and
= ot;
z - 3g2(t)y (2.10)
2% = 12 .
= ot

The transformation of f is given by (2.7).
Using the chain-rule we get

iy 0 _ 9608, 3G 0g
(2.11)
Inserting (2.10) and (2.11) into (2.7) we get
oG oG
Zr = =—Z1k + = Zo%- 2.12
k o2, 1k o2, 2% (2.12)

Thus it is possible to obtain the transforma-
tion (2.7) in a stepwise fashion.

2.3. An example

Let us illustrate the technique with an

example. Suppose we want to estimate the

variance of the function

s Iyt

6=-"2.
[3 . t4

(2.13)

Under (2.7), taking the partial derivatives of
0, and some algebraic manipulations yield

s Db (Ve Y yw yu
CRa\a L T W)
(2.14)

However, we can get exactly the same
expression by applying the transformation
in two steps. Let

A o
01 =gi(t) =é (2.15)
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and
~ N
b, =g(t) =7 (2.16)
4
then ‘
0=0,0, (2.17)
By (2.10) we get
I = {—1 (&—ﬁ) and
\h B3
. L (Ve Yar
o2 Iy ( 5] f4) (2.18)
Inserting (2.18) into (2.12) yields
N E
2y =01 05| = +A—>. 2.19
o= (22 (219)

It is easy to see that (2.19) is the same as
(2.14). Note that (2.19) is the transforma-
tion we would get from the product él- 92
using Z;;, and %y as input data.

It would also have been possible to define
él and é2 in a different way and still get
exactly the same result. For example,
define 6, =17-7, and 6,=1y-i; then
6 = 6,/6, and the appropriate expressions
for the z-variables will give the same result
as (2.14).

3. Software Implementation

3.1. General remarks

Since it is possible to compute the deriv-
atives of 6 in a stepwise manner, it is rela-
tively easy to construct an algorithm that
is suitable for a computer program where
the user does not have to bother with these
derivatives. If we allow only rational func-
tions of totals it means that we only have
to worry about the derivatives of functions
like ¢, op t,, where op is one of the operators
+, —, X and /.

Note: Although it is rather simple to
include other functions, i.e., 8 = func (),
where func is, for example, log (1), exp(ty),
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sqrt (1), etc., we do not treat these func-
tions here.

The following table shows the well known
Woodruff or z-transformations needed to
estimate the variance of 0 = t;0p 1,

Table 1. z-transformations for different
operators

op z-transformation

+ Zk = Yk T Yok

- Zk = Y1k — Va2k

X zk =0 % (yu/t1 + Yo/ 12)

/ zk =0 x (yu/ti — yu/12)

In order to compute the variance of an arbi-
trary rational function of totals we propose
a two-pass algorithm, which means that one
has to make two passes through the data set.
In the first pass all the totals needed are
estimated, for example, by the Horvitz-
Thompson estimator f] = X, yjx/ ™ Where
¥k is defined as before and m is the inclu-
sion probability of unit &.

When all totals are estimated, the second
pass begins. The parameters 6, of interest
may be specified in at least two ways, A
and B.

In approach A the user specifies the para-
meter(s) successively by using totals and
intermediate transformations in a pairwise
manner. In B the user specifies the para-
meter(s) of interest in terms of all totals
involved and lets the computer do the pair-
wise decomposition.

We illustrate the two approaches A and B
by a simple example. Let the parameter of
interest be the same as in Section 2, i.e.,
we want to find the z-transformation

needed to estimate the variance of
b= by in)ls - s.
The totals ¢4, .., I, are estimated accord-

ing to the sample design used when the
sample s was taken. In approach A the
user is supposed to specify 6 in- three
steps in this case. Note that y; =0 if
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Table 2. Intermediate and final z-transfor-
mations when a ratio between two products
is of interest

Step estimate  z-transformation

21 = 01 (yie/ By + /)
ok = 0,(21/0) — yui/3)
2 = 03/ (2o /0y — i) 1a)

1 él =f1'22
2 b,=46,/i
3 6,=0,/i,

unit k£ does not contribute to the estimate
of ¢. R

The variance of 63, i.e., of 6, is estimated
by using Z3; and using the formula for the
variance of 7, = ¥ 23, /m. The operations
on 1y, I, #3 and 7, in steps 1-3 may be
taken in different orders, all leading to the
same result.

In approach B, the wuser specifies
0 = (t1-1;)/(t3- 1), for example. The com-
puter program analyses the expression,
evaluates it and computes the appropriate
z-values in a pairwise manner as above by
using the usual precedence rules, first x
and /, then + and —. Of course the prece-
dence may be changed by parenthesis. The
main difference between approaches A and
B is that the computer does more of the
work in B than in A. Next we describe a
computer program that uses approach A.

3.2. CLAN

CLAN is a program designed to estimate
standard errors in survey sampling. The
program was written in the SAS language
(SAS Institute, Inc. 1988). CLAN permits
the user to choose between a large number
of estimators, including estimators that use
auxiliary information, and it can handle
very complex combinations of domain
specifications. The major strength of the
program lies in the flexibility with which
the user may combine estimators with the
specification of complex sets of domains.
This section contains an overview of
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CLAN. For more details about the user
interface and various practical aspects, we
refer to Andersson and Nordberg (1992).

Lett = (t;,...,t,...,t;) be a vector of J
population or subpopulation (domain)
totals as defined in Section 1. Let the para-
meter of interest be

0=s(t) (3.1)

where fis an arbitrary rational function. As
an estimator of # CLAN uses

6=r(t) (3.2)
where t = (},...,4;,...,4,) is a linear esti-
mator of t.

CLAN computes 6 and an estimate of the
standard error V'V (f), using the technique
described in Section 2. The output of
CLAN contains one or more pair(s)

0,Vv(6)) (3.3)

which are given prefixes P for point esti-
mates and S for standard error estimates,
respectively.

In one step CLAN can do the calculations
of (3.3) for many different sets of totals and
domains and different functions. The com-
putation is based on the technique referred
to as approach A in Section 3.1.

The form of the function f and the defini-
tion of the totals in t must be supplied by the
user. The estimator t is specified by the user
by choosing one of a number of available
strategies, i.e., combinations of sampling
design and estimator, including the choice
of non-response model.

So far four strategies have been imple-
mented in CLAN. The majority of surveys
conducted at Statistics Sweden reduce to
these four strategies, including a number
of surveys that use pps-sampling, various
types of network sampling and two-phase
sampling schemes for stratification.

The point and standard error estimators
used in the different strategies are found in
the Appendix.
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Strategy 1 assumes stratified sampling
with simple random sampling without
replacement within strata (SRS). The non-
response model presumed is independent
responses with equal response probabilities
within strata.

Strategy 2 assumes the same design as in
strategy 1. The difference is that strata can
be divided into response groups with equal
response probabilities within groups. Popu-
lation group sizes are assumed unknown.
This strategy also covers two-phase
sampling.

Strategy 3 is used for one-stage cluster
sampling where clusters can be divided
into strata and selection is SRS without
replacement within strata. All the elements
of the selected clusters are included in the
sample. The non-response model is the
same as in strategy 1, i.e., the response prob-
abilities of the clusters are assumed to be
equal within strata.

Strategy 4 can be seen as a combination
of strategies 2 and 3. The design is taken
from strategy 3 and the non-response
model from strategy 2 is assumed for the
clusters.

It should perhaps be emphasised that
CLAN allows different elements within the
same cluster to belong to different domains.

The reader may have noticed that multi-
stage cluster sampling is missing. The
reason is that such designs are currently
used very little at Statistics Sweden. It
could be included as a separate strategy in
the future if necessary. However, it is of
course, possible to let CLAN compute
approximate estimates of the variances in
multistage designs by assuming strategy 3
and computing appropriately weighted esti-
mates of the PSU totals.

Next we discuss the specification of the
function f. CLAN is at present restricted to
rational functions. Other types of functions
could easily be added if necessary since the
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stepwise Woodruff technique applies to
any sufficiently differentiable function.

If 1 is rational then the Woodruff trans-
formation for f can be obtained by succes-
sive use of the Woodruff transformations
corresponding to addition, subtraction,
multiplication or division of fwo totals or
functions of totals. These elementary trans-
formations have been pre-programmed and
are available to the user as the SAS macros:
%ADD, %SUB, %MULT and %DIV.

Each SAS macro contains three para-
meters. For instance, % SUB(Z, Z1, Z2)
obtains the Woodruff transformation for
Z=271-22.

We will illustrate how the macros work in
an example. This example, among others, is
worked out in more detail in Andersson and
Nordberg (1992).

3.3.  Example

Let T,, and N, be “Total income” and
“Number of individuals”, respectively, in
cell (a,b) in the following table, (index a
represents social group and index b age
group).

Remark: The social grouping is partly
overlapping since workers are part of the
group employees. One feature of CLAN is
that domains can be arbitrarily overlapping.

Suppose that we want point and standard
error estimates for “Mean income per indi-
vidual,” Ry, = T,/Ng, and the relative
mean income in cell (a,b) proportional to
mean income in the whole age group b,

Table 3. A skeleton table for Age x Social
group

Age group
Social group -29 3044 45-64 All
Farmers
Workers
Employees
All
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Qab = Rab . N4b/T4b' Notice that row 4
contains ““all social groups.”

The function f is two-dimensional here,
f(a,b) = (R(a,b),Q(a,b)). To specify f the
user must write a %macro FUNK-
TION(a,b). This is not a difficult task for
a user who is familiar with elementary
SAS programming. CLAN provides a
tool-kit which consists of six pre-pro-
grammed macros including the four
already mentioned.

All the totals involved in the function,
i.e., Ty, Na, Ty, and Ny, must be defined
for all (a,b). This is done by invoking a
pre-programmed macro % TOT(*,*,*). For
example, the total income in cell (a,b)
is obtained by %TOT(TAB, INCOME,
(SOCG = &a) AND (AGE = &b)) telling
CLAN that we want the units that meet
the condition (SOCG = &a) AND (AGE =
&b) to contribute to the estimate of the
total of variable INCOME and name the
estimate “Tab.” The variables INCOME,
SOCG and AGE are assumed to exist in the
input data set. The totals N, Ty, and Ny, are
defined analogously. (The SAS macro langu-
age uses “&a” to refer to the value of variable
a.) The functions R and Q are then obtained
as follows:

%DIV(RAB, TAB, NAB)
%DIV(R4B, TAB, N4B)
%DIV(QAB, RAB, RAB)

Rab = Tab/ N, ab
Ry = Typ/Nay

Qu = Ry /Ry

This will provide the Woodruff transforma-

Appendix.
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tion for every (a,b) for the functions R,
Ry, and Q. (The function Ry, is not of
primary interest here. It serves mainly as
an intermediate result.)

An alternative way to obtain R, and Q,,
is, for example, as follows:

%DIV(RAB, TAB, NAB)
%MULT(XAB, RAB, N4B)
%DIV(QAB, XAB, T4B)

The user can construct any rational func-
tion or set of functions by using the ele-
mentary macros as building blocks in
much the same way as one would use the
operations addition, subtraction, multipli-
cation and division in elementary algebra.

Finally we state the functions for which
we want to compute point estimates and
standard errors. (The operations above
only provide the appropriately trans-
formed data for each sample unit.)

By invoking a pre-programmed macro
%ESTIM we get the requested point and
standard error estimates. This is done here
by the following commands.

%ESTIM(RAB)
%ESTIM(QAB)

It is sometimes useful to do a bit of ele-
mentary SAS programming when writing
Y%macro FUNKTION. Example 2 on the
post-stratified ratio estimator in Anders-
son and Nordberg (1992) illustrates this
technique.

Estimation Formulas Under Strategies 1 Through 4

The computation of variances for functions of totals is always converted into computation
of variances of totals in CLAN through the use of the Woodruff transformation. When
t=(i,...,0,...,0;) where §; =%, Wi Dk has been calculated, then 6 is estimated by
6 =f(t) and the transformatlon 2 = E e /(t)y;x is performed. The variance of 0 is then
estimated by ( ,) where 7, = X, wy 2. Thus only formulas for point and variance estima-
tion of totals are needed.

In this appendix we specify the formulas used under each of the four strategies allowed in

CLAN.
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A.l. Strategy 1

Let N, be the number of units in stratum / in the sampling frame, h = 1,2, ..., H. Let m;, be
the number of responding sampling units i stratum A.
The total ¢ of variable y is estimated by

H Nh my
= — A.l
;mh; Ve (A1)

and the variance of 7, is estimated by

my 2
G ; m L ( >
V(i) = ZN—” (1 - —”) ! S (A.2)

A.2. Strategy 2

Stratum 4 is divided into L, response homogeneity groups. The units in a given group are
assumed to respond independently and with the same probability. The population size is
assumed to be unknown in each group.

In stratum 4 we know

N,, the number of population units,

n, the number of sampling units.

In response homogeneity group hg, g = 1,2,...,L,, i.e., group g in stratum 4 we know
ny, the number of sampling units in group g,
my, the number of responding sampling units in group Ag.

The total ¢ of variable y is estimated by

my,

i= Z Z yhgk' (A3)

m,,g =

We can also write (A.3) as follows

H L, N Mg

i= Z Z & Z Vhek (A4)

=1 g=1"hg 1=

where N,,g is an unbiased estimator of the unknown Nj,.
The variance of 7, is estimated by, (see Sirndal, Swensson, and Wretman 1992, p. 582)

~ Rpg (Ppg — 1 myg, — 1 1 2
V(t,) Nu(N, = 1) —
Z h h Znh (nh— 1 Nh_ 1 mhg zhg

H
N,—n ny
+;Nh Z——lhz g Zhg_zh (AS)
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where
m L m
= 1 & = \Myg 2 1 & 2 )
Zhe = Zzhgk’ h= Z‘,{—Zhg and sz = o —1 Zzhgk — MigZhg | -
hg k=1 g=1 "th hg k=1

A.3. Strategies 3 and 4

These strategies are used for one-stage cluster sampling where clusters can be divided into
strata and selected with SRS within strata. All the elements of the sampled clusters are
included in the sample. Non-response of clusters under strategy 3 is treated in the same
way as non-response of sampling units under strategy 1.

Strategy 4 corresponds to strategy 2 in the sense that clusters can be divided into response
homogeneity groups with unknown population group sizes. The formulas (A.1)—(A.5) are
still valid under strategies 3 and 4. Nevertheless, strategies 3 and 4 define the variables y and
z differently, and are different in this respect.

In strategy 3, y, is defined by

My
Yhk = Z Yhkv:
v=1

where M}, is the number of elements in cluster 4k and yy, is the value of y for element v in
cluster hk.
In strategy 4, gz is defined by
Mg

Yhgke = Z Yhgkvs
v=1
where M, is the number of elements in cluster gk and y,, is the value of y for element v
in cluster hgk.
In strategies 3 and 4 the z-values are calculated using y,; and y, as defined above.
Notice that different elements in the same cluster may belong to different domains.
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