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A Note on the Use of Inverse Sampling: Point Estimation
Between Successive Infections

Kung-Jong Lui1

1. Introduction

Consider a study assessing the effect of the primary infection on the likelihood of devel-

oping a secondary infection (Agresti 1990). We may wish to estimate the risk ratio (RR) or

risk difference (RD) (Fleiss 1981) between the secondary infection, given the primary

infection, and the primary infection. Under the multinomial sampling, in which the total

number of subjects in the studies is ®xed (Lui 1998), one can easily show that the maxi-

mum likelihood estimators (MLEs) of these two important epidemiologic indices have

in®nitely large bias and no exact variances. To avoid these theoretical limitations, this

article proposes the use of inverse sampling (Haldane 1945) and notes that the uniformly

minimum variance unbiased estimators (UMVUEs) of RR and RD, as well as their exact

variances can be easily derived. This article further develops the UMVUEs of these

variances as well. Other discussions on point estimation under inverse sampling in situations

different from those treated here appear elsewhere (Bennett 1981, 1986; Roberts 1988;

Singh and Aggarwal 1991; Lui 1996a, 1996b, 1997a). Discussion of interval estimation

(rather than point estimation) of the RR between successive infections under multinomial

sampling (rather than inverse sampling) can be found elsewhere as well (Lui 1998).

This article considers point estimation of the effect of the primary infection on the likelihood
of developing a secondary infection. The article notes that the use of inverse sampling can
avoid the theoretical limitations, such as bias or nonexistence of variance, in application of
the maximum likelihood estimator under the commonly-assumed multinomial sampling.
Under inverse sampling, this article derives the uniformly minimum variance unbiased esti-
mators (UMVUEs) of the risk ratio and risk difference, as well as their corresponding var-
iances. This article further develops the UMVUEs of these variances as well. Finally, the
article includes a discussion on interval estimation and applies Monte Carlo simulation to
evaluate and compare the performance of the interval estimators that are derived from the
point and variance estimators obtained here.
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2. Theory and Estimators

Consider a study of a disease epidemic in which randomly selected subjects from a popu-

lation are ®rst classi®ed according to whether they had contracted a primary infection

and then reclassi®ed according to whether they had developed a secondary infection within

a given time period after clearing up the ®rst infection. For clarity, I use the following four-fold

table to summarize the data structure:

where p11, p12, and p22 denote the cell probabilities, 0 < pij < 1, p1: � p11 � p12, and

p22 � 1 ÿ p1:. Note that, by de®nition, a subject cannot have a secondary infection without

®rst having a primary infection and hence no subjects can fall in the cell with no primary

infection but with a secondary infection.

To assess the magnitude of the effect of the primary infection on the likelihood of

developing the secondary infection, we wish to estimate the RR, de®ned as ( p11=p1:�=p1:,

or the RD, de®ned as ( p11=p1:� ÿ p1:, between the secondary infection, given the

primary infection, and the primary infection. Note that under the commonly-assumed mul-

tinomial sampling scheme, in which the total number of subjects n in a study is ®xed, the

probability mass function for the random vector (n11; n12; n22) is f �n11; n12; n22� �

n!=�n11!n12!n22!� p
n11

11 p
n12

12 p
n22

22 , where nij is the observed frequency corresponding to the

cell with probability pij, 0 < pij < 1, p11 � p12 � p22 � 1, and n11 � n12 � n22 � n.

Because both p11 and p12 are > 0, the probability p1: is always > 0. Thus, the above

RR and RD are always well-de®ned. The MLEs of the RR and RD under the multinomial

sampling are simply ( Ãp11=Ãp1:�=Ãp1: and ( Ãp11=Ãp1:� ÿ Ãp1:, respectively, where Ãp11 � n11=n,

Ãp1: � n1:=n; n1: � n11 � n12. Note that because n1: (or equivalently, Ãp1:) is a random vari-

able under this sampling scheme and can be 0 with a positive probability, the biases of

these MLEs are ¥. Furthermore their variances do not exist. In practice, if n1: should equal

0 under the multinomial scheme, we may commonly apply the adjustment procedure for

sparse data by adding 0.50 to each cell when calculating ( Ãp11=Ãp1:�=Ãp1: or � Ãp11=Ãp1:� ÿ Ãp1:.

However, this adjustment procedure is somewhat ad hoc and its optimal statistical properties

are dif®cult to justify. Furthermore, the bias and variance of the resulting estimators are

also dif®cult to derive explicitly, although both are ®nite when using the above adjustment

procedure.

To avoid the undesirable situations in which the MLEs of the RR and RD are not de®ned

under the multinomial sampling scheme, we may consider ®xing n1: to assure that n1: > 0.

This leads us to consider use of inverse sampling (Haldane 1945), in which we continue

sampling subjects until we obtain a pre-determined ®xed number n1: of subjects with a pri-

mary infection. Because it may take time to develop the underlying disease of interest, to

avoid the practical dif®culty of employing inverse sampling, we may want to apply this

sampling scheme at the end of the ®rst attack period. Let n11 denote the number of subjects
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later developing infection among these n1. subjects with the primary infection and let n22

denote the number of subjects without the primary infection needed to collect the desired

number of n1: subjects with the primary infection. The joint probability mass function for

(n11; n22) is then given by

f �n11; n22� �
n1:

n11

� �
p11

p1:

� �n11

1 ÿ
p11

p1:

� �n1:ÿn11 n22 � n1: ÿ 1

n22

� �
p1:

n1:�1 ÿ p1:�
n22

�
n1:

n11

� �
n22 � n1; ÿ 1

n22

� �
p11

n11 p12
n1:ÿn11 p22

n22 �1�

where n11 � 0; 1; 2; . . . ; n1:; and n22 � 0; 1; 2; . . . .

On the basis of (1), note that n11 and n22 are independent. Note further that by use of

Theorem 5.6 on page 46 in the textbook by Lehmann (1983), (n11; n22) is, in fact, a

complete suf®cient statistic.

De®ne

ÃRR �
n11

n1:

� �
n22 � n1:

n1:

� �
�2�

Because E� ÃRR� � E n11

�
n1:

ÿ �
E �n22 � n1:�

�
n1:

ÿ �
� � p11=p1:�=p1:; ÃRR (2) is the UMVUE of

RR (Lehmann 1983; Casella and Berger 1990). Furthermore, I can show that the variance

Var( ÃRR) is

Var� ÃRR� � p11p12�1 ÿ p1:�=�n
2
1:p

4
1:� � p2

11�1 ÿ p1:�=�n1:p
4
1:� � p11p12=�n1:p

4
1:�: �3�

I also derive the UMVUE Var� ÃRR� of this variance (3) and present the result in the Appendix.

Similarly, the UMVUE of RD is given by

ÃRD �
n11

n1:

� �
ÿ Ãp�

1: �4�

where Ãp�
1: � �n1: ÿ 1�=�n1: � n22 ÿ 1� is an unbiased estimator p1: under inverse sampling

when n1: > 2. Note that Best (1974) shows that

Var�Ãp�
1:� � �n1: ÿ 1��1 ÿ p1:�

´
Xn1:ÿ1

k�2

�ÿp1:=�1 ÿ p1:��
k=�n1: ÿ k� ÿ �ÿp1:=�1 ÿ p1:��

n1: log�p1:�

( )
ÿ p2

1:

Hence, the variance of ÃRD is

Var� ÃRD� � p11p12=�n1:p
2
1:� � Var� Ãp�

1:� �5�

Furthermore, I derive and present the UMVUE ÃVar� ÃRD� of variance (5) in the Appendix as well.

3. An Example

Consider the example of a sample of calves in Florida (Agresti 1990). For illustration pur-

pose only, assume that we obtain the same data as shown on page 46 of Agresti (1990) by

employing inverse sampling, in which we collect n22 � 63 calves with no pneumonia

infection before we obtain the ®rst n1: � 93 calves (which is pre-determined and ®xed)
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with a primary pneumonia infection. We further assume that among these 93 calves,

n11 � 30 calves later develop the secondary infection within two weeks after the ®rst

infection clears up. On the basis of these data, the UMVUE ÃRR in (2) is 0.541 with the

resulting variance estimate ÃVar� ÃRR� in (A.1) equal to 0.0079. Similarly, when applying

the UMVUEs ÃRD in (4) and ÃVar� ÃRD� in (A.2) to estimate the RD and Var( ÃRD), we obtain

ÿ0:2710 and 0.0039, respectively. Both results suggest that the primary infection generates a

natural immunity to reduce the likelihood of developing the secondary pneumonia infection.

4. Discussion

To study the effect of the primary infection on the likelihood of developing the secondary

infection, it is certainly not ethical to employ an experimental design, in which one can

randomly assign subjects to one of the two comparison groups. Instead, we need to rely

on the cohort study design (Fleiss 1981). This article provides a sampling design to study

natural immunity, while avoiding the theoretical dif®culty in point estimation of the RR

and the RD under multinomial sampling design.

Note that the estimator ÃRR in (2) is actually the MLEs under both the multinomial and

the inverse samplings considered here. However, while this estimator is biased with no

exact variance under the former sampling, use of the latter sampling can easily avoid these

theoretical limitations. Furthermore, the MLE of RD under both of these sampling

schemes is �n11=n1:� ÿ Ãp1:, where Ãp1: � n1:=�n1: � n22�, which is slightly different from
ÃRD (4) and is a biased estimator of the RD under the sampling scheme proposed here.

The property of unbiasedness is not invariant through the reciprocal transformation. The

inverse of the UMVUE ÃRR is certainly not the UMVUE of 1/RR. On the other hand, this

concern does not apply to the case of point estimation for the RD; i.e., ÿ ÃRD is obviously

the UMVUE of ÿRD � p1: ÿ �p11=p1:�.

Finally, note that the aim of point estimation is to ®nd an estimator with a small bias and

a small variance. When we need to give an estimate of a parameter as a single value, an

interval estimator that provides a set of values is certainly not appropriate to meet this

need. On the other hand, we may also wish to ®nd out if we can derive good interval esti-

mators from the point estimators obtained here. Instead of discussing the bias and the var-

iance for point estimation, we commonly consider the coverage probability and the average

length to evaluate the performance of an interval estimator (Casella and Berger 1990).

Suppose that we want to provide a 100�1 ÿ a�% con®dence interval of RR. The easiest

and most naive method on the basis of (2) is given by

ÃRR � Za=2

�����������������
ÃVar� ÃRR�

q
�6�

where ÃVar� ÃRR� is given in (A.1) in the Appendix and Za is the upper (100a)th percentile of

the standard normal distribution. However, as noted elsewhere in other situations (Jewell

1986; Lui 1996a), since the sampling distribution of the UMVUE ÃRR (2) can be skewed, an

interval estimator (6) does not necessarily perform well, especially when the expected number

of subjects is not reasonably large in all cells. Thus, to improve the normal approximation of

the sampling distribution of ÃRR, we may consider use of the logarithmic transformation

(Katz, Baptista, Azen, and Pike 1978; Lui 1998). By using the delta method (Casella

and Berger 1990), we obtain the estimated asymptotic variance of log( ÃRR) which is
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ÃVar� ÃRR�=� ÃRR�2. Hence, a 100(1 ÿ a)% con®dence interval of the RR is given by

�RRl;RRu� �7�

where RRl � exp�log� ÃRR� ÿ Za=2

�������������������������������
ÃVar� ÃRR�=� ÃRR�2�

p
and

RRu � exp�log� ÃRR� � Za=2

�������������������������������
ÃVar� ÃRR�=� ÃRR�2�

p
, respectively. Note that when

ÃRR � 0; log� ÃRR� is not de®ned. To eliminate this dif®culty, we may apply the com-

monly-used ad hoc adjustment procedure for sparse data by adding 0.50 to each cell when-

ever n11 � 0. To compare and evaluate the ®nite sample performance of these two interval

estimators (6 and 7), I use Monte Carlo simulation. I apply SAS (1990) to generate the

desired random observations according to the distribution de®ned in (1). Note that for

given RR and p1:, the cell probabilities pij are all uniquely determined: p11 � RRp2
1:,

p12 � p1: ÿ p11, and p22 � 1 ÿ p1:. I consider the situations in which the probability of

the primary infection p1: � 0:2, 0.3, 0.5; the underlying risk ratio RR � 0:25, 0.50, and

1; the number of subjects with the primary infection n1: � 20, 30, and 50. For each con-

®guration determined by a combination of these parameters, I generated 10,000 repeated

samples to estimate the coverage probability and the average length of the 95% con®dence

interval. On the basis of the simulated results (which are not presented here for brevity, but

are available to readers upon request), I have found that when the expected number of sub-

jects with the secondary infection (� n1:RRp2
1:) is small, the coverage probability of inter-

val estimator (6) can be much less than the desired con®dence level. I also have found

that interval estimator (7) using the logarithmic transformation not only outperforms esti-

mator (6), but also consistently performs well (i.e., the estimated coverage probabilities

range from 95% to 97%) in all the situations considered here. Thus, I recommend interval

estimator (7) for general use. Because the performance of an interval estimator depends

heavily on the sampling distribution of the statistic we employ, as shown here, we should

not directly apply the UMVUE and its estimated variance as in interval estimator (6) to

produce an interval estimate without ®rst attempting to improve the normal approximation

through an appropriate transformation.

In summary, this article notes the usefulness of inverse sampling when we do point esti-

mation of the RR and the RD between successive infections. This article derives the

UMVUEs of these two important epidemiological indices and their respective variances

in closed form. This article further derives the UMVUEs of these variances. Finally,

this article includes a discussion on interval estimation and applies Monte Carlo simula-

tion to evaluate the performance on interval estimators that are derived from the point

and variance estimators obtained here.

Appendix

Following Finney (1949) and Lehmann (1983), we can show the following expectations

with respect to distribution (1):

E�n22�n1: � n22�= n1:�n1: � 1�
� 	

� � �1 ÿ p1:�=p
2
1:

E��n1: � n22��n1: � n22 � 1�= n1:�n1: � 1�
� 	

� � 1=p2
1: and

E n1:

n11

n1:

� �
ÿ

n11

n1:

� �2� �
=�n1: ÿ 1�

� �
� p11p12=p

2
1:
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On the basis of these results and the independence between n11 and n22, the UMVUE of

Var� ÃRR� is ÃVar� ÃRR� �

1

n2
1:

n1:

n11

n1:

� �
ÿ

n11

n1:

� �2� �.
�n1: ÿ 1�

� �
�n22�n1: � n22�=fn1:�n1: � 1�g�

�
1

n1:

�
n11

n1:

� �2

ÿ
n11

n1:

� �
ÿ

n11

n1:

� �2� �.
�n1: ÿ 1�

�
�n22�n1: � n22�=fn1:�n1: � 1�g�

�
1

n1:

�
n1:

n11

n1:

� �
ÿ

n11

n1:

� �2� �.
�n1: ÿ 1�

�
��n1: � n22��n1: � n22 � 1�=fn1:�n1: � 1�g�

�A1�

Furthermore, Finney (1940) shows that EfÃp�
1:�1 ÿ Ãp�

1:�=�n1: � n22 ÿ 2�g � Var�Ãp�
1:� for

n1: > 2, where Ãp�
1: � �n1: ÿ 1�=�n1: � n22 ÿ 1�. Thus, the UMVUE of Var( ÃRD) is simply

ÃVar� ÃRD� � Ãp�
1:�1 ÿ Ãp�

1:�=�n1: � n22 ÿ 2� �
n11

n1:

� �
ÿ

n11

n1:

� �2� �
=�n1: ÿ 1� �A2�
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