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A Model-Based Approach: Composite
Estimators for Small Area Estimation
Kung-Jong Lui' and William G. Cumberland’®

Abstract: To reduce the mean-squared-error
(MSE) of an estimator in small area esti-
mation, the composite estimator, a weighted
sum of two component estimators, is often
considered. The difficulties of providing
a measure of error with respect to the
sampling plan for this estimator, and of
deriving the optimal weight to minimize
MSE, limit its use. We propose a super-
population model-based approach to derive

1. Introduction

In small area estimation, samples designed
to provide estimates for large geographic
areas are often used to provide estimates for
small areas as well. In such cases the sample
in a small area may be unrepresentative or
too small to produce reliable estimates; syn-
thetic estimators are often suggested for
these situations. The composite estimator, a
weighted sum of two component estimators,
can have a mean-squared-error (MSE) which
is smaller than that of either component
estimator when an appropriate weighting
scheme is used (Schaible 1978, 1979). This
technique has been frequently applied to
combine the simple direct and the synthetic
estimators (Schaible, Brock, and Schnack
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explicit optimal weights for the composite
estimator under several models related to
the synthetic estimator. In addition, the
prediction variance of the composite esti-
mator is easily obtained. A simple test to
help in deciding how to best apply these
results to small area estimation is given.

Key words: Composite estimator; optimal
weight; super-population.

1977, Royall 1973). However, deriving the
optimal weight has generally been an insolv-
able problem in small area estimation.
Although Schaible (1978, 1979) mentioned
two conditions that might help in deriving
the optimal weight, those conditions turned
out to be hard to use. Schaible stated that
the optimal weight could be found when the
two components were independent and either
of the two components was an unbiased
estimator of the domain total. These assump-
tions are difficult to evaluate with respect to
a sampling plan when one of the two com-
ponents is the synthetic estimator and the
other is the simple expansion estimator. The
second condition Schaible mentioned that
would allow the optimal weight to be found
approximately was to assume that the covari-
ance (with respect to the sampling plan) of
the expansion and the synthetic estimators
was small relative to the MSE of either of
these components. Again, this condition is
difficult to evaluate.
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Inferences about finite populations can
be made using approaches which do not
require calculations with respect to the dis-
tribution created by the sampling plan.
Lindley and Smith (1971) laid down a gen-
eral framework for a Bayesian approach to
estimation in finite population sampling. In
the case of small area estimation, Purcell
and Kish (1979) reviewed and discussed
several techniques, indicating their perform-
ances and limitations. Fay and Herriot
(1979) applied the James—Stein procedure
to estimation of income for small areas, and
recently, Fay (1987) discussed the use of
components of variance models in small
area estimation. A systematic collection
of practical applications and theoretical
developments in small area estimation
appeared in Platek, Rao, Sédrndal, and
Singh (1987). However, none of these papers
discussed the estimation of optimal weights
in composite estimation under a super-
population model.

In this paper, we discuss the composite
estimate of the uniformly minimum vari-
ance unbiased (UMVU) estimators under
some random effects covariate models and
derive the corresponding optimal weight in
explicit form. We show how to estimate the
optimal weight and suggest a test to help in
deciding how to best apply the results to
small domain estimation. Finally, a dis-
cussion of the composite of the simple direct
estimator and the modified synthetic esti-
mator is provided.

2. Composite Estimators

We suppose that the finite population is
divided into I mutually exclusive subareas
labeled i = 1, ..., I for which we wish to
produce estimates. Within each subdomain,
units are further classified into J subgroups
(for example, socioeconomic class, age, etc.);
these are labeled j = 1,...,J. The cell
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sizes N; resulting from this cross-classifi-
cation are assumed to be known. Let y;

(k =1,2,..., N;)bethe measurement on
the kth individual in the ijth cell and
J N
T, = Z z Yijk
j=1k=1

the total for the ith subdomain. The primary
focus is to estimate the T;’s.

Letting s; denote the n; sampled units in
the jjth cell, we use X, yu to denote the
sample sum and j;; to represent the average
for the sampled units in cell ij. Similarly, let
Vi = Zi e, Yln;, where n; = X, n;.

The composite estimator of any two esti-
mators 7 and T® for T, is defined as

yTO + (1 — TP, where 0<y<1.

The optimal weight y* for the composite
estimator to have the minimal MSE is given
by

v = [EF® - TY - EF" - T)
x (T — DE(T® — T)
+ E(T® — T,

—2E(T" — TXT? - T)] (1)
if 0 < y* <1, otherwise the optimal
weight is equal to 8., where 8 is an
indicator variable.

The composite estimator, 7" +
(1 — )T, has MSE smaller than 7 if
vy < 2y*. By symmetry, if (1 —y) <
2(1 — 7y*), then the composite estimator has
MSE smaller than T,

Traditionally, with respect to the distri-
bution derived from the sampling plan, an
attempt to find the optimal weight for the
composite estimator is usually unsuccessful.
This is because the formula for the optimal
weight involves terms, such as MSE’s of the
estimators, that are difficult to evaluate with
respect to the sampling plan. In the follow-
ing discussion, in which we use a super-
population model-based approach (Royall
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1970), expectation is taken with respect to
the distribution given in a model rather than
the sampling plan.

3. Random Effects Covariate Models

Incorporating the implicit assumptions for
the most common estimator, the synthetic
estimator, for small area estimation, Holt,
Smith, and Tomberlin (1979) derived the
modified synthetic estimator. This estimator
follows from the following model for the
population structure

Ve = b+ g 2

where €’s are independent, normally distribu-
ted with mean 0 and variance c’. Further-
more, to incorporate knowledge from
previous surveys to improve the precision of
the modified synthetic estimator, Lui and
Cumberland (1987, 1989) systematically
extended the above model by assuming that
the b, are independent N(B,, 67) random
variables, distributed independently of the
e’s, and derived the generalized synthetic
estimator. Knowledge obtained from a pre-
vious survey about the population under
consideration can be represented in B,. Dis-
cussions on the usefulness and applications
of such models can be found elsewhere (Lui
and Cumberland 1989). Note that if 62 = 0
or o; = oo, then we get one of the simple
least-squares models that have been con-
sidered by Holt, Smith, and Tomberlin
(1979). Because these random effects models
are more flexible in borrowing information
from other sources than the least-squares
models, we derive the optimal weight of the
composite estimator under this more general
model. In the following discussion, we
assume that the ratio of k = o?/0?, which
can be interpreted as the relative confidence
of the prior knowledge to the current infor-
mation, can be assigned by investigators,
or is known. Methods to estimate this par-

ameter can be found elsewhere (Ghosh and
Meeden 1986, Dempster and Raghunathan
1986). When B, is known, the generalized
synthetic estimator for T} has been presented
in our previous articles (Lui and Cumber-
land 1987, 1989) and it can be easily proved
that this estimator under the random effects
model always has a mean-squared-error
smaller than the corresponding least-squares
estimator. However, if f, is unknown, the
corresponding generalized synthetic esti-
mator does not necessarily outperform the
corresponding least-squares estimator (Lui
and Cumberland 1987, 1989). Scott and
Smith (1969) used the super-population
similar to that given in the above for esti-
mation in multi-stage surveys, but did not
discuss small area estimation.

In deriving the UMVU estimator of a
subdomain total, we note that any finite
subpopulation total can be represented as a
sum of observed and unobserved random
variables, so that the estimation problem
becomes one of predicting the sum of the
unobserved variables. Now, the UMVU
estimator of this sum for unobserved vari-
ables is the sum of the conditional means,
given the sampled units. Furthermore, we
note that this sum of the condition means is
a known linear function of parameters under
our model assumptions (Lui and Cumber-
land 1987, 1989). Therefore, when the par-
ameters are unknown, substitution of the
UMVU estimators for these parameters will
again give the UM VU estimator for the sub-
domain total (Graybill 1976). In other
words, when B, is unknown, the UMVU
estimator of T; is given by

j"viGSl — Z Z yijk

J kes
+ 2 k¢2 (@ = 2P + N5,
J Sij
)
where j, = X, A7, /%) (= B,) is the



72

UMVU estimator of B,, and where A; =
n ;x/(nx + 1). The prediction variance of
758" is given by

VIS = T) = ¥ (N; — ny)o’
+ Z (N; — nij)z)“jcz/n.j
2
(T = ma - ) ai/(x,).

)

Often, we have some known covariate infor-
mation, say Xx;, that is related to the stratum
effect b; in the model (2). For example, y’s
may represent the number of physicians in
the census tracts and x; may represent the
median house price, which could be used
as a proxy for the measurement of socio-
economic class (Lui and Cumberland 1989).
Other examples considering random effects
covariate models may be found elsewhere
(Platek et al. 1987).

In our model, we assume that b, is nor-
mally distributed as N (B, + B,x;, ©3).
When B, and B, are unknown, we can apply
similar arguments as before and show that
the UMVU estimator of T, under this model
is given by

]"';CSI — Z z yijk

J kes;

+ Z z [a - )‘j)(BO + lej)

T KEsy

+ Ayl &)
where B =7, — B%, and B, =
A0y — 2T, — PIIENGG — %)%

and X, = Z,A,x;/Z;);. The prediction vari-
ance of T is given by

VIS - T) = V(I - T)

" <Z Ny = )1 = X)0x = J'Cw)>

x G,Z,/Z A(x — X, (6)
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Note that the estimator 7,°%', given by for-
mula (3), though biased under the covariate
model, can be a better estimator with respect
to the MSE than the UMVU estimator 7'
given by formula (5) under the random
effects covariate model. This occurs when
the coefficient of variation for P, is large
(Lui and Cumberland 1989). Determining
the choice between 7'°%' and 7' leads us to
consider a weighted average of these two
estimators that could have an MSE smaller
than either 7% or %' . Using the facts that
E(TS — TYTS - T) = V(T - T)
and E(T}GSI —T) = =B Z(N; — ny)(1 — &)
x (x; — X,), we can use the variance for-
mulae (4) and (6) in formula (1) to derive the
optimal weight v* equal to CV*(B,)/(CV*(B,)
+ 1), where CV’(B)) = V(B)IEB)).
Note that the condition y < 2y* is auto-
matically satisfied if CV?(B,) > 1. There-
fore, yT°' + (1 — y)T' always has an
MSE smaller than 7%, if the coefficient of
variation of P, is greater than 1. Conversely,
if CV2(B,) < 1, then the composite esti-
mator always has an MSE smaller than 75 .
Furthermore, we can easily show that the
composite estimator always has an MSE
smaller than either of its components if

a. CV*(B,) > landy > (CV*(B) — 1)/
(CV2B,) + 1), orif

b.CV?’B,) <1 and vy < 2CV3(B))/
(CV*B)) + 1), orif

c. CV*(B,) = 1.

Note that as CV?*(B,) - oo, the com-
posite estimator with the optimal weight
converges to 725" . This implication is quite
reasonable, because if the coefficient of vari-
ation CV(B,) is very large, then using the
information about P, in the estimator 7'
might lead to a worse estimator than the
estimator 7°5', which does not usg this
information.
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Finally, the MSE of the composite esti-
mator with the optimal weight y* is given by

EW*TSS + (1 — y9TS' — T,y
VTS — T) + V)
x [E(TF' — THPIVB,) + B2

where V(TS — T;), V(B,), B,, and the bias
(E(TF' — T,) can be easily estimated if ,
the relative size o} to 62, is assumed to be
known. Stroud (1987) and Dempster and
Raghunathan (1987) discussed some other
random effects covariate models similar to
the one considered here, but did not discuss
the composite estimator, nor did they con-
sider the effect resulting from stratification
in their papers.

We can generalize the above results to
include any p-covariate (p < J — 1). Let
b ~ N(By + Bx; , 63), where B’ = (B, B,,

-5 B andx = (X515 X2, - - ., X;,). In
this p-covariate model the UMVU estimator

TS? of T, is given by
TS = X Y v+ 2 Y 14— 1)
J kesj J kés;
x (By + lejl + -+ Bpxjp)
+ A5
where B, = j, — £ ,B,%,, and f =
XpA Xp) ' XpA ¥
Xp = (X — Xudsxrs
%, = zx,xj,/z A,
7 7
A = (diag(X))); s
Y = D572, 52)
The prediction variance of V(7" — T}) =

V(e T) + [Li(XpAX,) 'Lo;
where L = (Z;(N; — n;)(1 — M)xg — X0,

» Zi(Ny — ny)(1 = X)(x;, — %)) In
fact, every argument in the univariate case
can be carried through simply replacing

CV?*(B,) in the univariate case with

CV*(L{p).

4. Testing of CV(B,)

We have shown that CV%(B,) > 1
(CV*(B,) < 1) implies that the composite
estimator yT°S' + (1 — y)T' always has
an MSE smaller than T, (T.°%'). We must,
however, decide whether CV?(B,) > 1 or
CV*(B,) < 1, because usually the values of
B, and o} are unknown. One method for
deciding whether CV2(B,) > 1 is hypoth-
esis testing, which requires that we find the
distribution of the estimator of CV?(B,). We
can easily rewrite the model assumption
given in Section 3, with b, ~ N(B, + B,x;,
o;), into the matrix form

)= ()2

where (7)) is distributed with N (O, c?I),
B=(b,...,b,) is distributed with
N(AB, o;I), and is independent of ),
A’ = ()lc, )Ic'z '''''' x,)le,ﬂ = (Bo, B1), and where
sand § denote the sampled and non-sampled
units, respectively.

Applying standard results for the general
linear model (Graybill 1976), we get the
UMVU estimator of c?

= Y[V, — V' XP(XPV;IXP)!
x XV Y, /(n.. — 2)

A2
Gcsi

where Y;is | x n..vector of measurements
on the sampled individuals, V, = I, _,

kX, X, which is a block diagonal matrlx,
where the jth block is given by Kln,x,l,x,, +
L .n, and X? = X,A. It is easy to show
that (n — 2)8%,/0? ~ x*(n.. — 2) which
implies that (n.. — 2)x6¢g,/o; ~ x2(n.. — 2).
Also, the UMVU estimator B, of B, is

Bi = (0, DXV 'XD)'XPV, Y,

and B, and 62, are independent. Thus we have
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CEV* @) = BSHEN — %))
which is distributed as F(1/2CV*(B))];
1, n.. — 2), a noncentral F-distribution,
where 62 = k6%s,. We can use this resulting
distribution to test the hypothesis
H,:CV*(B,)) = 1 versus (CV2(B,)~' > 1.
Under the null hypothesis, the distribution
of the test statistic is an F-distribution with
noncentrality parameter 0.5, leading to a
simple test of the null hypothesis. When we
reject the null hypothesis, we prefer using
YT + (1 — YT (or in particular,
TSy to using 7°%'. This result is consistent
with the fact that when (CV2(B,))~" is very
large, (implying that the prior knowledge
about B, is very precise), the estimator 775!
using the covariate information will be more
accurate than the estimator T°' which
ignores it. This test statistic can be easily
generalized for the p-variate case. The test
statistic for testing hypothesis CV*(L/B) =
1 has a noncentral F-distribution with par-
ameter equal to 0.5 and degrees of freedom
landn.. — p — 1.

5. Least-Squares Models Related to
the Simple Direct and the Synthetic
Estimators

Gonzalez and Waksberg (1973) compared
the performances of the synthetic and the
direct estimators. They concluded that when
sample sizes in each small area were relatively
small, the synthetic estimator outperformed
the simple direct estimator, whereas, when
sample sizes were relatively large, the simple
direct outperformed the synthetic. These
results suggested that a weighted sum of
these two estimators would be a desirable
alternative to choosing one over the other
(Schaible 1978, Schaible, Brock, and Schnack
1977). Therefore, in this section, we focus on
the estimator yT? + (1 — y)T™S, a linear
combination of the simple direct estimator
and the modified synthetic estimator (Holt,
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Smith, and Tomberlin 1979) under the
super-population model-based approach.
The simple direct estimator

TiD = ZNyJ-’y
J

is the UMVU estimator of 7; under the
model

Yie = Wy T &

where ¢’s are independent, normally distri-
buted with mean 0 and variance o” and p;
are fixed unknown constants.

The modified synthetic estimator

™ =YY m+2 27,

J kes; J kés;

is the UMVU estimator of T; under the
above model when w;; = py; = ... = p.
It is easy to show that E(TP? — T, (TMS —
T,) = V(TM® — T,) under the non-restricted
model. Therefore, we find the optimal
weight from formula (1) is

"= [g(My—n,-,-)Z(l/n,,— l/n‘j)o'z]/

| 2 % = (iin, = tin)o

* (? (N = )y = a.»)Z]

where fi; = Z;n;;/n;. A reasonable esti-
mate 9* of y* can be obtained by substi-
tuting the UMVU estimators fi; = j;,
i, =Ziny;n;, and & =XLEI,
(yy — §5 ). — 1) for g, ji;, and o’
in y* respectively.

A measure of error E(yT? + (1 — y) TMS
— T) for yI? + (1 — y)TMS can be
obtained from easily accessible estimates
of E(T;D - ]-})2’ E(T:‘MS - ]Ti)za and
E(TP — T)TY - T).

6. Discussion

From the traditional point of view, Schaible
(1979) pointed out two major problems



Lui and Cumberland: Composite Estimators for Small Area Estimation 75

in using the composite estimator. The first
problem concerns how to estimate the opti-
mal weight, given two estimators. The dif-
ficulty stems from the near impossibility of
calculating, with respect to sampling plan,
the MSE of small area estimators such as the
synthetic estimator. Although Schaible
(1979) suggested several different methods to
estimate the optimal weight corresponding to
different possible MSE’s assumed for the
population, these methods all depend on the
true value 7;, and hence cannot be applied to
estimate 7; in practice. The second problem,
common to all small area estimators, is how
to provide a measure of error of a composite
estimator for a given small area. Using the
model-based approach, however, we can esti-
mate the optimal weight explicitly and pro-
vide the measure of error of the composite
estimator for each small area. On the other
hand, in the model-based approach, as pro-
posed in this paper, we need to be cautious in
evaluating the underlying model assump-
tions, on which the optimality of our esti-
mators depends, although some robustness
of our estimators has been published (Lui
and Cumberland 1989). Using the sample
data to estimate the optimal weight for
random effects covariate models, as discussed
here, it is generally not a problem in practice.
However, when the expected cell mean is
unknown, the estimated optimal weight for
the composite estimator of the simple direct
and the synthetic estimator depends on the
cell sample means and these can be unreliable
when the sample sizes in each cell are small.
Using an unreliable estimate of the optimal
weight in the composite estimator may not
necessarily lead to an estimator which per-
forms better than both of its components.
Thus, in this situation, an empirical investi-
vation of the performance of the composite
estimator, similar to that given by Brock,
French, and Peyton (1980), should be the
next step in this research.

In summary, using the model-based
approach, we have shown that the optimal
weight of the composite estimator may be
expressed explicitly in terms of the par-
ameters in our model. Furthermore, we can
also provide a measure of error for our esti-
mators. Therefore, although one needs to be
cautious when using the model-based estima-
tors, the results given here should
be useful to both survey statisticians and
epidemiologists for estimating local area
characteristics.
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