
A Note on the Hartley-Rao Variance Estimator
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The Hartley-Rao variance formula was designed to estimate the randomization variance of a
Horvitz-Thompson estimator given a systematic probability proportional to size sample from
a randomly ordered large population. Using an underappreciated formulation of this variance
estimator, one can see that the Hartley-Rao variance estimator is unbiased under a model with
a particular error structure given any sample. Moreover, even with a more general error
structure, this variance estimator remains nearly model unbiased for a large sample and
relatively larger population under mild conditions. A discussion follows concerning an
extension of Hartley-Rao variance estimation to linear calibration estimators.
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1. Introduction

Let Y ¼ SUyi=N denote a population mean, where U is a population of N units. The

Horvitz-Thompson estimator for Y is tHT ¼ N21SSyi=pi; where S is a sample of fixed size

n, and pi is the selection probability of unit i. It is well-known that tHT is randomization

unbiased; that is, unbiased with respect to the random sampling mechanism.

Suppose the units in the sample were drawn using a Goodman-Kish design,

i.e., systematically from a randomly ordered list with arbitrary probabilities of selection

(see Brewer and Hanif 1983, p. 22). Hartley and Rao (1962) offer the following estimator

for the randomization variance of tHT :

vHR ¼ 221N22½ðn2 1Þ�21
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It is proven there that when the population is large compared to the sample, vHR is nearly

randomization unbiased. Formally, if max{pi} , c, and c is O(N 21), then the

randomization bias of vHR is O(N 22).

Asok and Sukhatme (1976) effectively show that vHR has the same property under the

Sampford sampling design. Moreover, the authors prove that using the Sampford design

has, if anything, slightly less randomization variance (ignoring O(N 23) terms) than the

Goodman-Kish design. A short description of the Sampford design follows: Select unit i

with probability proportional to pi on the first of n draws and probability proportional to
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pi=ð12 piÞ;with replacement, on the subsequent n 2 1 draws; if any unit is selected more

than once, reject the sample and begin again. Brewer and Hanif (1983) show that the

Sampford design (which they called the Rao-Sampford design) is equivalent to many

popular unequal probability schemes when n ¼ 2.

Following Cumberland and Royall (1981), observe that the right-hand side of Equation

(1) can be put in this more convenient form:
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Although not new, this formulation of the Hartley-Rao variance estimator is not as well-

known as it should be. The expression 12 pi 2 SSpk=nþ SUp
2
k=n; which collapses to

1 2 n/N in Equation (2) when all the pj are equal, can be viewed as a term-wise finite

population correction factor.

Suppose the yi satisfy the model

yi ¼ bxi þ xi1i ð3Þ

where the xi are proportional to the pi; and the 1i are uncorrelated random variables with

mean zero given xi; then tHT is a model unbiased estimator for Y in the sense that

E1ðtHT 2 YÞ ¼ 0 (see, for example, Brewer 1963). Cumberland and Royall (1981) show

that vHR is a model unbiased estimator for the model variance of tHT when the 1i have a

common variance no matter what the corresponding xi: As we shall see, vHR remains a

nearly model unbiased variance estimator under certain conditions when the 1i are

uncorrelated but have unequal variances. The model-based properties of vHR do not require

either a Goodman-Kish or Sampford sampling design.

One restriction on the population necessary for any without replacement probability-

proportional-to-xi sampling scheme is that no xi be larger than SUxj=n:We assume that the

population under study has this property.

2. Cumberland and Royall’s Model-Based Result

Let the model variance of 1i in Equation (3) be vi: Since n is fixed, pi ¼ nxi=ðNXÞ; where

NX ¼ SUxi: The model variance of tHT is
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while the model expectation of vHR is

E1ðvHRÞ ¼ E1 N22½n=ðn2 1Þ�
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where v0 ¼ SSvj=n:

When all the vi in the population are equal to v0, the right-hand sides of Equations (4)

and (5) are both
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Thus, when the model in Equation (3) holds, and the 1i have a common variance, vHR is an

unbiased estimator of the model variance of tHT : Note that this is true no matter how the

sample is drawn.

Even when the vi are not all equal, vHR may be almost model unbiased in some sense.

For example, when max{pi} , c; where c is OðN21Þ; the model bias of vHR is OðN21Þ

since both the model variance of tHT (from Equation (4)) and the model expectation of vHR
(from Equation (5)) are

VN ¼ ðX=nÞ2

i[S

X
vi þ OðN21Þ

Ignoring OðN21Þ terms, but not Oðn21Þ terms, is equivalent to completely ignoring finite

population correction.

3. Large-Sample Results

Isaki and Fuller (1982) formulate a more standard asymptotic theory where the sample

size, rather than the population size, is assumed to be large. Of course, N must be larger

than n in this framework, but 1=N need not be any smaller than Oð1=nÞ; that is to say, n=N

can converge to a positive constant as n grows arbitrarily large.

Isaki and Fuller provide sufficient conditions on the sampling design and population for

SSxj=n2 SUpjxj=n and SSxjvj=n2 SUpjxjvj=n to be OPðn
21=2Þ; while SUxj=N ¼ Oð1Þ;

and SSxj=n; SSvj=n and SSxjvj=n are OPð1Þ: Under these conditions, it is not hard to see

that the model variance of tHT is itself OPð1=nÞ: Moreover, the model variance of tHT and

the model expectation of vHR are both

Vn ¼ ðX=nÞ2

i[S

X
ð12 piÞvi þ OPðn

23=2Þ

since 2SSpivi=nþ SUp
2
i vi=n in Equation (4) and 2SSpj=nþ SUp

2
j =n in Equation (5)

are OPðn
21=2Þ: Recall that pi ¼ nxi=SUxk:

Note that although we are concerned here with model bias, we are invoking the large-

sample properties of the sample design. We are not, however, averaging over all possible

samples in this context as randomization-based theory does. Moreover, we will not call

vHR “nearly model unbiased” unless its model bias - the difference between the model

variance of tHT and model expectation of vHR - is OPðn
22Þ:

Suppose now that n is large and N is relatively larger, but not so much so that finite

population correction can be completely ignored. This often happens in practice; n is large

enough (say n < 50) for conventional asymptotic properties to have relevance; N is larger

still (say N < 250), but finite population correction can have an effect on variance

estimation.

Following Kott (1990), we formalize the notion of a relatively large population

(compared to a large sample) by assuming 1/N is Oðn23=2Þ rather than Oð1=nÞ: If
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max{pi ¼ nxi=ðNXÞ} , c; where c is now Oðn=NÞ ¼ Oðn21=2Þ; then the sampling design

and population are such that both 2SSpj=nþ SUp
2
j =n and 2SSpivi=nþ SUp

2
i vi=n are

OPðn
21Þ under mild conditions we assume to hold. As a consequence, the model bias of

vHR is OPðn
22Þ; that is to say, vHR is nearly unbiased under the model in Equation (3)

with uncorrelated errors when the sample is large and the population relatively larger.

4. Discussion

Although neither a Goodman-Kish nor a Sampford sampling design is necessary for vHR to

have desirable model-based properties, the use of one of these selection schemes coupled

with mild restrictions on the population is sufficient. Moreover, under either of these two

designs, vHR has an OðN22Þ bias as an estimator for the randomization variance of tHT
when max{pi} , c and c is OðN21Þ:

Like Cumberland and Royall (1981), we have focused on a formula that estimates both

the randomization and model variance of the Horvitz-Thompson estimator well under

Goodman-Kish or Sampford sampling. The simultaneous variance estimator, vHR in

Equation (2), differs from the formulation in Brewer and Donadio (2003) (combining its

Equations (16) and (18)) that attempts to estimate the model expectation of the

randomization variance of the Horvitz-Thompson when all the vi are equal.

A word of caution is in order. Goodman-Kish and Sampford sampling are often used in

practice within tightly-defined design strata. When the sample size within each stratum is

small, the large-sample model-based results of the last section have little relevance.

Moreover, the advantage of the Cumberland-Royall formulation vHR in Equation (2) over

Equation (1) is muted.

Recently, however, the National Agricultural Statistics Service (NASS) has been using

unequal probability designs either without strata or within very large strata (see Kott and

Bailey 2000). The estimators employed by NASS have linear calibration form. In the

context of estimating Y , such an estimator can be rendered as tLC ¼ N21SSwiyi; where the

calibration weight for unit i is wi ¼ ð1=piÞ½1þ ðSUxk 2 SSxk=pkÞðSSh
0
kxk=pkÞ

21h0i�; and

x k and h k are row vectors of the same dimension.

Estevao and Särndal (2000) discuss conditions under which tLC has good model -

assuming yi ¼ xibþ 1i with Eð1ijxiÞ ¼ 0 - and randomization-based properties. Under

those conditions, and given either a Goodman-Kish or Sampford sample, a reasonable

estimator for the randomization mean squared error of tLC is
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where ei ¼ yi 2 xiðSSh
0
kxk=pkÞ

21SSh
0
kyk=pk: Following Särndal, Swensson, and Wret-

man (1989), this formulation effectively replaces yi=pi in Equation (2) by wiei for model-

based reasons.
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Using arguments like those made earlier, vHR in Equation (6) is also a nearly unbiased

estimator for the model variance of tLC under mild conditions when the 1i are uncorrelated,

the sample size is large, and the population size is relatively larger.

When a component of the vector hk; or some linear combination of components, is

constant across the k (formally, hig ¼ 1 for some column vector g), the SSwjej term in

Equation (6) is equal to zero. To see why, first note that SSwiei ¼ SSei=pi by the way ei is

defined. When hig ¼ g0h0i ¼ 1; we have
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The finite population correction factors 12 pi 2 SSpk=nþ SUp
2
k=n in Equation (6)

can be ignored in practice when max{piji [ S} and SUp
2
k=n are ignorably small. Both the

randomization and model-based properties of vHR depend on n being large. From a model-

based point of view, even under ideal conditions ðVarð1ijxiÞ / p 2
i Þ; ei is only equal to 1i

asymptotically. Similarly, from a randomization-based viewpoint, wi only need converge

to 1/pi as the sample size grows arbitrarily large. See Kott (2005) for a discussion of the

relative speed of the asymptotics.
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