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A Multivariate Time Series Analysis of Fertility,
Adult Mortality, Nuptiality, and Real Wages in
Sweden 1751-1850: A Comparison of Two
Different Approaches

Mats Hagnell'

Abstract: The relationships between fertility,
adult mortality, nuptiality, and real wages
in Sweden from 1751 to 1850 are studied
using multivariate time series analysis
methods. This approach allows an empirical
determination of the relationships between
the four time series, a considerable advan-
tage where existing theory provides insuf-
ficient guidance.

Both the vector autoregressive moving
average (VARMA) model and the vector

1. Introduction

In this article we study the relationships
between fertility, adult mortality, nuptiality,
and real wages in Sweden from 1751 to
1850, using annual data. We explore the
short-term interaction between these four
variables without making any a priori
assumptions. To accomplish this goal we
use multivariate time series analysis which
allows an empirical determination of the
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autoregressive (VAR) model are used and
the two approaches are compared with
regard to parsimony, interpretation, and
post-sample forecasting performance. We
also compare the VARMA and the VAR
approaches with regard to their sensitivity
to outliers.
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relationships between the four time series,
a considerable advantage where existing
theory provides insufficient guidance.

The short-run relationship between demo-
graphic and economic time series in Sweden
during the eighteenth and nineteenth cen-
turies has been studied previously in a num-
ber of papers from the departments of
Economic History and Statistics at the Uni-
versity of Lund (Andersson and Hagnell
1989; Bengtsson and Brostrom 1986; Bengt-
sson and Ohlsson 1985; Bring 1987; Hagnell
and Salomonsson 1989a; Larsen 1986). In
these papers, however, only one-sided
causation is considered, i.e., one dependent
variable is explained by one or several
explanatory variables. The time series
models used in these papers are distributed
lag-models or transfer function models.
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When we study the relationships between
demographic and economic time series, in
most cases we have to take into consider-
ation the possibility that one variable, which
explains another variable can itself be
explained by this other variable. For
example, an increase of the adult mortality
is probably followed by lower fertility, as
fewer adult women are available to give
birth to children. On the other hand, an
increase in fertility may lead to an increase
in adult mortality due to deaths from child-
bed fever.

Thus to study more complex relationships
between demographic and economic time
series we have to use time series models
which allow two-way causation or feedback,
i.e., models which are non-recursive multi-
ple equation systems.

One approach to the analysis of social
science time series is to model data as
a theoretically specified structural sys-
tem. This approach, known as econo-
metric modeling in economics and struc-
tural equation modeling in the social
sciences, requires a good a priori theory.
Unfortunately, in economic demography we
rarely have the kind of precise knowledge
which is required in structural equation
modeling. Even if we assume that we know
which variables influence a given variable,
we do not know at which lags the influences
occur. If, however, adequately long time
series are available, we can instead use mul-
tiple time series analysis, which allows an
empirical determination of the pattern of lag
structures between series.

There are two recent main developments
in this direction. Sims (1980) has proposed
an autoregressive (AR) model for vector-
valued or multiple time series. One advan-
tage of the vector AR (VAR) method is that
model parameters can be estimated by
ordinary least squares algorithms. A disad-
vantage is that VAR models cannot parsi-

" problem no
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moniously represent moving average (MA)
processes. Since MA processes are commonly
encountered in social science data, this is a
serious shortcoming. An example of an
application of VAR modeling in historical
demography is given by Eckstein, Schultz,
and Wolpin (1985).

A more promising approach has been
developed by Tiao and Box (1981), who
have proposed an iterative approach for
building multivariate or vector-valued auto-
regressive moving average (ARMA) models.
A disadvantage of vector ARMA (VARMA)
models, compared to VAR models at least,
is that model parameters are not easily esti-
mated. Nowadays, however, several soft-
ware packages are available with algorithms
for VARMA models. With the estimation
longer burdensome, the
VARMA model promises to become a
powerful tool for the analysis of social
science time series data. An example of an
application of VARMA modeling in histori-
cal demography is given by McCleary and
McDowall (1984).

We use two different approaches to multi-
variate time series analysis of the relation-
ships between our four time series in order
to make a comparison between these
approaches. First we consider VARMA
modeling and then the modeling of: the four
time series as a VAR system.

In demography, an empirical comparison
between different time series models, uni-
variate, transfer function and VARMA
models was made by Carter and Lee (1986)
and in macroeconomics, an empirical com-
parison between VAR and VARMA models
was made by Fackler and Krieger (1986). In
both these cases the main purpose was to
compare the forecasting ability of the dif-
ferent models and the post-sample forecast-
ing performance was used as a criterion. The
results in Fackler and Krieger (1986)
suggested that VARMA models may out-
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perform VAR models by parsimoniously
representing the underlying process, thus
improving the efficiency of the parameter
estimates. Here, since we use historical data,
we mainly make comparisons between our
different approaches with regard to substan-
tive interpretation and parsimonious rep-
resentation. However, a less detailed com-
parison of the two approaches with regard
to their post-sample forecasting perform-
ance is also made.

A problem which is common in many
applications of time series models is the
influence of outliers. Here we have some
large outliers in the data, especially for the
adult mortality. Our view is that the outliers
in our historical time series are probably
caused by unknown exogenous events or
interventions which disturb the normal
relationships between the variables. When,
for example, we study how adult mortality
depends on real wages, and adult mortality
has some large peaks that may be due to
epidemics, it seems questionable to include
these peaks in the analysis of how adult
mortality depends on real wages.

In order to study the influence of outliers
we try, for both the VARMA and the VAR
approach, to identify the outliers, adjust
their values to more normal values, and then
perform an analysis on the data with the
adjusted values. This analysis can then be
compared with the analysis on the original
values. Thus we are able to compare the two

approaches’ sensitivities to outliers.
 This paper is organized as follows. Multi-
variate time series models are surveyed in
Section 2 and the data are described in Sec-
tion 3. We identify and estimate a VARMA
model for our data and discuss the casual
implications of the estimated model in Sec-
tion 4. A VAR model is estimated and its
.implications are discussed in Section 5. A
comparison of the VARMA and the VAR
model with regard to their post-sample fore-
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casting performance is made in Section 6
while the influence of outliers for the two
approaches is treated in Section 7. Our main
findings are briefly summarized and some
concluding remarks are made in Section 8.

2. Multivariate Time Series Models

In this section we give a short survey of
multivariate time series or vector ARMA
models and of vector ARMA modeling fol-
lowing the approach given in Tiao and Box
(1981). Multivariate ARMA models are
also considered in Granger and Newbold
(1986).

A vector ARMA model with p auto-
regressive and ¢ moving average terms or a
VARMA (p, q) model may be written as

B°— ¢,B— ... - ¢,PFIZ,
= 3+B —-—0B—...— 0B]a,
@.1)

where Z, is a column vector of k stationary
time series; a, is a column vector of k£ white
noise processes; & is a column vector of k
constants; ¢, is the ith k x k& AR matrix,
i=1,...,p; O is the jth k x k MA
matrix, j = 1,...,q; Bis a k x k dia-
gonalized backshift matrix, i.e., for k = 2,

10 B 0
B’ = s, B =
0 1 0 B

and B is the usual backshift operator, i.e.,
Bz, = z,_,, B>z, = z,_,, etc.

The special case when we have only auto-
regressive terms in the VARMA model (2.1)
is a vector autoregressive model with p
terms, a VAR (p) model

Zt = 6+¢|Z1_1 + o .. + ¢pZ,,p+a,
(2.2)
The VARMA model (2.1) can be written in

shorter notation as

6,(B)Z, = & + O,(B)a, 2.3)



440

where ¢,(B), the autoregressive part, is a
matrix polynomial of degree p in B and
0,(B), the moving average part, is a matrix
polynomial of degree ¢ in B.

In order to have a better appreciation of
the VARMA models, we present a simple
case, which is a bivariate model, k = 2,
withp = land g = 1 ora VARMA (1, 1)

model
a¥—o¢BZ, = & + (1 — OB)a, 2.4

which can also be written as

Zy, = & + oz + dnZy + ay
- 0ya,, — 0,a,,,
Z, = 8+ dnZy + dnZy + ay

- 04, — Opnay,_-

In the model (2.4), diagonal elements of ¢
(11, ¢) and O (©,;, ©y) represent AR
and MA structures within each series. Off-
diagonal elements are causal effects between
pairs of series and pairs of shocks. The par-
ameter ©,,, for example, is the causal effect
of a,,_, on Z,,, while ©,, is the causal effect
of a,_, on Z,,.

In general, model (2.4) represents two-
way causation or feedback between Z,, and
Z,. However, if it is unlikely that Z,
“causes” Z,, then we expect @, and ¢,, to
be zero. Equation (2.4) then forms a recur-
sive model and the two equations in (2.4)
reduce to a univariate ARMA (1, 1) model
for Z,, and a model that may be rewritten as
a transfer function model with Z, as the
dependent and Z,, as the independent vari-
able.

The class of vector ARMA models (2.1) is
extensive and may contain models with a
large number of parameters. Given a vector
time series Z, of finite length ¢t = 1, ..., n,
the aim is to find a model which contains as
few parameters as possible and at the same
time adequately represents the dynamic and
stochastic relationships in the data at hand.
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Extending the basic ideas in Box and Jen-
kins (1976) for the univariate series, Tiao
and Box (1981) proposed an iterative
approach for building multivariate ARMA
models consisting of three main phases: (i)
tentative model identification, (i) esti-
mation, and (iii) diagnostic checking.

The number of ARMA parameters to be
estimated may be sucessively reduced by
constraining some parameters to zero. Par-
ameters that could not be distinguished
from zero during the estimation process are
here constrained to zero to obtain parsi-
monious models.

Two valuable tools in the tentative iden-
tification stage are the auto and cross cor-
relation matrices (CCM) and partial auto-
regression (PAR) matrices. Sample cross
correlation matrices (CCM) are given by
R(k) = {r;(k)}, where r;(k) is the sample
cross correlation of lag k between series
component i and series component j, i.e., the
correlation between Z;, and Z;,_,.

If Z, follows an MA(g) model, ie., an
VARMA (0, g) model, then the true CCM’s
are all zero matrices for lags greater than g.
That is, the cross correlation matrices “cut
off” after g lags, much like the autocorre-
lations of a univariate MA(g) model.

If Z, follows a vector AR(p) model, a
VAR(p) model, then the CCM’s have a
die-out pattern. In order to better charac-
terize autoregressive models, Tiao and Box
(1981) introduced the partial autoregression
(PAR) matrices. The PAR matrices are the
multivariate counterpart to the partial auto-
correlation function (PACF) in univariate
ARMA modeling. If Z, follows a vector
AR(p) model, then the true PAR matrices
are all zero matrices for lags greater than p.
That is, the partial autoregression matrices
“cut off after p lags, much like the partial
autocorrelations for a univariate AR(p)
model.

To help determine a tentative order of an
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autoregressive model, we can also use the
likelihood ratio statistic corresponding to
testing the null hypothesis that the partial
autoregression matrix of lag 1 is a zero
matrix against the alternative that it is not a
zero matrix. This statistic is, for the null

hypothesis, asymptotically distributed as a
H

chi-square statistic.

To estimate time series models, computer
programs are necessary. While programs for
univariatt ARIMA models and transfer
functions models are available in many
general-purpose statistical packages, pro-
grams for multivariate time series are avail-
able only in some of the packages especially
developed for time series analysis. We have
used the SCA package, described in Liu and
Hudak (1986), which contains a module for
multivariate time series analysis.

3. The Data

The data used for the estimation are annual
time series for all of Sweden during the
period 1751-1850 for the crude birth rate,
the death rate for ages 20-50 years, the
crude marriage rate, and an index of real
wages. We will use the following notation
for the four variables:

F = fertility, measured by the crude
birth rate,

M = adult mortality, the death rate for
ages 20-50 years,

N = nuptiality, measured by the crude
marriage rate, and

R = the real wages index.

We use the ages 20-50 in calculating the
mortality, here called the adult mortality,
since we know from previous studies
(Andersson and Hagnell 1989; Bengtsson
and Ohlsson 1985) that the mortality differs
substantially between this age group and the
age group over 50 years old.

The real wages index is calculated as the
ratio between the wages for agricultural
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labour and an index for the living cost. The
later index depends mainly of grain prices,
especially the price of rye. These prices, as
well as the wages, were decided in the autumn
and held fixed until the next autumn. Here
real wages are mainly a measure of the stan-
dard of living the following year. The real
wages index was developed at the Depart-
ment of Economic History, University of
Lund, (Bengtsson and J6rberg 1975: Jorberg
1972) and applies to all of Sweden.

Plots of the four time series are shown in
Figures 3.1-3.4. The adult mortality and the
real wages index seem stationary but with
some large outliers for the adult death rate.
Although there is some indication of a
decreasing trend for fertility and nuptiality,
we do not consider it necessary to difference
the four series to achieve stationarity. For
vector time series, even if some components
exhibit nonstationary behaviour, linear
combinations of the elements of Z, may
often be stationary and simultaneous differ-
encing of all series can lead to unnecessary
complications in VARMA model fitting.

4. Identification and Estimation of a
VARMA Model

We begin the identification of a VARMA
model for the four variables by studying the
cross correlations. A condensed summary of
the pattern of cross correlations matrices
R(k) for the first 10 lags is provided in Table
4.1 in terms of the plus, minus and dot
symbols. The indicator symbol “+” is
assigned when an element of R(k) is greater
than two times its estimated standard error,
the symbol “— for values less than minus
two standard errors, and ““.” for values in
between. Since there is no abrupt cut-off
after some lag but rather a die-out pattern,
the VARMA model cannot be a low order
MA process but must be an AR process or
a mixed model.
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Fig. 3.1. Fertility 1751-1859

The partial autoregression matrices P(k)
in summary symbols and the likelihood
ratio statistic up to the sixth lag are given in
Table 4.2. It is clear from Table 4.2 that little
improvement occurs after lag 2. For lags
greater than 2, nearly all of the elements of
the partial autoregression matrix are small
compared with their estimated standard
errors, and the likelihood ratio statistic,
which is approximately distributed as chi-

X

24.0 1

18.0 1

12.8 T

square with 16 degress of freedom, fails to
show significant improvement.

A tentative identification is an AR(2) or
an ARMAC(I, 1) model. In order to choose
between these two alternatives we fit an
AR(1) model and study the pattern of the
residual cross correlation matrices. Table 4.3
gives the pattern of the cross correlations of
the residuals after the AR(1) fit. The cut-off
after lag 1 indicates that the residuals follow
an MA(1) process. Consequently we choose

1760 1780

Fig. 3.2.  Adult mortality 1751-1859
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1760 1780
Fig. 3.3. Nuptiality 1751-1859

an ARMAC(1, 1) model as the best VARMA
model for our four original variables. The
AR(2) alternative will be considered more in
detail in Section 6 as it is the best fitting
VAR model.

The VARMAC(1, 1) model was fitted using
the exact maximum likelihood method.
More precisely, we use the model

I—-¢B)Z, = 6+ (I — OB)a,. (4.1)

The parameter estimates for the fit of the

90 1

75T M

a5 +

1800

1868

1820 YEAR

1840

unrestricted model (4.1) "are shown in
Table 4.4, where the figures within paren-
theses are the absolute t-values for the par-
ameter estimates.

The fit of the unrestricted model (4.1)
requires estimation of four constants, 16
AR terms and 16 MA terms, in all 36 par-
ameters. A more parsimonious model is
obtained by setting to zero those coefficients
whose estimates are small compared to their
standard errors, i.e., have small absolute

1760 1788

Fig. 3.4. Real wages 1751-1859

1888

1828 1840 1868 VEAR
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Table 4.1.  Pattern of sample cross correlations matrices, R(k), k = 1, ..., 10, for the four
variables
Lag = 1 2 3 4 5
FMNR FMNR FMNR FMNR FMNR
F+ -+ + + . + + + .+ . + . + . + . +
M-+ . — . .o e o
N+ + + s Lo+ + - R e
R + + + . + + . . + B N B
Lag = 6 7 8 9 10
FMNR FMNR FMNR FMNR FMNR
F + .+ + Coe L.
M . .
N . + - . . o
R . + ...+ .+ ...+

t-values. This was done for model (4.1) in
several sucessive steps. The parameter esti-
mates for the fit of the final restricted model
(4.1) are shown in Table 4.5 where all esti-
mated parameters are significant. In this
restricted model we have to estimate only 6
AR terms and 3 MA terms, a considerable
simplification in comparison with the
unrestricted model where we had to estimate
16 terms of each kind.

The final restricted model (4.1) fits the
data almost as well as the unrestricted
model. The difference in —2*(log likeli-
hood) between the restricted and unrestricted
model is 30.9, which gives a p-value greater
than 10% for a chi-square distribution with
degrees of freedom equal to the number of
parameters set equal to zero, i.e., 16 +
16 — 6 —3 = 23.

As the final step in the model building, we

performed a diagnostic check by calculating
the cross correlation matrices of the residuals.
Table 4.6 shows the pattern of residual
cross correlations for the final restricted
VARMAC(1, 1) model. It suggests that the
restricted model provides an adequate rep-
resentation of the data. The significant entries
in the residual cross correlation matrix for lag
5 return in every fitted model and are possibly
due to some sort of five-year cycle. This five-
year relationship is also seen clearly in the
univariate model for the central marriage rate.

We did a further diagnostic check by over-
fitting. A VARMA(2, 1) unrestricted model
was fitted and then sucessively reduced in
several steps by constraining insignificant
parameters to zero. The final restricted
model was exactly the same as the final
restricted VARMAC(1, 1) model. The exten-
sion of the VARMA(1,1) model witha VAR

Table 4.2.  Pattern of partial autoregression matrices, P(k), and likelihood ratio statistic X’

(k),k =1,...,6, for the four variables

Lag = 1 2 3
FMNR FMNR
F. . ++ . . -=
M++-- . . .+
N—-—+ + . ‘ -

R . . .+ ++ .

X2(k) 205.42 " 34.57 21.32

4 5 6

FMNR FMNR FMNR FMNR

+
1597 1678 994




Hagnell: Application of Multivariate Time Series Analysis

445

Table 4.3. Pattern of sample cross correlations matrices for the residuals after the AR(1)

fit
Lag = 1 2 3 4 5 6
FMNR FMNR FMNR FMNR FMNR FMNR
F + N e o .
M . .o .
N + -+ +
R ) Y

(2) term did not give a significantly better fit
to the data.

The final restricted fitted VARMA(1, 1)
model (4.1), with estimated parameters
given in Table 4.5, explains the relationships
among these four time series as the four-
equation system

increasing nuptiality and real wages result in
higher fertility. The influence from real
wages on fertility is easily interpreted. How-
ever, the coefficient of 1.35 representing
influence from nuptiality on fertility is too
large to represent only a direct causal effect.
This large effect from nuptiality on fertility
has been observed previously (Carlsson

F, = 143 + 1.35N,_, + 0.12R,_, A
1970; Lee 1975, 1981) and is attributed to
+ 0.34a5,_, + ap 42 some unknown common exogenous factor.
M, = 585+ 0.51M,_, However, the size of the coefficient is
duced when outliers are taken into con-
—0.14 43) '°
it F G 43 Gideration. This will be discussed in more
N, = 138 + 0.09M,_, + 0.70N,_, detail in Section 7.
+ 0.04ag,_, + ay, (4.4) From (4.3) adult mortality is seen to
depend on the random shock for real wages
R, = 141 + 0.78R,_, + ag,. 4.5)

Of these four equations, (4.2) explains the
fertility in Sweden from 1751 to 1850 in
terms of the nuptiality and the real wages,
both one year earlier, and also of the fertility
in preceding years. The effects are positive:

the preceding year and on adult mortality the
preceding year. As one expects, increased
real wages are associated with decreased
mortality.

Furthermore, (4.4) explains the nuptiality
in terms of adult mortality and real wages,

Table 4.4. Estimation results for the unrestricted model (4.1)

5 Py ¢}

T 14157 [—=.07 .10 152 A17 (=29 .18 —.02 —.017
@2.7) 3) (D 3G3) (9 (14 (13) (1) (3)
4.64 34 50 —.64 —.07 —18 —.06 36 .12
7 13) 29 (@11 (1.6 6) (3 (5 @1
33| | —.16 .11 99 01 —17 05 20 .02
(1.9) (2.0) (22) (6.0 (.8) (18) (9 (1.4 (1.3)

—20.44 54 142 —.80 89 103 153 —.37 .14
a3 L¢n 6o 5 14 | Lan @28 (2 (9 ]
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Table 4.5. Estimation results for the final restricted model (4.1)

o ¢

[14.257]
(8.0)

5.85
(6.3)

1.38
2.5

14.10
L 39) ]

127
(6.4)

1.35
(7.8)

51
6.7)

.09
5.2

70
(11.8)

78
(14.2) |

both one year earlier, and also of nuptiality
the preceding year. The effects are positive,
so increasing mortality and real wages result
in higher nuptiality. This is in accordance
with what we would expect as more deaths
result in more remarriages of the newly wid-
owed and perhaps in more marriage oppor-
tunities due to inheritance.

Finally, from (4.5) real wages depend
only on real wages the preceding year. In
this context it is natural to interpret the real
wages index as an independent or exogenous
variable which does not depend on any of
the other three variables.

Another way to illustrate the properties
of the estimated system is to observe the
system’s responses to random shocks, called
impulse responses (Sims 1980). If the system
is stable, the impulse responses will dampen,
i.e., the system will return to its steady state.
However, as pointed out earlier (Eckstein
et al. 1985), a simple interpretation of these
impulse responses critically depends upon
the assumption that the random shocks for

(6}

(34 .. .

(4.5) T
14
(4.0)
— .04
4.2)

different variables are uncorrelated. Here,
we find relatively large correlations between
the shock in F and the shocks for the other
variables (—0.41, 0.52 and 0.37 for M, N,
and R, respectively) while the remaining
correlations are smaller. Ignoring the cor-
relations between shocks, we briefly describe
the impulse responses for the system.

Due to the simple structure of our esti-
mated system, the impulse responses follow
a relatively simple pattern. A shock in fer-
tility does not give any responses in the
other variables while a shock in nuptiality
results only in exponentially decreasing
impulse responses in fertility. The impulse
responses for shocks in adult mortality and
real wages are depicted in Figures 4.1 and
4.2, respectively.

From Figure 4.1 we find that a shock in
adult mortality gives impulse responses in
both fertility and nuptiality that first
increase and then smoothly decrease towards
zero. The overall positive responses for fer-
tility may seem puzzling at first but are

Table 4.6. Pattern of sample cross correlations matrices for the residuals of the final

restricted VARMA(1, 1) model

Lag = 1 2 3
FMNR FMNR FMN

PR

4 5 6
R FMNR FMNR FMNR
e s
+
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8.158 L RESPONSE: SOLID = F;, DASHED = N; DOTTED = R
REACTION

0.100 T

8.958 T

0.800 +

8.0 5.0 18.0 15.8 20.8 25.0 YEARS

Fig. 4.1. Impulse response to M shock

explained by the fact that fertility in our
system only depends indirectly on adult
mortality through nuptiality. Since we use
yearly data, we cannot catch the first antici-
pated negative response in our model. In
Figure 4.2 we observe that the response in
fertility to a shock in real wages increases at
first and then decreases smoothly. The
impulse responses in mortality increase rap-

idly towards zero while the impulse responses
in nuptiality decrease rapidly towards zero.

The results of our estimated system are
generally simpler than those found by
others. For example, Eckstein et al. (1985)
used Swedish data on fertility, non-infant
mortality (i.e., mortality for persons one
year and older), real wages and some other
variables during the period 1750-1869.

RESPONSE: SOLID = F; DASHED = M; DOTTED = N
8.10 1
REACTION
BB L e iimees e TR e
[
-9.10 1 ‘
¢
¢
L
9.0 5.8 10.0 15.8 20.8 25.0

Fig. 4.2.  Impulse response to R shock

YEARS
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REAL WAGES

ADULT

MORTALITY

NUPTIALITY

> FERTILITY

Fig. 4.3. Relationships between the four variables according to the VARMA model

Their corresponding impulse responses
show much more complex and cyclic behav-
iour which they are sometimes able to inter-
pret. One reason for their complicated
pattern of impulse responses is their use of a
more complicated model, an unrestricted
VAR(4) model. The other reason is their
analysis of non-infant mortality where they
put together age groups with very different
reactions to the other variables. We, on the
other hand, are analysing mortality for the
relatively homogeneous age group 20-50
years and get a simpler pattern of’ impulse
responses. A

The arrow scheme in Figure 4.3 sum
marizes our findings concerning the relation-
ships between the four variables.

As is seen from Figure 4.3 the VARMA
model (equations (4.2) to (4.5)) is a recursive
equation system. By rearranging the vari-
ables we get parameter matrices ¢ and ©
which are upper triangular, i.e., the equation
system is recursive. Since we have no feed-
back in the system we could have estimated
equations (4.2) to (4.4) by a transfer func-
tion model for each equation seperately and
equation (4.5) by a univariate ARMA
model. This way of estimating equations
(4.2) to (4.5) would be inefficient, however,

since simultaneous estimation is more
efficient. Furthermore, it was not evident
that we had a recursive system until we
already had estimated the VARMA model.

5. Identification and Estimation of a
VAR Model

In Section 4, where we identified a VARMA

“model for our data, we saw that a VAR(2)

model was not inconsistent with the pattern
of cross correlation matrices and partial
autoregression matrices. Consequently we
choose a VAR(2) model as the best VAR
model for our four original variables. The
VAR(2) model was fitted using the exact
maximum likelihood method. More pre-
cisely, we use the model

T - ¢B - ¢,BZ = (5.1
The parameter estimates for the fit of the
unrestricted model (5.1) are shown in
Table 5.1, where the figures within paren-
theses are the absolute 7-values for the par-
ameter estimates.

The fit of the unrestricted model (5.1), like
the unrestricted model (4.1), requires esti-
mation of four constants and 32 AR terms,
in all 36 parameters. A more parsimonious
model is obtained by setting to zero those
AR coefficients whose estimates are small

6 + a,.
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Table 5.1. Estimation results for the unrestricted model (5.1)

[ 1067 [ .12 —.11 154 157
(3.4) (9 15 (2 (69
6.22 .52 63 —93 —.18
(1.3) Q7). (58) (2.1) (44)
2.08 —.01 .05 71 .04
(1.8) .2) (2.0 6.5 -(3.6)
—1.54 — .54 .01 .19 84

L O] Lan ) 2 62

compared to their standard errors. This was
done for model (5.1) in several successive
steps. The parameter estimates for the fit of
the final restricted model (5.1) are shown in
Table 5.2 where all estimated parameters are
significant. In the final restricted model we
have to estimate only 12 AR terms com-
pared with the unrestricted model where we
had to estimate 32 AR terms.

The final restricted model (5.1) fits the
data almost as well as the unrestricted
model. The difference in —2*(log likeli-
hood) between the restricted and unrestricted
model is 32.6, which gives a p-value slightly
less than 5% for a chi-square distribution
with degrees of freedom equal to the num-
ber of parameters set to zero, i.e.,
32 — 12 = 20.

As the final step in the model building, a
diagnostic check was performed by calculat-
ing the cross correlation matrices of the
residuals. Table 5.3 shows the pattern of
residual cross correlations for the final
restricted VAR(2) model. It is very similar
to Table 4.6 where the pattern of residual
cross correlations is given for the final
restricted VARMAC(1, 1) model (4.1). How-
ever, the only difference, the negative entry
in Table 5.3 for lag 1, indicates that the
restricted VAR(2) model is slightly inferior
to the restricted VARMA(1, 1) model.

We now turn to the causal implications of
the estimated VAR(2) model. The final

[0

27 13 =76 —.10]
24 (1.6) (2.5 (349
—28 —.08 45 11
a7 D 1.0 (4
.02 05 —.07 —.04
(4) (1.6 (.6) (4.0
1.32 61 —1.69 —.14

| 300 20 (14 (1.2 ]

restricted fitted VAR(2) model (5.1), with
estimated parameters given in Table 5.2,
explains the relationships among the four
variables in terms of the four-equation
system

13.9 + 1.53N,_, + 0.15R,_,

E =
— 0.05R,_, + a, (5.2)
M, = 330 + 0.59F,_, + 0.54M, ,
— 1.06N,_, — 0.13R,_, + a,,
(5.3)
N, = 1.82 + 0.09M,_, + 0.70N,_,
+0.04R, , — 0.05R,_, + ay,
(5.4)
R, = 169 + 0.74R,_, + az. (5.9

Equations (5.2) to (5.5) for the VAR(2)
model are essentially similar to equations
(42) to (4.5 in Section 4 for the
VARMA(,1) model. Especially, we
observe that the estimates of the corre-
sponding parameters are approximately
equal. The main difference is that in the
VAR model we have two significant relation-
ships which are not present in the VARMA
model. These two relationships are: that past
fertility influences adult mortality, and that
past nuptiality influences adult mortality.
That adult mortality depends on past fertility
may partly be due to deaths from childbed
fever. However, the coefficient of 0.59 is too
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Table 5.2. Estimation results for the final restricted model (5.1)

8 o,
(13917 [ 1.53 157
(8.3) 09 59
3.30 59 54 —106 —.13
(.8) (3.9 (6.1) (32) (4.4
1.82 .09 .70 .04
(2.5) 4.8) (12.1) (43)
16.85 74
L 38) ] L (10.9) |

large for this to be the only explanation.
There must also be some sort of spurious
relationship, or it could be an effect of out-
liers. This is discussed further in Section 7.

It is also hard to explain why adult mor-
tality seems to depend on past nuptiality. A
possible explanation may be that this
relationship in some way expresses the fact
that married people have lower death rates
than unmarried.

We summarize our findings concerning
the relationships between the four variables
in the arrow scheme in Figure 5.1.

For the VAR model, in contrast to the
VARMA model, we thus get a significant
relationship which is not easily explained.
~ Another difference between the VAR model
and the VARMA model is that since the
VARMAC(1, 1) model has only 9 significant
parameters besides the constant terms, it is
more parsimonious than the VAR(2) model
with its 12 significant parameters.

b,

—.05
2.2)

—.05
5.1

6. Post-sample Forecasting Performances
of the Two Approaches

Even though we use historical data, we will
make a small comparison of the VARMA
and the VAR models with regard to their
post-sample forecasting performances. We
will forecast the four variables in the period
1851-1859 where no great changes have
occurred from the estimation period 1751~
1850. Only one-step ahead forecasts for
each of these nine years are considered,
using the models derived from the esti-
mation period.

The forecasting performance of the
restricted VARMAC(1, 1) model, equations
(4.2) to (4.5), for the four variables is sum-
marized in Table 6.1. Besides providing the
expected forecast variance (given that the
model is true, i.e., the noise variance in eq.
(4.2) to (4.5), respectively), and the mean
squared error (MSE), based on the differ-
ences between forecasts and the actual obser-
vations, the table also includes the relative

Table 5.3. Pattern of sample cross correlations matrices for the residuals of the final

restricted VAR(2) model

Lag = 1 2 3 4 5 6
FMNR FMNR FMNR FMNR FMNR FMNR
F . — e ol
M . .o
N . .+
R .
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Fig. 5.1.

MSE’s for the unrestricted VARMA(I, 1)
model, Table 4.4, and for the restricted
VAR(2) model, eq. (5.2) to (5.5).

Table 6.1 shows that the MSE’s for all
four variables are considerably smaller than
expected. This is mainly due to the influence
of the outliers in the estimation period
which is discussed in more detail in the next
section. Here, the expected forecast variance
for mortality is 4.44, but when outliers are
removed it reduces to 1.10. As expected the
unrestricted VARMA model gives worse
forecast than the restricted VARMA model.
We notice that this is especially true
for fertility. This is interesting because
from the interpretation of the restricted
VARMA model in Section 4, we had reason
to believe that the fertility equation was
underspecified, i.e., it should have included
a mortality term. This was not verified here.

Relationships between the four variables according to the VAR model

Finally, we find that the VAR model
is inferior to the VARMA model even
with regard to post-sample forecasting
performance.

7. Influence of Outliers on the Two
Approaches

Methods for identifying outliers in uni-
variate time series models and transfer func-
tion models have been discussed by several
authors, e.g., Abraham and Chuang (1989),
Chang and Tiao (1983), and Tsay (1986).
No method, however, has been proposed to
identify outliers in VARMA models. If a
VARMA model happens to be recursive
then it can be rewritten as a set of transfer
function models and one univariate ARIMA

Table 6.1. Forecasting performance of the restricted VARMA model

Variable Expected MSE MSE restricted MSE restricted
forecast VARMA/MSE VARMA/MSE
variance unrestricted VARMA restricted VAR

F 2.005 1.172 28% 79%

M 4.444 2414 90% 80%

N 0.285 0.056 79% 90%

R 30.92 16.81 59% 97%
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model. By using this description of a recur-
sive VARMA model, methods for identifying
outliers in transfer function models can be
used to identify outliers in a recursive
VARMA model.

The method for identifying outliers
suggested by Chang and Tiao (1983) is
implemented in SCA for univariate and
transfer function models. Since the
VARMA(1,1) model in equations (4.2)-
(4.5) is recursive, it is possible to rewrite the
model as three transfer function models and
one univariate model. Then we can use SCA
to identify the outliers. Details are given in
Hagnell and Salomonsson (1989b). Two
outliers were found for F,, seven for M,, five
for N,, and none for R,.

After having adjusted the identified out-
liers with their residuals, we proceeded
with a multivariate time series analysis
on the adjusted values. Another way to
handle the outliers is to incorporate them
explicitely in the model building, using
intervention components representing the
effects of the outliers, see Hagnell (1990) and
Hagnell and Salomonsson (1989b). How-
ever, these two approaches for dealing with
outliers lead to the same conclusions for our
data.

The patterns of cross correlations matrices
R(k) and partial autoregression matrices P(k)
for the adjusted values were similar to those
in Table 4.1 and Table 4.2, so we identified a
VARMAC(1,1) model as the best fitting
VARMA model and a VAR(2) model as the
best fitting VAR model.

The final restricted VARMAC(1, 1) model
gives the following four-equation system

F = 142 + 030F_;, + 107N,

+ 0.13ag,_1 + ag 7.1
M, = 411 + 0.64M,_, — 0.08a,

+ ay, (7.2)
N, = 276 + 0.06M,_, + 0.78N,_,
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+ 0.06ag,_; + am
16.8 + 0.74R,_; + ag,-

(7.3)

R, = (7.4)

Compared to models (4.2)-(4.5) for the orig-
inal values, the residual variances are
reduced, especially for mortality. In (7.1) we
obtain a lower value for the coefficient of the
N,_, term. In general we get larger estimates
for the diagonal parameters in models (7.2)
and (7.3), whereas the off-diagonal par-
ameters are smaller in magnitude, compared
to (4.3) and (4.4), except the one for ag,_, in
(7.3).

The final restricted VAR(2) model gives
the following four-equation system

F = 12.1 4+ 031F_, + 105N,
+ 0.13R,_, — 0.10R,_, + ax
(1.5)
M, = 238 + 0.17F_, + 0.60M,_,
— 0.05R,_, + (1.6)
N, = 185+ 0.06M, , + 0.77N,_,
+ 0.04R,_, — 0.05R,_, + ay,
(1.7)
R, = 171 + 0.74R,_, + az.  (1.8)

As a rule, the same changes occur here as for
the VARMA(1,1) model, ie., we obtain
larger estimates for the diagonal parameters
and smaller ones for the off-diagonal par-
ameters. For mortality, the N,_; term is no
longer significant and the explanatory effect
from fertility changes from lag 1 to lag 2.

By adjusting for the outliers, we find that
the VAR model no longer contains the effect
of past nuptiality in the mortality equation
which was difficult to interpret. The effect of
past fertility in the mortality equation,
which is missing in the VARMA model, is
still significant but is reduced in size and
changes from lag 1 to lag 2.

Both the VARMA and the VAR
approaches are sensitive to outliers in the
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sense that we obtain higher estimates for the
diagonal parameters and lower ones for the
off-diagonal parameters when the outliers
are adjusted. We would probably obtain
this effect from removing the outliers for
any reasonable model for the four series.

For the VAR approach, however, in"

addition, a dubious dependenct vanishes
and another uncertain dependence is weak-
ened. So here the VAR approach seems
more sensitive to outliers than the VARMA
approach.

8. Summary and Concluding Remarks

In this article we study the relationships
between fertility, mortality for ages 20-50
years, nuptiality, and real wages in Sweden
during the period 1751-1850. We use multi-
variate time series analysis methods, which
allow an empirical determination of the
relationships between the four time series,
a considerable advantage where existing
theory provides insufficient guidance. Two
different approaches of multivariate time
series analysis, the VARMA and the VAR
approach, are used in order to make an
empirical comparison between these two
approaches.

Using vector ARMA modeling tech-
niques, we identify a VARMAC(1, 1) model
for the four series. After first having esti-
mated an unrestricted model, we obtain a
final restricted model by setting insignificant
parameters to zero. This restricted model
gives a simple interpretation of the relation-
ships between the four variables. Fertility is
influenced by past real wages and past nup-
tiality. Adult mortality depends only on
past real wages. Furthermore, nuptiality is
influenced by both past real wages and past
adult mortality. The real wages index is
found to be exogenous, i.e., not dependent
on any of the other three variables. The lag
structure is also simple. Only one-year lags
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in the variables or their random shocks are
present.

The simplest vector AR model, which
gives an adequate fit to the data, isa VAR(2)
model. The final restricted VAR(2) model
gives, on the whole, the same interpretation
as the final restricted VARMAC(1, 1) model.
However, the VAR(2) model implies that
adult mortality is influenced by past nup-
tiality which is not easily interpreted. Nor
does the VAR model give such a parsimon-
ious model as the VARMA model.

In a comparison of the post-sample per-
formances of the two approaches for nine
one-step ahead forecasts, the VAR model
was inferior to the VARMA model.

We also compare the two approaches
with regard to their sensitivity to outliers. An
analysis with adjusted values, where the out-
liers are removed, shows that the VAR
approach is more sensitive to outliers than the
VARMA approach. With adjusted values
adult mortality is not any more influenced
by past nuptiality in the VAR(2) model.

On the whole, the VARMA modeling
approach gives a parsimonious and easily
interpreted model of the relationships
between the four variables. The inter-
pretation of the model remains the same
even if we adjust for outliers.
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