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The Gini coefficient (Gini 1914) has proved valuable as a measure of income inequality. In
cross-sectional studies of the Gini coefficient, information about the accuracy of its estimates
is crucial. We show how to use jackknife and linearization to estimate the variance of the Gini
coefficient, allowing for the effect of the sampling design. The aim is to show the asymptotic
equivalence (or consistency) of the generalized jackknife estimator (Campbell 1980) and the
Taylor linearization estimator (Kovačević and Binder 1997) for the variance of the Gini
coefficient. A brief simulation study supports our findings.
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1. The Gini Coefficient

In this section, we introduce some notations, define the Gini coefficient (Gini 1914) and

define its estimators. Consider a finite population denoted by U ¼ {1; : : : ; i; : : : ;N},

where N is the number of individuals in this population. Let yi $ 0 denote the income of an

individual labelled i. The finite population Gini coefficient is defined by (Glasser 1962)

g ¼
1

t i[U

X
ð2Fð yiÞ2 1Þyi ð1Þ

where t ¼
P

i[U yi. The function F( y) denotes the income distribution function defined by

Fð yÞ ¼
1

N i[U

X
d{yi # y}

where d{yi # y} takes the value 1 if yi # y and the value 0 otherwise.

When yi – yj for all i – j, Equation (1) can be reexpressed as

g ¼ g* þ
1

N
ð2Þ
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where

g* ¼
2covð y;Fð yÞÞ

m
ð3Þ

covð y;Fð yÞÞ ¼
1

N i[U

X
yiFð yiÞ2

t

N 2
i[U

X
Fð yiÞ

and m ¼ t=N. The quantity g* is an alternative expression for the Gini coefficient

proposed by Anand (1983) and by Lerman and Yitzhaki (1984).

More generally, g becomes g* when we replace F( yi) in (1) with the smooth (or

mid-interval) distribution function F*ð yiÞ ¼ ½Fð yiÞ þ Fð yi 2 0Þ�=2, where

Fð yi 2 0Þ ¼ limy"yiFð yÞ. Note that F*ð yiÞ is not a cumulative discrete distribution, as

F*ð yiÞ is not the fraction of observation less or equal to yi. This adjustment to the

cumulative distribution allows the Gini coefficient to be computed using (3) (see Lerman

and Yitzhaki 1989). In other words, using the smooth distribution function effectively

takes into account the correction 1/N in (2). For simplicity, we will ignore this correction

in what follows.

Suppose that yi is known only for the sampled individuals i [ s, where I denotes a

sample or subset of the population U. Hence, the Gini coefficient in (1) is an unknown

population parameter, as it depends on unobserved quantities yi (i � s). Thus, it has to be

estimated from the observed sampled values yi (i [ s). A substitution estimator for g is

given by (Kovačević and Binder 1997):

ĝ ¼
1

t̂ i[s

X
wið2F̂ð yiÞ2 1Þyi ð4Þ

where

F̂ð yÞ ¼
1

N̂ i[s

X
wid{yi # y} ð5Þ

with t̂ ¼
P

i[s
wiyi, N̂ ¼

P
i[s

wi, and wi ¼ p21
i denotes the Horvitz and Thompson

(1952) weights of individual i. The quantity pi is the first-order inclusion probability

of i; that is, the probability that individual i is in the sample. Using the

Horvitz–Thompson weights guarantees that ĝ is an approximately unbiased estimator

for g.

Nygård and Sandström (1985) proposed an alternative estimator. Their ĝ* is

given by (4) after replacing F̂ð yiÞ with the sample smooth (or mid-interval)

distribution function F̂*ð yiÞ ¼ ½F̂ð yiÞ þ F̂ð yi 2 0Þ�=2, where F̂ð yi 2 0Þ ¼ limy"yi F̂ð yiÞ.

Taking a slightly different approach, Lerman and Yitzhaki (1989) proposed

substituting F̂*ð yiÞ into (3). Using
P

i[s
F̂*ð yiÞ=pi ¼ N̂=2, it can be shown that

their estimator reduces to ĝ*. Deville (1997) likewise proposed an estimator

algebraically equivalent to ĝ*.

The estimator ĝ* is asymptotically identical to ĝ under mild conditions, as ĝ ¼ ĝ* þ n,

where jnj , max{wi : i [ s}=N̂. Thus, ĝ � ĝ* when jnj � 0 or when wi=N̂ ¼ Opð1=nÞ

uniformly; that is, when none of the weights is disproportionately large (Krewski and Rao
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1981). In this situation, the quantity v is of probability order 1/n, which implies that the

difference between the variances of ĝ and ĝ* is of probability order 1=n2 (Deville 1997).

This difference can be ignored in the estimation of the variance. We will assume that the

sample size is large enough that the same expression can be used to estimate the variance

of both ĝ and ĝ*.

In what follows, we investigate the jackknife and the linearization variance of the

estimator ĝ in (4) based on the estimate of the distribution function (5).

Lerman and Yitzhaki (1984) and Ogwang (2000) showed that the Gini coefficient

can be easily estimated using the regression coefficient of an ordinary least squares

regression. By assuming this regression model to be true, the variance of the

regression coefficient can be used to estimate the variance of the Gini coefficient

(Ogwang 2004; Giles 2004). Unfortunately, this model-driven approach can give

biased estimates for the variance in practice, as the residuals of the regression model

are rarely independent (Ogwang 2004). For example, Modarres and Castwirth

(2006) showed that the regression technique can significantly overestimate the true

variance. An additional problem with this approach is that it ignores the sampling

design.

In this article, we do not assume a model. Instead, we propose variance estimators based

on a design-based approach in which the variability of ĝ comes from the random selection

of the sample. This allows us to account for the complexity of the sampling design. For

further details about the model-based approach, see Sandström (1983) and Nygård and

Sandström (1985).

2. Variance Estimation by Linearization

We now consider estimating the variance of ĝ in (4). The basic idea of the linearization

method (e.g., Krewski and Rao 1981; Robinson and Särndal 1983; Särndal et al. 1992,

p. 175; Andersson and Nordberg 1994; Deville 1999) is to use “pseudo-values” zi such that

varðĝÞ � varðt̂zÞ, where t̂z ¼
P

i[s
wizi. The approximation � is justified by some large-

sample arguments (see Krewski and Rao 1981). The variance is defined with respect to the

sampling design; that is, with respect to the probability distribution p(s) of the randomly-

selected sample s. The linearization variance estimator (Robinson and Särndal 1983;

Särndal et al. 1992, p. 175) is then the design-based estimator for the variance of t̂z.

This estimator is given by

vârðĝÞL ¼
i[s

X
j[s

X
D
^

ijwiwjzizj ð6Þ

where D
^

ij ¼ ðpij 2 pipjÞp
21
ij

, and pij denotes the joint inclusion probability of individuals

i and j; that is, the probability that both i and j are in the sample. Unfortunately, the

estimator in (6) can take negative values (Cochran 1977, p. 261). This issue will be

discussed briefly in Section 3.

The form of the pseudo-values zj can be illustrated in the simplest case when the

sampling variation of F̂ð yiÞ in ĝ is ignored. In this case, ĝ is a ratio of two sums and the
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Taylor linearization of this ratio gives naı̈ve pseudo-values given by

zj ¼
1

t̂
2yjF̂ð yjÞ2 ðĝþ 1Þyj
� �

ð7Þ

This method was cautiously suggested by Nygård and Sandström (1985), who reported

that it over-estimates the variance significantly (see also Sandström et al. 1985, 1988). In

Section 4, we empirically confirm that using the pseudo-value in (7) does not result in

accurate estimates for the variance. This is because the sampling variation in F̂ð yiÞ has a

nonnegligible contribution into the variance of ĝ.

Kovačević and Binder (1997) (see also Deville 1997, 1999) showed that additional

terms were needed in the pseudo-values. They set

zj ¼
1

t̂
2yjF̂ð yjÞ2 ðĝþ 1Þ yj þ

t̂

N̂

� �
þ

2

N̂ i[s

X
wiyid{yj # yi}

2
4

3
5 ð8Þ

In Sections 3 and 4, the linearization estimator in (6) with zj given by (8) will be

compared with the generalized jackknife estimator to be defined in Section 3.

3. The Jackknife Estimator for the Variance

The jackknife is a numerical method which can be used to estimate a variance (Miller

1974). In particular, the jackknife technique is commonly employed to estimate the

variance of the Gini coefficient (Yitzhaki 1991; Karoly 1992; Karagiannis and Kovačević

2000; Newson 2006; Frick et al. 2006). In this section, we compare the jackknife estimator

with the linearization estimator. We show that these estimators are asymptotically

equivalent and consistent under mild conditions.

Campbell (1980) proposed a generalized jackknife variance estimator that fully

captures the effect of the sampling design. Berger and Skinner (2005) showed that, under

mild conditions, this estimator is consistent for a parameter expressible as a function of

means. Although ĝ is not expressible as a function of means, we show in this section that

the generalized jackknife variance estimator is a consistent estimator for the variance of ĝ

provided that the linearization estimator in (6) is consistent.

Campbell’s generalized jackknife variance estimator (see also Berger and Skinner

2005) is given by

vârðĝÞGJ ¼
i[s

X
j[s

X
D
^

ijwiwj~zi~zj ð9Þ

where the quantities ~zj are pseudo-values:

~zj ¼ w21
j ð1 2 wjN̂

21Þðĝ2 ĝð jÞÞ ð10Þ
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with

ĝð jÞ ¼
1

t̂ð jÞi[sð j Þ

X
wið2F̂ð yiÞð jÞ 2 1Þyi

F̂ð yÞð jÞ ¼
1

N̂ð jÞ

X
i[sð j Þ

wid{yi # y}

t̂ð jÞ ¼
X
i[sð jÞ

wiyi

N̂ð jÞ ¼
P

i[sð j Þ
wi, and sð jÞ ¼ s\{j}, the last being s with the j-th individual deleted.

Berger and Skinner (2005) showed that under simple random sampling without

replacement, the variance estimator (9) reduces to the customary jackknife estimator with

finite population correction (e.g., Miller 1974) given by

vârðĝÞCJ ¼ 1 2
n

N

� � 1

nðn2 1Þ i[s

X
ðĝj 2 �gÞ2 ð11Þ

where ĝj ¼ nĝ2 ðn2 1Þĝð jÞ and �g ¼ ð1=nÞ
P

i[s
ĝj. Moreover, the generalized jackknife

estimator in (9) remains consistent under unequal probabilities sampling (Berger and

Skinner 2005), whereas the customary jackknife estimator in (11) does not, because the

finite population correction factor 1 2 n=N is ad hoc.

In the Appendix, we demonstrate that ~zj defined by (10) can be rewritten as

~zj ¼
t̂

t̂ð jÞ
zj 2 2

wjyj

N̂t̂ð jÞ
ð12Þ

where zj is given by (8). This means that ~zj is approximately equal to zj given by (8),

provided that t̂=t̂ð jÞ ¼ 1 þ Opð1=nÞ and wjyj=ðN̂t̂ð jÞÞ ¼ Opð1=nÞ. Hence, the jackknife

estimator in (9) and the linearization estimator in (6) are approximately equal when the

zj are given by (8). As a consequence, the generalized jackknife estimator is consistent

provided that the linearization estimator is.

4. Simulation Study

In this section, the jackknife estimators in (9) and (11) are compared numerically with two

linearization estimators (see (6)): the naı̈ve linearization estimator that uses the pseudo

values in (7) and the linearization estimator that uses the pseudo values in (8).

We evaluate three populations each of N ¼ 500 yi values, generated by the following

probability distributions: a Gamma distribution (shape parameter ¼ 2.5, rate ¼ 1), a

Lognormal distribution (mean ¼ 1.119, standard deviation ¼ 0.602) and a Weibull

distribution (shape ¼ .8, scale ¼ 1). We focus on these distributions as they are a good

approximation of income distributions (Salem and Mount 1974; McDonald 1984).

We use the Chao (1982) sampling design for selecting units with unequal inclusion

probabilities pi. These are set proportional to a size variable xi generated from the model

xi ¼ aþ r yi þ ei, where the ei come from a normal distribution with mean zero and

variance s2
e ¼ ð1 2 r2ÞðN 2 1Þ21

P
i[Uð yi 2 mÞ2, a ¼ 5 þ rm, r ¼ 0:7, and m ¼ t=N is
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Table 1. Empirical expectation and ratio of variance of ĝ and ĝ*, for the three distributions and several sample sizes

Gamma g ¼ 0:34 and g* ¼ 0:34 Lognormal g ¼ 0:28 and g* ¼ 0:27 Weibull g ¼ 0:60 and g* ¼ 0:60

n EðĝÞ Eðĝ*Þ varðĝÞ=varðĝ*Þ EðĝÞ Eðĝ*Þ varðĝÞ=varðĝ*Þ EðĝÞ Eðĝ*Þ varðĝÞ=varðĝ*Þ

0.47 0.28 0.83 0.42 0.22 0.90 0.67 0.49 0.75
5 0.37 0.33 0.96 0.30 0.26 0.98 0.62 0.58 0.93

25 0.35 0.33 0.98 0.29 0.27 0.99 0.61 0.60 0.97
50 0.35 0.34 0.99 0.28 0.27 0.99 0.61 0.60 0.98

100 0.34 0.34 0.99 0.28 0.27 1.00 0.61 0.60 0.99

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

5
4

6



the population mean of the yi. The xi are treated as fixed after they are generated. The pij

are computed exactly using the recursive formula proposed by Chao (1982).

For each population, B ¼ 10; 000 samples are selected. The empirical relative bias is

defined here as

RB ¼
BiasðvârðĝÞÞ

MSEðĝÞ

where BiasðvârðĝÞÞ and MSEðĝÞ denote respectively the empirical bias and the empirical

mean square error of ĝ. Furthermore,

BiasðvârðĝÞÞ ¼
1

B

XB
b¼1

vârðĝÞb 2 varðĝÞ

and

MSEðĝÞ ¼
1

B2 1

XB
b¼1

ðĝb 2 gÞ2

where ĝb is the estimate for the b-th sample, whereas vârðĝÞb is an estimate of its variance.

The quantity varðĝÞ denotes the empirical variance of ĝ, which is

varðĝÞ ¼
1

B2 1

XB
b¼1

½ĝb 2 EðĝÞ�2

where

EðĝÞ ¼
1

B

XB
b¼1

ĝb

The empirical relative root mean squared error of vârðĝÞ is

RRMSEðvârðĝÞÞ ¼
MSEðvârðĝÞÞ1=2

MSEðĝÞ

where

MSEðvârðĝÞÞ ¼
1

B2 1

XB
b¼1

½vârðĝÞb 2 varðĝÞ�2

Table 1 displays the empirical expectation of ĝ and ĝ* and the ratio of their empirical

variances under the distributions for several sample sizes. Table 1 shows that both ĝ and

ĝ* can have large absolute biases when the sample size is small. The ratio of the variances

is close to one when the sample size is sufficiently large. This is a result we expect, as the

difference between the variances of ĝ and ĝ* is of order 1=n2 (see Section 1). Thus, the

variance estimators developed here for estimating the variance of ĝ can also be used to

estimate the variance of ĝ* provided that the sample size is sufficiently large. For small

sample sizes, ĝ and ĝ* may be biased, and the linearization technique and the jackknife are

not recommended for variance estimation.
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Tables 2 and 3 display the RB and the RRMSE of the linearization and jackknife

variance estimators for several sample sizes. Table 4 provides the empirical coverages of

95% confidence intervals computed in the following manner:

Coverage ¼
1

B

XB
b¼1

dðjzbj # 1:96Þ

with zb ¼ ðĝb 2 gÞvârðĝÞ
21=2
b and dðjzbj # 1:96Þ equal to 1 when jzbj # 1:96, 0 otherwise.

The naı̈ve variance estimator based upon (7) is not recommended, as it clearly over-

estimates the variance significantly (see Table 2). However, the linearization variance

estimator based upon (8) and the jackknife estimator in (9) have small RB and RRMSE.

The jackknife estimators may slightly over-estimate the variance, and the linearization

estimator may slightly under-estimate the variance. We observe that the RRMSE of the

linearization estimator based upon (8) is smaller than the RRMSE of the generalized

jackknife (9).

The linearization and jackknife estimators also produce more reasonable coverage

intervals than the naı̈ve estimator based on (7). Between the two, we have a slightly better

coverage with the jackknife estimators. It is natural to have a poor coverage with small

sample sizes, as the normal assumption is not suitable when the sample size is too small.

The two jackknife estimators have roughly the same RB for the Gamma and the

Lognormal distribution. However, with the Weibull distribution which has the largest Gini

coefficient, the RB of the customary jackknife (11) is larger than the RB of the generalized

jackknife (9).

5. Discussion

This article has shown the that linearization technique proposed by Kovačević and Binder

(1997) and the generalized jackknife are asymptotically equivalent and consistent under

mild conditions. This finding is supported by a simulation study.

We assumed here that the survey weights were the Horvitz–Thompson weights. Our

methodology can be easily extended to more complex weighting schemes. For example,

under calibration the pseudo-values in (8) or (12) could be replaced by linear-regression

residuals treating the pseudo-values themselves as the dependent variables and the

calibration variables as the explanatory variables (Deville 1999; Berger and Skinner 2003).

The variance estimators in (6) and (9) depend on joint inclusion probabilities pij which

can be cumbersome to compute under an unequal probability sampling scheme.

Furthermore, both the linearization and generalized jackknife estimator can be negative.

Under a single-stage stratified sampling design featuring unequal inclusion probabilities

within strata, it is tempting to use the simplified Hájek (1964) variance estimator.

This estimator approximates the pij employing only the first-order inclusion probabilities

(see Berger 2004). Berger (2007) proposed a pij-free jackknife estimator which is

consistent for a class of high-entropy stratified designs using Rao-Sampford unequal-

probability sampling within strata (Rao 1965; Sampford 1967). This estimator also uses

the pseudo-values in (10) and could be employed to estimate the variance of the Gini

coefficient. The estimator proposed by Berger (2007) is always nonnegative.

Journal of Official Statistics548



Table 2. Empirical RB (%) of the variance estimator based upon (7), (8), (9) and (11) for the three distributions and several sample sizes

Gamma g ¼ 0:34 Lognormal g ¼ 0:28 Weibull g ¼ 0:60

Linearization (6) Jackknife Linearization (6) Jackknife Linearization (6) Jackknife

n (7) (8) (11) (9) (7) (8) (11) (9) (7) (8) (11) (9)

5 209% 26.3% 7.1% 5.2% 254% 25.7% 4.5% 5.1% 127% 230.1% 24.9% 26.8%
25 366 24.0 4.4 2.8 522 25.2 3.0 2.9 104 210.5 9.2 6.4
50 391 24.9 20.8 20.9 598 24.9 1.5 0.1 102 23.9 11.0 4.6

100 394 22.8 22.8 20.6 694 0.8 8.4 3.7 93 20.9 18.2 3.0
150 369 22.7 25.3 21.2 692 23.0 7.5 21.1 73 20.2 29.0 2.1
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Table 3. Empirical RRMSE (%) of the variance estimator based upon (7), (8), (9) and (11) for the three distributions and several sample sizes

Gamma g ¼ 0:34 Lognormal g ¼ 0:28 Weibull g ¼ 0:60

Linearization Jackknife Linearization Jackknife Linearization Jackknife

n (7) (8) (11) (9) (7) (8) (11) (9) (7) (8) (11) (9)

5 217% 19.9% 34.6% 31.1% 258% 17.1% 29.1% 31.3% 159% 41.4% 86.3% 96.5%
25 369 27.4 30.7 29.1 524 32.0 38.0 37.8 114 30.0 42.1 39.3
50 394 23.0 23.0 23.1 599 26.7 30.4 28.8 108 19.8 28.1 22.6

100 395 18.2 17.0 18.2 694 19.1 24.6 20.3 96 12.9 24.4 13.7
150 370 15.5 14.4 15.5 693 13.2 18.8 13.3 75 10.7 31.4 11.1
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l
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tistics
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5
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Table 4. Empirical Coverage (%) of the confidence interval based on the variance estimator based upon (7), (8), (9) and (11) for the three distributions and several sample sizes

Gamma g ¼ 0:34 Lognormal g ¼ 0:28 Weibull g ¼ 0:60

Linearization (6) Jackknife Linearization (6) Jackknife Linearization (6) Jackknife

n (7) (8) (11) (9) (7) (8) (11) (9) (7) (8) (11) (9)

5 99% 55% 69% 68% 100% 38% 56% 56% 93% 73% 87% 87%

25 100 89 91 91 100 89 91 91 98 90 93 93

50 100 92 93 93 100 92 93 93 99 93 95 94

100 100 94 94 94 100 94 95 94 99 94 96 95

150 100 94 94 94 100 94 95 94 99 95 97 95
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Large national household surveys often employ two-stage or multistage sampling. For

such surveys, the joint inclusion probabilities pij will often not be known, and stage-wise

approximations to them may be necessary. For that reason the generalized jackknife has

more promise for single-stage business surveys.

Many surveys use single imputation to handle item nonresponse. In this situation, one

can use the Rao and Shao (1992) method, which consists of adjusting the imputed values

whenever a responding unit is deleted. Berger and Rao (2006) showed how to implement

the Rao and Shao (1992) method to accommodate imputed values with the generalized

jackknife. They also showed that the resulting jackknife variance estimator is consistent

under mild conditions.

The computation of pseudo-values in (10) can be computationally intensive. Yitzhaki

(1991), Karoly (1992), Karagiannis and Kovačević (2000) and Newson (2006) proposed

simple methods to compute the customary jackknife with finite population correction in

(11). Generalizing these methods to Campbell’s jackknife in (9) would be a fruitful

direction for future research.

Appendix – Proof of (12)

Using

ĝ ¼
2

t̂ i[s

X
wiyiF̂ð yiÞ2 1

it can be shown that

ĝð jÞ ¼
2

t̂ð jÞ i[s

Xwiyi

N̂ð jÞ k[s

X
wkdki 2 wjdji

0
@

1
A2

wjyj

N̂ð jÞ k[s

X
wkdkj 2 wjdjj

0
@

1
A

2
4

3
52 1;

¼
2

N̂ð jÞt̂ð jÞ
N̂

i[s

X
wiyiF̂ð yiÞ2 wj

i[s

X
wiyidji 2 wjyjN̂F̂ð yjÞ þ w2

j yjdjj

2
4

3
52 1;

¼
2

N̂ð jÞt̂ð jÞ
ðĝþ 1Þ

N̂t̂

2
2 wj

i[s

X
wiyidji 2 wjyjN̂F̂ð yjÞ þ w2

j yj

2
4

3
52 1;

«

where dji ¼ d{yj # yi}. Thus,

ĝ2 ĝð jÞ ¼
2

N̂ð jÞt̂ð jÞ
wjyjN̂F̂ð yjÞþðĝþ1Þ

N̂ð jÞt̂ð jÞ

2
2ðĝþ1Þ

N̂t̂

2
þwj

i[s

X
wiyidji2w2

j yj

2
4

3
5

¼
wj

N̂ð jÞt̂ð jÞ
2yjN̂F̂ð yjÞþðĝþ1Þ

N̂ð jÞt̂ð jÞ2N̂t̂

wj

þ2
i[s

X
wiyidji22wjyj

2
4

3
5:

«

ð13Þ
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We have N̂ð jÞt̂ð jÞ 2 N̂t̂ ¼ ðN̂2 wjÞðt̂2 wjyjÞ2 N̂t̂ ¼ 2wjð yjN̂þ t̂ Þ which substituted

into (13) gives

ĝ2 ĝð jÞ ¼
wj

N̂ð jÞt̂ð jÞ
2yjN̂F̂ð yjÞ2 ðĝþ 1Þð yjN̂þ t̂Þ þ 2

i[s

X
wiyidji 2 2wjyj

2
4

3
5

Now, as ~zj ¼ w21
j ð1 2 wjN̂

21Þðĝ2 ĝð jÞÞ ¼ w21
j N̂21N̂ð jÞðĝ2 ĝð jÞÞ, we obtain

~zj ¼
1

N̂t̂ð jÞ
2yjN̂F̂ð yjÞ2 ðĝþ 1Þð yjN̂þ t̂Þ þ 2

i[s

X
wiyidji 2 2wjyj

2
4

3
5

which implies (12). This completes the proof.
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Hájek, J. (1964). Asymptotic Theory of Rejective Sampling with Varying Probabilities

from a Finite Population. Annals of Mathematical Statistics, 35, 1491–1523.

Horvitz, G.G. and Thompson, D.J. (1952). A Generalization of Sampling without

Replacement from a Finite Universe. Journal of the American Statistical Association,

47, 663–685.
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