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A Note on Choice of Bivariate Histogram
Bin Shape

David W. Scott!

Abstract: Regular tiling of the plane may be
accomplished with square, triangular, or
hexagonal tiles. The statistical properties of
bivariate histograms with square bin shapes
are well-known. Here other choices of
regular bin shapes are evaluated. Hexagonal
bins are shown to be best asymptotically but

1. Introduction

The square tiling pattern shown in Fig. 1a is
the simplest bivariate histogram construc-
tion. It is natural to compare the statistical
efficiency of square bins and other bin pat-
terns with respect to a global error measure
such as integrated mean squared error

IMSE= [ [ E[f(x, y)—f(x, y)Pdxdy.
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This problem corresponds to comparing ker-
nel shapes in density estimation considered
by Epanechnikov (1969). Improved histo-
grams may be realized in several ways. For
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only marginally better than square bins,
which are 98% efficient. Equilateral triangular
bins are only 91% efficient and usually
should be avoided.
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example, square bins may be stretched into
rectangular bins, or the bins may be rotated
away from the co-ordinate axes, or a comple-
tely nonregular adaptive mesh may be con-
structed. Here the focus is only on the shape
of the histogram bin in a regular pattern. For
real applications the pattern of bins should be
generalized to include stretching and pos-
sibly rotation; see Hiisemann (1986).

2. Global Error for Several Bin Shapes

In this section, the integrated mean squared
error is provided for the tilings shown in part
(a) of Fig. 1-5. For comparison purposes
each tile has area h? as in part (b) of Fig. 1-5.
The total IMSE is found by aggregating inte-
grated variance and squared bias estimates
for individual bins, in which an arbitrary
point is chosen as an origin for a Taylor
series; see Scott (1979). Somewhat arbitrari-
ly, these origin points were chosen to form a
rectangular lattice. -
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Fig. 1-5 (b) The smallest collection of repeatable tiles is

(a) The five bivariate histogram bin or tile pat-
terns considered in the paper are illustrated. The
area of each tile is 4.

2.1. Square bins

The general approach to computing the bias
and variance terms for the integrated mean
squared error is illustrated in the case of
square bins. To avoid technical issues, assume
the density fis such that the necessary deriva-
tives exist and approximation errors vanish.
Let the sample count for the bin containing
(x, y) be denoted by v(x, y). The bivariate
histogram is defined by

Foyy =22

e @1

shown at expanded scale, together with its com-
mon origin indicated by a small circle. Each arrow
is of length h. Notice the collection of origins in
part (a) of the Figures forms a rectangular lattice.

Clearly Ev (x, y) = np (x, y) where p (x, y) is
the corresponding bin probability mass. Con-
sider a typical bin centered at the origin as
shown in Fig. 1b:

hl2 hi2

[ G y)dedy.
—h/2 -hI2

p(xy)=p(0,0)=

Using a Taylor series and observing that
x>+ y* < h2,

f (x, ) = £(0,0) + xf, (0,0) + yf, (0,0)
+0 (W), - 2.2)
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where df /dx is denoted by f,, it follows that

p(x,y) =K f(0,0)+ O (h*) 23)
and

Ef (x,y) = (0,0) + O ().
Using (2.2),

Bias (x, y) = -xf, (0,0)-yf, (0,0) + O (h?).

Hence the integrated squared bias for the bin
is

hi2 hi2

f Bias (x, y)? dx dy =
—hi2 -2

I 007 + £, 007+ 0K, (2.4)

Equation (2.4) generalizes to other bins if the
point (0,0) is replaced with the respective bin
center. Summing over all bins and using stan-
dard numerical approximations, the total
integrated squared bias is

(o)

f j? Bias (x, y)?dx dy =

—00 —00

+ O(h%),

h2

5 L+ 1)
(2.5)

where

[c <l el]

L= [ [ f(xydrdy

—00 —00

"and similarly for I;. Following (2.1) and
(2.3), Varv(x, y) = np (x, y) [1-p (x, y)] and

. 0,0 1
Var f (x, y) =thL22+ O ;). (2.6)

Next integrate (2.6) over the bin and sum
over all bins. Since f integrates to 1,

o 00

f f Varf(xy)dxdy*

—00 —00

+ 0( ).
(2.7)

Adding (2.5) and (2.7), we obtain the well-
known expression (Lecoutre (1985))

1, K 1
IMSE = + 1—2(1i+ L)+ 0(;;) (28)

2.2.  Triangular bin choices

For other bin patterns, compute the bias and
variance estimates for the basic bin shape as
in Section 2.1 and then extend to the plane.
For the variance estimate, a close examina-
tion of the derivation of equations (2.6) and
(2.7) shows that the integrated variance for
any choice of bin shape is simply the inverse
of the sample size times the area of an individ-
ual bin. Hence the integrated variance term
in the IMSE will always be 1/nh? for any bin
pattern if each bin is scaled so that the area
equals to h%; see part (b) of Fig. 1-5.

2.2.1.

Equilateral triangles form an appealing pat-
tern shown in Fig. 2a. Analysis of this pattern
or the pattern rotated 180 degrees leads to an
expression similar to (2.4) except the divisor
is 6 V/3; hence

Equilateral triangles

1

IMSE =—5+ ="~ )+0(—)

(1
v 2.9)
which is inferior to (2.8) since 6 \/— = 10 39
<12.
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2.2.2. Alternating diagonal cuts

A simple but technically nonregular pattern
based upon right triangles with two equal
sides is shown in Fig. 3a. The bias expression
for individual right triangles corresponding
to (2.4) is

B 11,007+ £,007 £ 1,00 £, 00,

with sign on the third term the same as the
slope of the hypotenuse of the right triangle.
The pattern in Fig. 3a may be built up from
the basic eight-bin tile shown in Fig. 3b. The
eight * £, (0,0) f, (0,0) terms cancel leading
to

1

IMSE = h2+ * (P +L)+0(= )(210)

This pattern is clearly inferior to (2.9).

2.2.3. Diagonal cuts

Consider a pattern similar to Fig. 3a without
alternating diagonal cuts, shown in Fig. 4a.
This pattern may be built from the basic two-
bin tile shown in Fig. 4b. Since all the hypote-
nuses have slope of + 1, the £, (0,0) f, (0,0)
terms do not cancel and

1

IMSE = h2+ (1+1+1xy)+0( ),

(2.11)

where

L, =_f ) wf Fo (5 ) £, (x, y) dx dy.

Now I,, may be negative if f is positively cor-
related. In fact, I,, = - B+ I;)/Z is attain-
able, in which case (2.11) looks like equation
(2.8) with the divisor 12 replaced by 18, a
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substantial improvement. This hints at the
importance of considering rotation of bin
patterns. However, it should be noted that
rotating square bins will provide better
results than diagonal cut triangles.

2.3.  Hexagonal bins

Finally consider a hexagonal tiling shown in
Fig. 5a and 5b. A similar but tedious compu- '
tation reveals that

IMSE = (7 + )+0(%),

(2.12)

h2+36\/‘/5

which finally represents an improvement
over (2.8), since 36 V3/5 = 12.47!

3. Relative Efficiency

It is straightforward to show that when com-
paring the IMSE’s of the form (2.8), (2.9),
(2.10), or (2.12) but not (2.11), the ratio of
asymptotically optimal IMSE’s is simply the
square root of the ratio of the respective bias
coefficients. Therefore, relative to regular
hexagon bins, square bins are V'5/3 V3 =
98.1% efficient while equilateral triangle
bins are only V5/6 = 91.3% efficient. The
alternating diagonal cuts are only V V32 =
93.1% efficient compared to equilateral tri-
angles and only V 5/4 V3 = 85.0% efficient
relative to the hexagon bins.

4. Conclusions and Discussion

Among regular isomorph partitions of the
plane, it has been shown that equilateral tri-
angle bins asymptotically are a poor choice,
although for small samples triangular bins
may be superior (Matérn (1986)). This is
somewhat unexpected in light of correspond-
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ing results for bivariate frequency polygons
(Scott (1985)). From the practical point of
view, while hexagon bins are optimal, square
bins are only 2% inefficient and are much
easier to implement in computer software.
However, Carr, Littlefield, Nicholson, and
Littlefield (1987) have found other grounds
to prefer hexagonal bins, based upon graphi-
cal perception of data displaying some corre-
lation. The authors also present an algorithm
for hexagonal binning.

In R, the cube is the only one of the five
regular polyhedra which allows an equiparti-
tion of space. Many other nonregular tilings
are commonly used and it would be interest-
ing to evaluate their asymptotic performance
(Conway and Sloane (1982)) and extend to
adaptive tilings (Dodge (1986)).
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