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A New Bias-reducing Modi®cation of the
Finite Population Ratio Estimator and a

Comparison Among Proposed Alternatives

Abeidi S. Mussa 1

1. Introduction

The use of auxiliary information in estimating the ®nite population total or mean is

common. It is widely used at the design stage, either for strati®cation or for selecting units

for inclusion in the sample with probability proportional to the size of the auxiliary vari-

able. Auxiliary information is also frequently employed at the stage of estimation in the

form of ratio, regression, product and difference estimators, because of their simplicity

and ef®ciency. Such estimators take advantage of the correlation between the characteris-

tics of interest and the auxiliary variable. These estimators, under certain conditions, give

more reliable estimates of the population value under study than those based on simple

averages (Sukhatme and Sukhatme 1974). These estimators use statistics expressed in arith-

metic means of several sample pairs (the variable of interest and its auxiliary) drawn from

a population. The population mean of the auxiliary variable is generally assumed to be known.

1.1. Bias of ratio estimator

Ratio estimators are often used to estimate the population total, Y, or the population mean,

Y . Given a random sample of size n, the ratio estimator yx is given by yr � rX where r is

y=x, the ratio of the sample means of the two variables, and X is the population mean of the

auxiliary variable. A well-known defect of the estimator is the fact that it is usually biased.

However, by taking advantage of the correlation between y and x, ryx0 , the ratio estimator

can provide a more reliable estimate of the population value than that based on a simple

A modi®cation of the standard ratio estimator is proposed which, like Chakrabarty's (1979)
estimators, is in the family of Srivastava's (1980) class of generalized estimators of a
®nite-population mean or total. The proposed estimator is contrasted with the sample
mean, the standard ratio estimator, and Chakrabarty's modi®ed estimators in terms of
bias and variance properties across a variety of ®nite-population characteristics. The new
estimator performed comparably to Chakrabarty's estimators overall, and performed better
than Chakrabarty's estimators for several sets of ®nite-population characteristics.
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arithmetic mean. The ratio r is a biased estimate of R � Y =X, but Cochran (1977) has

shown that if the coef®cient of variation of x is less than 0.1, then the bias is small relative

to the standard error.

1.2. Ef®ciency of the standard ratio estimator

Following Cochran (1977), the estimated variance for yr can be written as

v�yr� �
1 ÿ f

n
s2

y � r 2s2
x ÿ 2rsyx

ÿ �
where f � n=N, sy is the sample variance of y1; y2;¼; yn, and syx is the sample covariance

between y and x, which is given as

syx �

P
�xi ÿ x� �yi ÿ y�

n ÿ 1

The relative ef®ciency of yr compared to y is given as

q �
s2

y

s2
y � r 2s2

x ÿ 2rsyx

�
1

1 �
C2

x

C2
y

ÿ 2ryx

Cx

Cy

where Cx �
sx

x
and Cy �

sy

y

It follows that in relatively large samples the ratio estimate will be more ef®cient than

the corresponding sample estimate based on the simple arithmetic mean if

ryx

Cx

Cy

>
1

2

1.3. Some ratio estimators

It has been observed in Section 1.1. that often in practical surveys, the bias is a small

fraction of the standard deviation of the estimate and can be neglected. There is,

however, an important class of survey designs in which this bias may become consider-

able. With small samples drawn from each of a large number, L, of strata, then, if the

bias in each stratum has the same sign, which according to Goodman and Hartley

(1958) does often happen, the bias in the estimate of the population total will be

approximately L times that of an individual stratum, while the standard deviation is

only multiplied by
���
L

p
(Cochran 1977). Therefore, the mean squared error will be of

the order of magnitude L2. Had it been that the estimate in each stratum total was unbiased,

the order of magnitude would have been L. It is in these situations that the use of an

alternative estimator with lower bias than the standard ratio estimator can be

advantageous.

2. Proposed Modi®cations of the Standard Ratio Estimator

This section reviews several proposed methods in the literature for estimating the mean of

a ®nite population with a modi®cation of the standard ratio estimator and considers the
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motivation for each. In addition, a new estimator is proposed which is related to some of

the earlier methods.

2.1. Unbiased estimation

As shown by Lahiri (1951), the customary ratio estimate r is unbiased if the sample is drawn

with probability proportional to
Pn

i� 1 x. Along the same lines Midzuno (1951) suggested a

method of drawing the ®rst member of the sample with probability proportional to the value

of x for the ®rst individual and drawing remaining (n ÿ 1) members of the sample with equal

probability.

Hartley and Ross (1954) proposed an alternative estimator that also considered the

sampling fraction. Mickey (1959) derived an estimator by a process of averaging the ratios

r� j� obtained when the jth pair (xj; yj) is omitted, which we now recognize as the jackknife

method of estimation. Several other estimators have been developed that are approxi-

mately unbiased and that offer potential ef®ciency gains; we now turn our attention to a

few of these.

2.2. Quenouille's bias reduction

Quenouille (1956) managed to reduce bias to order nÿ2, that is 0�nÿ2
�, though the use

of half-sample ratio estimators. Speci®cally, we let r � y=x as before and consider

analogous ratios from two random halves of the data, which we denote rj � yj=xj for

j � 1; 2. Quenouille's estimator is then tQ � 2r ÿ 1=2�r1 � r2�. It might be thought that

any reduction in bias would be achieved at the expense of a corresponding increase of

variance, but Quenouille managed to show that any such increase in variance is of small

order compared with the variance itself. The argument has been followed by Durbin

(1959), who demonstrated that for the class of estimators considered by Quenouille, the

variance is smaller than the variance of the standard ratio estimator, in spite of the fact

that for suf®ciently large sample sizes, Quenouille's estimator also has a smaller bias

than the standard ratio estimator.

2.3. Tin estimator

Tin (1965) developed a modi®ed estimator tMOD � rf1 � h�Cxy ÿ C2
x �g, where

h � �1=n ÿ 1=N�, Cxy � sxy=X, and as before r � y=x and Cx � sx=X. He compared this

estimator with several others in terms of bias, ef®ciency, and convergence to normality.

Speci®cally, Tin considered the standard ratio estimator, Quenouille's (1956) estimator,

and a modi®cation proposed by Beale (1962), namely tQ � r�1 � hCxy�=1 � hC2
x . Tin

concluded that tMOD was the most ef®cient in certain cases such as when X and Y had a

bivariate normal distribution.

2.4. Chakrabarty's estimators

Chakrabarty (1979) proposed two ratio estimators of the form yc1 � �1 ÿ W�y�

Wyr and yc2 � �1 ÿ W�y � WtQX for W $ 0 which are in the family of Srivastava's

(1980) class of generalized estimators of a ®nite-population mean or total. He compared

the two estimators with yr and with Srivastava's (1967) estimator of the form
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ys � yfx=Xga, which is discussed brie¯y in the next section. He concluded that the three

alternative estimators were preferable to both y and yr and that their ef®ciencies were the

same in large samples and were practically of the same order in small samples. Also, he

noted that computationally yc1 was simplest and that the bias of yc2 was least.

2.5. Other work

Srivastava (1967) considered an estimator of the form

ys � y
x

X

� �a

while Srivastava, Jhajj and Sharma (1986) proposed estimators of the following kinds

yc � �1 ÿ W�y � W
X

x

� �
; yv � �1 ÿ a�y � a

x

X

� �
and yw � y

X

Ax � �1 ÿ A�x

The respective values of a, W , a and A that optimize these expressions are ÿa � W �

ÿa � A � �ryxCy�=Cx. Reddy (1978) has shown that the value is fairly stable in repeated

surveys. In a similar approach, Sisodia and Dwivedi (1981) proposed estimators of the

form

ySD � �1 ÿ b�y � by
X

x

� �p

which reduces to yc1 if p � 1 and to ys if b � 1. Also, if both b � 1 and p � 1 then ySD

reduces to the standard ratio estimator yr.

Royall and Cumberland (1981) considered a weighted least squares unbiased predictor

model. However, they pointed out that in a number of examples of real data where a ratio

estimate might be used, the estimate and its estimated variance can be badly biased unless

the sample is balanced with respect to the X variable, in particular when x and X are not

close.

Robinson (1987) obtained a conditional bias adjusted ratio estimate. The proposed

method of adjustment for the bias of the estimate and its variance was based only on

the assumption of simple random sampling, which uses an approximate conditional distri-

bution of the estimate given the mean of the auxiliary variable. The condition is on the

observed number in each (random) stratum and simply uses the usual estimate based on

strati®cation or on this observed number and the observed mean in each stratum. The

choice of the number of strata is arbitrary. Large number implies reduction in bias but

also might reduce the ef®ciency of the estimator.

2.6. A new estimator

It has been observed that Quenouille's estimator performed relatively well in Tin's (1965)

comparison and Durbin (1959) showed that it is more ef®cient than the standard ratio

estimator for an auxiliary variable that has either a normal or gamma distribution. The

Chakrabarty (1979) estimator made use of Quenouille's tQ; here we consider a modi®cation
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of this approach, which is easier to compute, that uses Tin's tMOD in place of tQ. That is, the

new modi®ed estimator of the form yMOD � �1 ÿ W�y � W tMODX. In the next section, we

discuss bias and variance properties of yMOD along with Chakrabarty's yc1 and yc2 as well

as the ratio estimator yr.

3. Asymptotic Bias and Variance Properties of Estimators

In this section we summarize key results of derivations that are postponed to Appendix 1.

It is obvious that yc1, yc2 and yMOD are consistent, but in general biased like the estimator

yr. As noted in David and Sukhatme (1974), we can assume the sampled values are positive

without loss of generality. The bias for yr is given as

Bias �yr� �
Y

n
�C2

x ÿ Cxy� � O�nÿ2
�; and the bias for yc1 is

Bias �yc1� �
WY

n
�C2

x ÿ Cxy� � O�nÿ2
�

From Appendix 1 the bias of yMOD is given as

Bias �yMOD� �
WY

n

n

N
�C2x ÿ Cxy� � O�nÿ2

� �
n

N
Bias �yc1�

The asymptotic bias of yc2 has been shown to be of a lower magnitude than that of yr, yc1

and yMOD. However the bias of yMOD is smaller than those of yr and yc1 and will be closer to

that of yc2 when N q n. Also when �C2
x ÿ Cxy� � 0, the regression of y on x passes though

the origin, and all the estimators become unbiased to the term of order nÿ2. Also

worth noting is that the bias of yr from Hartley and Ross (1954), the bias of yc1 becomes

negligible in relation to the standard error of yr. This also applies to the bias of yMOD,

which is a fraction n=N that of yc1.

In de®ning the variance of estimators yc1 and yc2, Chakrabarty (1979) showed that the

variances are identical and, omitting the ®nite correction factor, are given by

V�yc1� � V�Åyc2� �
Sy

n
�1 � WK�WK ÿ 2ryx��

where K � Cx=Cy. The value of W which minimizes this variance is Wopt � ryx=K, with the

minimum variance given by Vmin � �Sy=n��1 ÿ r2
yx� which is equal to the variance of the

linear regression estimator up to terms of o�nÿ2
�. Using a similar method suggested by

Chakrabarty (1979) the variance is

V�yMOD� �
Sy

n
1 � WK�WK ÿ 2ryx �

2n

N
�K ÿ ryx�

� �
which is slightly larger than that of yc1 and yc2. However for large n it has been seen that

ryx�Cy =Cx� >
1
2

which implies that K < 2ryx, and hence the factor 2n=N�K ÿ ryx� is always

less than �2n=N�ryx and hence relatively small. Again for N q n the term disappears.

Hence, the variance of yMOD is roughly equivalent to those of yc1 and yc2, and thus for

N q n their ef®ciencies will be roughly equivalent as well. Ordinarily, one would prefer

a method that has advantages both in terms of bias and variance, and as shown here, yc2 has

both smaller bias and variance than yMOD.
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However, the advantages are slight, and the simpler computation involved in yMOD

might be viewed as an advantage in some situations.

Table 1 shows the ef®ciencies of yc1, yc2, and yMOD relative to y, and yr for various

values of r, K, and W . In the table E1 re¯ects (in percentage terms) V�y�=V�yj� and E2

re¯ects V�yr�=V�yj� for j � c1, c2 and MOD; thus higher values favour yc1, yc2, and

yMOD. When X and Y have comparable coef®cients of variation, i.e., when K � 1, the

Chakrabarty and modi®ed estimators offer better ef®ciency when correlations are low.

There is a tradeoff in ef®ciency between W � 0:25 and W � 0:5 when K � 1, with the

standard ratio estimator's advantage for large correlations more pronounced when

W � 0:25. The modi®ed ratio estimators with W � 0:25 generally offer ef®ciency

improvements over the sample mean. When K Þ 1, ef®ciency gains are more prominent

when the coef®cient of variation X is larger than that of Y , i.e., when K > 1. The fact

that K is not known in practice means that it has to be estimated in the formula for the

variance of yc1, yc2, and yMOD. Thus, the ef®ciencies seen in practice may differ from those

shown in Table 1. The asymptotic variances of the estimators yc1, yc2, and yMOD with

optimum value of W � ryx=K are equal to the asymptotic variance of the linear regression

estimator, y1r. Therefore these estimators are asymptotically no more ef®cient than y1r

with constant weights (W � 1=4 or 1/2). However, the estimator y1r suffers appreciably

in the ratio of bias to standard error when the relationship is not linear. Cochran (1977)

has shown that the bias in y1r is of the order nÿ1, as compared to biases of order nÿ2

for yc2 and yMOD. Thus in situations where freedom from bias is important, yc2 and

yMOD may be preferable to y1r.

4. Bias and Variance Under a Linear Model

We also investigated the properties of the estimators under the following linear

model:

yi � a � bxi � ui; b > 0

for a sample of pairs (xi; yi) for i � 1; 2;¼; n.

The expectation of the error component ui conditional on xi, E�ui=xi�, is zero, and also

E�ui; uj=xi; xj� � 0, the covariance of ui and uj given the values (xi; xj). The variance

v�ui=xi� � n d (d is a constant of order nÿ1), the variantes xi=n have a gamma distribution

with parameter m � nh. This model or slight variation on it has been used by Durbin

(1959) and Rao and Webster (1966) to investigate bias in the setting where a ratio estimator

or another alternative estimator is used. Chakrabarty (1979) showed that for any sample

size n, the biases of yc1 and yc2 are, respectively,

Bias �yc1� � aW=�m ÿ 1� and Bias �yc2� � ÿ2aW=f�m ÿ 1� �m ÿ 2�g

The bias of yr can be found by substituting W � 1 in the bias of yc1. In a

similar way the bias of estimator yMOD is derived as Bias �yMOD� �

aW=f�m ÿ 1��m � 1�g.

It can be seen that the biases of yc2 and yMOD are of the order nÿ2, while those of yr and

yc1 are of the order nÿ1. The bias of yc1 is less than the bias of yr if W < 1. For the special
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case of linear regression through the origin, that is when a � 0, the estimators yr, yc1, yc2

and yMOD are unbiased.

Applying the computations of Rao and Webster (1966), the variance of yc1 was found

to be

v�yc1� �
W2m

�m ÿ 1�2�m ÿ 2�
a2

� �1 ÿ W�
2mb

�
W2m2

�m ÿ 1� �m ÿ 2�
�

W�1 ÿ W� �m � 1�

�m ÿ 1�
� �1 ÿ W�

� �
d

�
2W�1 ÿ W�m

�m ÿ 1�
ab

Putting W � 1 and W � 0 to the values of v�yc1� will give v�yr� and v�y�, respectively.
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Table 1a. Ef®ciencies for selected values of r and K with W � 0:25

K � 0:5 K � 1:0 K � 1:5 K � 2:0

r E1 E2 E1 E2 E1 E2 E1 E2

0.1 101 116 99 178 94 277 89 400
0.2 104 109 104 166 101 268 95 400
0.3 106 101 110 153 109 257 105 400
0.4 109 93 116 139 119 244 118 400
0.5 112 84 123 123 131 229 133 400
0.6 116 75 131 105 145 210 154 400
0.7 119 65 140 84 162 187 182 400
0.8 123 55 150 63 185 157 222 400
0.9 126 44 163 33 215 118 285 400

Table 1b. Ef®ciencies for selected values of r and K with W � 0:50

K � 0:5 K � 1:0 K � 1:5 K � 2:0

r E1 E2 E1 E2 E1 E2 E1 E2

0.1 99 157 71 114 87 209 56 256
0.2 104 152 79 109 95 210 62 262
0.3 110 147 90 104 105 211 71 271
0.4 116 141 104 99 117 213 83 283
0.5 123 133 123 92 133 215 100 300
0.6 131 123 151 85 153 219 125 325
0.7 140 109 195 77 182 224 167 367
0.8 150 89 276 68 222 234 250 450
0.9 163 57 471 57 286 259 500 700

E1 �Ef®ciency of yc1, yc2, and yMOD relative to y for N q n.

E2 �Ef®ciency of yc1, yc2, and yMOD relative to yr for N q n.

K � Cx =Cy where Cx �
sx
x

and Cy �
sy
y

.



Similarly the variance of yc2 was given as

v�yc2� �
W2m2

�m2
ÿ 6m � 17�a2

�m ÿ 1�2�m ÿ 2�2�m ÿ 4�

ÿ
2W�1 ÿ W�m�m ÿ 3�ab

�m ÿ 1� �m ÿ 2�
� �1 ÿ W�

2mb2

� �1 ÿ W�
2
�

W2
�m2

ÿ 7m � 18�m2

�m ÿ 1� �m ÿ 2�2�m ÿ 4�
�

2W�1 ÿ W�m�m ÿ 3�

�m ÿ 1� �m ÿ 2�

� �
d

The variance of yMOD can be derived in a similar manner. Hence

v�yMOD� � �1 ÿ W�
2b2m

W2m3

�m ÿ 1� �m ÿ 2� �m � 1� �m � 2� �m � 3�

�
m3

� 4m2
� 8m ÿ 1�

�m ÿ 1� �m � 1�
�

�n � 1�

�n ÿ 1�

� �
a2

�

�
�1 ÿ W�

2
�

2�1 ÿ W�Wm2

�m ÿ 1� �m � 1�

�
W2m3

�m ÿ 1�2�m � 1� �m � 2� �m � 3�
�m2

� 4m � 1� �
�n � 1�

�n ÿ 1�

� ��
d

ÿ
2�1 ÿ W�Wabm2

�m ÿ 1� �m � 1�

It is noted (Chakrabarty 1979) that in terms of the model, a � Y��K ÿ ryx�=K�,

b � Y�ryx=Km�, d � Y
2
��1�r2

yx�=Km2
�� and K � Cx =Cy. The ef®ciencies of these estimators

relative to that of y are given by

E�estimator� �
v�y�

�MSE�estimator��1=2

Table 2 reports ef®ciencies for various values of W , r, m, and K. The ef®ciency of

the ratio estimator to the sample mean depends strongly on r. The alternative

estimators exhibit similar ef®ciencies across various values of r, with the impact on

ef®ciency being somewhat less dramatic when W � 0:25 as compared to when

W � 0:50.

Table 3 reports the percentage of the square root of mean squared error accounted for

by absolute bias. With the standard ratio estimator, a substantial proportion of overall

error is accounted for by bias in a number of scenarios. With the alternative estimators,

especially yc2 and yMOD, a much more modest proportion of overall error is accounted

for by bias.

5. Discussion

The estimators yc1, yc2 and yMOD have comparatively smaller bias than the customary ratio
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Table 2a. Ef®ciencies with W � 0:25 for selected values of r, m and K

r � 0:2 r � 0:8

m K E(R) E(C1) E(C2) E(MOD) E(R) E(C1) E(C2) E(MOD)

8 0.25 68 94 100 101 89 102 107 109
0.50 61 95 100 103 139 116 121 122
1.00 37 93 96 101 160 142 148 150
1.50 21 87 88 96 67 176 166 181

16 0.25 85 98 101 102 117 107 110 110
0.50 77 100 103 103 178 119 122 122
1.00 49 99 102 103 203 149 150 151
1.50 29 94 96 99 90 181 180 183

20 0.25 89 99 102 102 123 108 110 110
0.50 81 100 103 103 186 120 122 122
1.00 51 100 102 103 212 149 150 151
1.50 30 96 98 100 95 182 181 184

32 0.25 94 100 102 102 133 109 110 110
0.50 86 102 103 103 199 121 122 123
1.00 55 102 103 104 226 150 151 151
1.50 33 98 99 100 103 183 183 184

Table 2b. Ef®ciencies with W � 0:5 for selected values of r, m and K

r � 0:2 r � 0:8

m K E(R) E(C1) E(C2) E(MOD) E(R) E(C1) E(C2) E(MOD)

8 0.25 68 86 91 102 89 101 104 117
0.50 61 85 89 101 139 129 135 147
1.00 37 73 71 89 160 192 193 218
1.50 21 55 50 69 67 198 167 242

16 0.25 85 95 100 103 117 112 117 120
0.50 77 95 99 103 178 141 146 150
1.00 49 84 87 93 203 208 213 221
1.50 29 67 69 75 90 238 235 261

20 0.25 89 97 101 103 123 114 118 121
0.50 81 97 100 103 186 143 147 150
1.00 51 86 89 93 212 211 216 221
1.50 30 69 71 76 95 245 245 265

32 0.25 94 99 102 103 133 118 120 122
0.50 86 99 102 104 199 146 149 150
1.00 55 90 92 94 226 216 218 222
1.50 33 73 75 77 103 257 258 269

E�R� �
v�y�

MSE�yr�
; E�C1� �

v�y�

MSE�yc1�
; E�C2� �

v�y�

MSE�yc2�
and E�MOD� �

v�y�

MSE�yMOD�
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Table 3a. jBiasj=�MSE�1=2, with W � 0:25 for selected values of r, m and K (%)

r � 0:2 r � 0:8

m K B(R) B(C1) B(C2) B(MOD) B(R) B(C1) B(C2) B(MOD)

8 0.25 1.66 0.49 0.16 0.05 20.95 5.62 1.91 0.64
0.50 9.48 2.96 1.01 0.34 14.28 3.25 1.11 0.37
1.00 19.74 7.80 2.64 0.90 10.22 2.43 0.81 0.27
1.50 25.02 12.31 4.06 1.43 23.23 9.37 3.03 1.05

16 0.25 1.23 0.33 0.40 0.01 15.87 3.79 0.54 0.22
0.50 7.03 2.00 0.29 0.11 10.66 2.18 0.31 0.13
1.00 14.90 5.31 0.77 0.31 7.59 1.62 0.23 0.09
1.50 18.56 8.42 1.22 0.50 17.71 6.28 0.89 0.37

20 0.25 1.10 0.29 0.03 0.01 14.38 3.35 0.37 0.16
0.50 6.34 1.77 0.20 0.08 9.63 1.93 0.21 0.09
1.00 13.50 4.71 0.53 0.22 6.84 1.43 0.16 0.06
1.50 16.85 7.48 0.84 0.36 16.06 5.55 0.61 0.26

32 0.25 0.88 0.22 0.01 0.00 11.58 2.61 0.17 0.07
0.50 5.08 1.38 0.09 0.04 7.72 1.50 0.10 0.04
1.00 10.86 3.68 0.25 0.11 5.48 1.11 0.07 0.03
1.50 13.62 5.86 0.39 0.17 12.97 4.32 0.28 0.13

Table 3b. jBiasj=�MSE�1=2, with W � 0:50 for selected values of r, m and K (%)

r � 0:2 r � 0:8

m K B(R) B(C1) B(C2) B(MOD) B(R) B(C1) B(C2) B(MOD)

8 0.25 1.66 0.93 0.32 0.11 20.95 11.17 3.77 1.33
0.50 9.48 5.59 1.90 0.67 14.28 6.89 2.35 0.81
1.00 19.73 13.77 4.53 1.68 10.22 5.60 1.87 0.66
1.50 24.27 19.46 6.19 2.42 23.23 19.87 6.09 2.44

16 0.25 1.23 0.65 0.09 0.03 15.87 7.77 1.13 0.47
0.50 7.03 3.89 0.56 0.25 10.66 4.74 0.69 0.28
1.00 14.90 9.78 1.42 0.60 7.59 3.84 0.55 0.23
1.50 18.56 14.17 2.05 0.88 17.71 14.38 2.04 0.88

20 0.25 1.10 0.57 0.06 0.02 14.38 6.92 0.78 0.33
0.50 6.34 3.47 0.39 0.17 9.63 4.21 0.47 0.20
1.00 13.49 8.75 0.98 0.43 6.84 3.42 0.38 0.16
1.50 16.85 12.73 1.43 0.63 16.06 12.90 1.43 0.63

32 0.25 0.88 0.45 0.03 0.01 11.58 5.44 0.36 0.16
0.50 5.07 2.73 0.18 0.08 7.72 3.30 0.22 0.10
1.00 10.86 6.91 0.46 0.21 5.48 2.67 0.17 0.08
1.50 13.61 10.13 0.68 0.31 12.97 10.23 0.68 0.31

B�R� �
jBias �yr�j

�MSE�yr��
1=2

; B�C1� �
jBias �yc1�j

�MSE�yc1��
1=2

;

B�C2� �
jBias �yc2�j

�MSE�yc2��
1=2

and B�MOD� �
jBias �yMOD�j

�MSE�yMOD��
1=2



estimator, yr, and also are more ef®cient for a wide range of values of r, K and m, and with

a ratio of absolute value of bias to standard error less than 10%. For the estimator yMOD the

ratio is less than 1% for most values of r, K and m compared to estimators yc1 and yc2.

The criterion proposed in the earlier section may be somewhat arbitrary, however,

depending on the features of application, this appears to be the case. For example when

r, K and m are unknown in a realistic situation, a researcher should ®rst obtain preliminary

data to determine the strength of r and K for considerable values of m depending on ®nan-

cial and manpower resources. The decision, on the estimator to be used, is then based on

information about r, K and m obtained thereof.

Appendix

For suf®ciently large n we have

jdxj �
x ÿ X

X

���� ���� < 1 �A1:1�

which is not unreasonable in an actual sample survey where x's are usually positive

or can be adjusted to become positive. Also in order to facilitate the asymptotic expan-

sions the following result is needed (see Kendall and Stuart 1963, Tin 1965 and Wu

1982)

E�x ÿ X�r�y ÿ Y�2 �
O�nÿ1=2�r�s� ;

O�nÿ1=2�r�s�1�;

r � s even

r � s odd

(
Since all terms of order nÿ2 in the calculations will be ignored, then all expectations with

combinations of �r � s� $ 4 when �r � s� is even or �r � s � 1� $ 4 when �r � 1� is odd

will be included in the term of O�nÿ2
�. Using (A1.1), it can be shown that

r � R
1 � dy

1 � dx

� �
� R�1 � dy� �1 � dx�

ÿ1
�A1:2�

where R � Y =X, the population ratio. Expanding the above by Taylor's series, and taking

expectations on both sides, gives E�r� � R � R=n�C2
x ÿ Cxy� � O�nÿ2

�.

The bias of r is found as

Bias �r� � E�r� ÿ R

�
R

n
�C2

x ÿ Cxy� � O�nÿ2
�

Therefore

Bias �yr� � x Bias �r�

�
RX

n
�C2

x ÿ Cxy� � O�nÿ2
�

�
y

n
�C2

x ÿ Cxy� � O�nÿ2
�

Since tQ � 2 r ÿ 1=2�r1 � r2�, r1 and r2 are independent, then E�tQ� � R � O�nÿ2
� and
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Bias �tQ� � E�tQ� ÿ R � 0 � O�nÿ2
�. Consequently the biases of yc1 and yc2 are, respectively

Bias �yc1� � W Bias �yr� �
WY

n
�C2

x ÿ Cxy� � O�nÿ2
� and

Bias �yc2 � W X Bias �tQ� � 0 � O�nÿ2
�

Likewise

tMOD � r 1 � h �Cxy ÿ C2
x �

ÿ �
� r 1 � h

Sxy

XY
ÿ h

S2
x

X
2

� �
Substituting and expanding r from equation (A1.2) the above can be rewritten as

tMOD � R 1 � dy ÿ dx � d2
x ÿ dxdy � ¼

� 	
1 � h

Sxy

X Y
ÿ h

S2
x

X
2

� �
Expanding the above and taking expectations on both sides gives

E�tMOD� � R 1 �
S2

x

nx2
ÿ

Sxy

nX Y
�

hSxy

X Y
ÿ

hS2
x

x2
� O�nÿÿ2

�

� �
� R 1 �

C2
x

n
ÿ

Cxy

n
�

Cxy

n
ÿ

Cxy

N
�

C2
x

n
�

C2
x

N
� O�nÿ2

�

� �
� R �

R

N
C2

x ÿ Cxy

ÿ �
� O�nÿ2

�

Therefore the bias of tMOD is expressed as

Bias �tMOD� �
1

N
C2

x ÿ Cxy

ÿ �
� O�nÿ2

�

and that of yMOD as

Bias �yMOD� �
WXR

N
�C2

x ÿ Cxy� � O�nÿ2
�

�
WY

n

n

N
C2

x ÿ Cxy

ÿ �
� O�nÿ2

�

that is

Bias �yMOD� �
n

N
Bias �yc1�

In determining the variance of estimators yc1 and yc2, Chakrabarty (1979) considered up

to terms of O�nÿ2) only. He therefore showed that the variances are identical and, omitting

the ®nite correction factor, are given by

v�yc1� � v�yc2� �
Sy

n
1 � W K�W K ÿ 2ryx�
ÿ �

where K � Cx=Cy and that the value of W which minimizes this variance is Wopt � ryx=K.

The minimum variance was given as

vmin �
Sy

n
1 ÿ r2

yx�
ÿ
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which is equal to the variance of the linear regression estimator up to terms of O�nÿ2
�. The

variance of yMOD using a similar method suggested by Chakrabarty (1979) is therefore

v�yMOD� �
Sy

n
1 � W K�W K ÿ 2ryx �

2n

N
�K ÿ ryx��

� �
which is slightly larger than that of yc1 and yc2.

Substituting W � 1 in (1.6) the variance of yr is expressed as

v�yr� �
Sy

n
1 � K�K ÿ 2ryx�
ÿ �

Thus the asymptotic ef®ciencies of yc1 (yc2 and yMOD) over y and yr are respectively

given by

E1 �
v�y�

v�yc1�
�

1

�1 � W K�W K ÿ 2ryx��
and

E2 �
v�yr�

v�yc1�
�

v�yr�

v�yc2�
�

v�yr�

v�yMOD�
�

1 � K�K ÿ 2ryx

ÿ �
1 � W K�W K ÿ 2ryx�
ÿ �

The following is achieved as a result of the above:

E1$ 1 if W # 2
ryx

K
and

E2$ 1 if
2�ryx ÿ K�

K
# W # 1
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