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A Parametric Method for Census Based
Estimation of Child Mortality

Michael Hartmann'

Abstract: A parametric method for esti-
mating child mortality from reports con-
cerning children ever born and surviving
children is presented. In contrast with
previously proposed methods, it facilitates
use of single-year age reports by mothers on
the survival of their children. In addition,
the new method makes it possible to incor-
porate a priori knowledge of child mortality

1. Introduction

Brass (1961) was among the first to devise a
method for estimating childhood mortality
in developing countries with incomplete
vital registration. His method uses census
returns on the number of children ever born
and surviving children tabulated by five-
year age groups of mothers. Such data are
often referred to as child survivorship data.
Presumably, it was the intention that the
method should be used on a makeshift basis
until vital registration was made complete.
However, because the improvements in vital
registration in developing countries have
been rather modest, the method has con-
tinued to play a salient role in estimating
child mortality. Since it is reasonable to
assume that most developing countries will
not achieve complete vital registration
during the remaining part of this century,
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and fertility in the estimation process. The
new method is illustrated by means of an
application to data from the 1976 Western
Samoa census.
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there is ample reason to believe that the
observation plan of children ever born and
surviving children will be used during the
coming years for estimating child mortality.

Because the retrospective observation
plan of children ever born and surviving
children confounds mortality and fertility,
the child mortality estimates are always
affected by fertility. In an effort to increase
the precision in estimated child survival,
relative to that of previously proposed
methods, the paper addresses the problem
of incorporating prior knowledge of fertility
and child mortality in the estimation process.

The new method in this paper is based on
Brass’s original idea but deviates from his
method, and from previous modifications of
it (Brass 1975; Feeney 1976, 1980; Hill and
Trussell 1977, Kraly and Norris 1978;
Palloni 1979, 1980; Sullivan 1972; Trussell
1975; United Nations 1990) in that it relies
on parametric models of child mortality and
fertility. To advance the discussion $b that
the essential differences between the Brass
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method (or its previous modifications) and
the method proposed in this paper are
brought out, the paper begins with a dis-
cussion of how to capture the survival
function for children from the reported
proportions of deceased children. We then
turn to a brief discussion of the Brass method
and show how the introduction of para-
metric models of child survival and fertility
lead to a new estimation technique. Although
the present paper is intended principally as
a methodological note, an application
to data from the 1976 Western Samoa
population census is given for illustrative
purposes. The paper concludes with a dis-
cussion that focuses partly on theoretical,
partly on practical issues.

2. Modeling the Proportions of Deceased
Children Reported by Women in a Census

In what follows, it is assumed that the popu-
lation is closed to migration and that
mortality and fertility are stationary. Let f
be the fertility function for women, s the
survival function for both sexes and W(x)
the age density for females. This means that
for an infinitesimal age increment dx,
W(x)dx is the expected number of females
between ages x and x + dx, the probability
for a woman aged x to give birth to a child
before age x + dx is f(x)dx and that the
probability for a child to survive from birth
until age a is s(a). The expected number of
children born by these women when they
were between ages x-a and x — a + da is
W(x — a)f(x — a)da. All of these children,
however, cannot be reported since some of
the women have died during the past a
years. Instead, the expected number of
children to be reported is W(x)fix — a)da.
Letting a, denote the starting age of the
fertility schedule given by fand by extending
the consideration to the whole of the repro-
ductive sub-interval g, to x, the expected
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number of children to be reported by
women aged x is

Bx) = W) | f(x—ada (1)
0

and the corresponding number of surviving
children to be reported is

S(x) = W(x) j f(x — a)s(@)da. (2)

From (1) and (2) it follows that the pro-
portion of children ever born who will be
reported as dead by women aged x is

| fx — @qg(@)da
H = 0

X

p= (€)
j f(x — a)da

where g(a) = 1 — s(a). Henceforth, g is
referred to as the mortality function.

Assuming that g(a) is continuous for
strictly positive a, the mean value theorem
for integrals and (3) imply that there is an
age &, = §(f, ¢, x), 0 < & < x — 4, s0
that

qE,) = H.. “

It is this elementary property that justifies
estimation of childhood mortality from
child survivorship data.

3. A Brief Outline of the Brass Method

3.1. Child survival estimated from
reporting women in five-year age groups

In the approach given by Brass and Coale
(1968, pp. 104-122), it was assumed that
child survivorship data only were given by
five-year age groups of women. In order to
work with the standard five-year age groups
15-19, 20-24, ..., 60-64, indexed i =
1, ..., 10, respectively, D, denotes the
corresponding proportion of deceased
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children and P, the mean parity for females
in age group i. More specifically, P, is the
average number of children ever born
reported by women in age group i. In what
follows, we disregard survival reports from
women aged 30 and over. The main reason
for this is that they refer to a period long
before the census and that, from a practical
point of view, it becomes unrealistic to
assume that mortality and fertility have
remained stationaryfor such a long time.

If we assume, as Brass did, that the age
distribution of females is uniform over each
five-year age group then it follows that the
mean parity for women in the ith five-year
age group is

L+5

3 _[ F(x) dx

Y

P, =

where ¢, = 10 + 5i, and F(x) = j’; f(uw)du.
It will also be seen that the proportion of
deceased children to be reported by women
in the ith five-year age group then becomes
ti+5 x—ay

j j f(x — a)g(a)dadx

- t+5 Ox—ao

f jf(x—a)dadx
0

4

Di=

where ¢, = 10 + 5i.

Using the mean value theorem for double
integrals with the assumption that f and ¢
are continuous, it follows that there is an
age {; = U(f, g, i) so that ¢((,) = D,. It is
clear, therefore, that the proportion of
deceased children reported, e.g., by women
aged 20-24 years is equal to the probability
of dying before a certain age, (,, say.
Estimating childhood mortality from pro-
portions of deceased children given by five-
year age groups of women, then, is a matter
of finding the age {; that corresponds to D,.
It will be noted, however, that {; obviously
depends on the fertility of women and the
mortality of children.

3.2.  The development of Brass multipliers

To estimate the probabilities ¢(i), Brass
introduced multipliers M(y, {) which depend
on the mean age of the fertility schedule p
and the age group i. Denoting the observed
proportions of deceased children by D;, the
estimation procedure is

Gg@) = M, i) D, i=1,2, and 3.

The multipliers M(u, i) have been con-
structed on the basis of two assumptions.
First, it is assumed that for childhood ages,
mortality functions are proportional in the
sense that

q(x) = pg,(x) (%)

where ¢,(x) is a completely specified standard
mortality function and p is a constant. The
mortality function g, then, generates a
family of related mortality functions. It will
be noted that p cancels in (3) so that the
multipliers are independent of p, that is, of
the level of child mortality. Second, it is
assumed that the fertility curve is given by

b, = Clx — a)B33 + a) — x)’,

a < x < ay+ 33

(6
which is known as the Brass fertility poly-
nomial (Retherford 1979). Here C is a
parameter which determines the total fertility
rate. Notice also that C cancels in (3) so that
the multipliers are independent of the level
of fertility. For this polynomial the
mean age of the fertility schedule is p =
a, + 13.2 with fixed variance o* = 43.6.
It establishes a one-to-one relationship
between, on the one hand, the ratios of
mean parities R, = P,/P, and R, = P,/P,
and, on the other, p or ag,. Corresponding to
a standard mortality function ¢, (which
was believed to be typical of developing
countries) and different choices of a, in (6),
the multipliers were calculated as M(q,, i) =
q,())/D;.
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Brass has tabulated M(q,, i) as a function
of the ratios of mean parities R, and R,. In
a practical situation, multipliers are chosen
on the basis of the observed ratios R, =
P,/P, or R, = P,/P,. These ratios are
accepted as measures of the central location
of the fertility schedule underlying the
reported proportions of deceased children.
In applications of the method, it is mostly R,
which is used for derivation of the multi-
pliers. The reason for this is that R, is often
greatly affected by reporting errors and
it does not correlate very well with the
mean of the underlying fertility schedule
(Hartmann 1989a).

It should be noted that one of the reasons
for elaborating with the statistics D, is that
they smooth the random errors in the single-
year reports H, . Nevertheless, whether there
is large or small random variation in the H,,
it ought to be possible to base the estimation
of child mortality on these. The present
paper, as already noted, focuses on this
issue.

3.3.  The uncertainties of Brass estimation

It is evident that several uncertainties apply
to Brass estimation of child mortality. First,
it will be noted that the estimation pro-
cedure confounds mortality and fertility. In
fact, for any given five-year age group, the
multiplying factors M(a,, i) are chosen solely
on the basis of R, or R,. Second, the esti-
mates are obtained subject to the assump-
tion that the true underlying age patterns of
child mortality and fertility are similar to
those underlying the multiplying factors
M(a,, i). Third, due to the assumption of
stationary mortality and fertility, the esti-
mated probabilities §(i), i = 1, 2, and 3 do
not refer to the time of the census unless the
past changes in mortality and fertility have
been rather modest. Fourth, it is assumed
that the age distribution of women over
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each of the above mentioned five-year age
groups is uniform.

Furthermore, it should be noted that
because the retrospective observation plan
is based on reports from mothers concern-
ing their number of ever born children and
surviving children, the resulting estimates of
child mortality only concern the children for
whom survival returns are obtained. This
means that one cannot estimate the mortality
of children whose mothers (a) were dead at
the time of the census, (b) were not contacted
by the census enumerators (underenumer-
ated females), (c) refused to answer the
census questions (female non-respondents)
or (d) were abroad at the time of the census.
To this must be added that it is assumed that
child mortality is independent of the age of
mother as well as of her parity and, of
course, that the returns on children ever
born and surviving children are accurate.

3.4. Relaxing the uncertainties of Brass
estimation

The method in this paper aims at reducing
some of the above mentioned uncertainties.
For example, it allows the use of parametric
representations of child mortality and
fertility which the user has reason to believe
are close to the ones underlying the reported
child survivorship data. More specifically,
the user can tailor the method to an a priori
choice of age patterns of mortality and
fertility. Moreover, the limitation imposed
by working with five-year age groups is done
away with. We begin the discussion by intro-
ducing parametric models of child mortality
and fertility which can be used in (3).

4. Modeling Childhood Mortality

It has recently been shown (Hartmann
1989b) that

s, 0) = Y

1 + exp a)t*
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with parameter vector 8 = (a, b) gives a
close representation of survival curves
between the ages of 0 and 15. Consequently,
we use ¢(t; 0) = 1 — s(¢; 0) as a parametric
model of child mortality in (3). Several
applications of s(¢; 8) to empirical child
survival curves are given in Hartmann
(1980).

5. Modeling the Fertility Schedule

Although many attempts have been made to
model the fertility schedule (Brass 1960;
Coale and Trussell 1974; Hoem, Madsen,
Lovgreen Nielsen, Ohlsen, Hansen, and
Rennermalm 1981) the shifted gamma

probability density function

C,k

T(k)

x exp(—clx —d)),x=>d
®

with parameter vector k¥ = (c, k, d), has
always performed as one of the most accurate
models of observed normalized fertility
schedules, that is, schedules for which the
total fertility rate has been set to one. The
mean and variance are p = d + k/c and
o’ = k/c?, respectively. A model of an
empirical fertility schedule with total fertility
rate Ris R g(x; ). However, when modeling
fin (3) the total fertility rate cancels so
that it is sufficient to model the normalized
fertility schedule. A slightly simpler but in
most cases adequate model is obtained by
letting d = 0 in (8) so that
k

Y(x; A) = I"L(‘k) xX'exp(—ex),x =0
®

with A = (¢, k), models the normalized
fertility schedule. Empirical studies suggest
(Hartmann 1982) that for £ = 18 in (9)

18

c

17 —cx
— x=0
mr e rz

(x — )

glx; x) =

Y(x; ) =

gives a simple but adequate one-parameter
model of the normalized fertility schedule.

6. A New Method

6.1. The characteristics of child
survivorship data

Before the new method is discussed, it is
instructive to evaluate the numerical conse-
quences of (4). To this end, Table 1 gives
parametrized model proportions of deceased
children obtained from (3) by fitting ¢(z; )
to West model life table 16 for both sexes
(Coale and Demeny 1966) and the model
fertility function y(x; ¢) with mean ages
ranging from 24.7 to 29.7 (this range of
mean ages is the same as is given by Brass
(1975, p. 55). The estimated parameters in
gq(t; 0) are ¢ = —1.1282 and b = 0.1002
(Hartmann 1980, p. 47). The ages &, of
children for which H, = g(§,; 0) are also
given. For further details, see Hartmann
(1982).

Women aged 16, with p = 24.7, report a
proportion of 0.0958 dead children. Solving
the equation g¢(&,; —1.1282, 0.1002) =
0.0958 with respect to &, gives &, = 1.06
(Table 1). This shows that for such a choice
of fertility and mortality functions, the pro-
portion deceased children reported by
women aged 16 years is nearly the same as
infant mortality. However, with the same
mortality function, but with p = 29.7, the
proportion of deceased children for women
aged 16 years is 0.0921 for which £, = 0.85
(Table 1). The discrepancy between these

solutions for &, is explained by the effects of

rapid versus slow childbearing during early
fecund ages. Also, it will be seen (Table 1)
that the proportions of deceased children
reported by women with single-year ages 20,
21, 22, 23, and 24 and p = 24.7 equal the
probabilities of dying before ages-&, with
1.94 < &, < 3.16 and that when p = 29.7
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Table 1.
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Model proportions of deceased children corresponding to model fertility schedules

Y(x; ¢) with mean ages p ranging from 24.7 to 29.7 years and child mortality corresponding
to West model life table level 16 for both sexes

Age x Mean age of model fertility schedule
24.7 257 26.7 277 28.7 29.7
H(w &

15 0.0917 0.83 0.0912 0.81 0.0908 0.79 0.0880 0.66 0.0876 0.65 0.0872 0.63
16 0.0958 1.06 0.0952 1.02 0.0936 0.93 0.0931 0.91 0.0926 0.88 0.0921 0.85
17 0.0990 1.27 0.0979 1.19 0.0972 1.15 0.0967 1.12 0.0961 1.08 0.0943 0.97
18 0.1016 1.47 0.1009 1.41 0.1002 1.36 0.0989 1.26 0.0983 1.22 0.0977 1.18
19 0.1043 1.70 0.1032 1.60 0.1024 1.53 0.1017 1.48 0.1010 1.42 0.0997 1.32
15-19 0.0985 1.23 0.0977 1.18 0.0968 1.12 0.0957 1.05 0.0951 1.02 0.0942 0.97
20 0.1068 1.94 0.1058 1.84 0.1049 1.75 0.1038 1.65 0.1030 1.58 0.1023 1.52
21 0.1092 2.19 0.1081 2.07 0.1071 1.97 0.1062 1.88 0.1053 1.79 0.1043 1.70
22 0.1116 2.48 0.1104 2.33 0.1093 2.21 0.1083 2.09 0.1074 2.00 0.1065 1.91
23 0.1140 2.79 0.1127 2.62 0.1115 2.47 0.1104 2.33 0.1094 2.22 0.1085 2.12
24 0.1165 3.16 0.1151 2.95 0.1138 2.77 0.1125 2.59 0.1114 2.45 0.1105 2.34
20-24 0.1116 2.48 0.1104 2.33 0.1093 2.21 0.1082 2.08 0.1073 1.99 0.1064 1.90
25 0.1189 3.54 0.1174 3.30 0.1160 3.08 0.1148 2.91 0.1136 2.74 0.1124 2.58
26 0.1214 3.99 0.1197 3.68 0.1183 3.44 0.1169 3.22 0.1157 3.04 0.1145 2.86
27 0.1238 4.46 0.1221 4.12 0.1205 3.82 0.1191 3.58 0.1178 3.36 0.1166 3.17
28 0.1263 4.99 0.1245 4.60 0.1228 4.26 0.1213 3.97 0.1199 3.72 0.1186 3.49
29 0.1287 5.56 0.1268 5.11 0.1251 4.73 0.1235 4.40 0.1220 4.10 0.1206 3.84
25-29 0.1238 4.46 0.1221 4.12 0.1205 3.82 0.1191 3.58 0.1178 3.36 0.1165 3.16

E, is a solution to the equation H, = ¢(&,;
assumed to be 1.05.
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Fig. 1. -Plot of &, against x

—1.1282, 0.1002). The sex ratio at birth is

then 1.52 < &, < 2.34. In consequence, &,
is sensitive to p. This sensitivity, however, is
much more pronounced in the age group
25-29 than in the age groups 15-19 and
20-24. This is illustrated by Fig. 1 which
shows a plot of £, as a function of x when p
increases from 24.7 to 29.7.

It is evident, therefore, that the obser-
vation plan of children ever born and
surviving children suggest that one should
use the reports from women aged about 20
years for estimating child mortality- In
particular, if the population of young
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women is so large that there is little or no
random variationin H,, x = 19, 20, and 21,
say, estimated child mortality based on
these reports reflect current child mortality
more so than if based on, e.g., the reports
from women aged 25-29.

6.2. Estimating the mortality function

Regardless of how the problem of estimat-
ing child mortality from child survivorship
data is approached, it is necessary to make
model assumptions concerning underlying
mortality and fertility functions. As to the
childhood mortality function, the assump-
tion (5) is both practical and realistic. With
this assumption it follows from (3) that
model proportions of deceased children,
generated by the same age pattern of fertility,
become proportional, that is,

H, = pH; (10)

where H; is generated by g¢,.

Assume now that we have Hx,- for the ages
Xy, . .., Xy of women, that the underlying
fertility schedule is approximated by y(x; c*)
with mean p* (in which case ¢* = 18/p*),
and that the underlying mortality function ¢
is proportional, in the sense of (5), to a
completely specified mortality function
q,(t) = q(t; 0). Bstimation of ¢ is then a
matter of solving the system of equations

A, =
x;+0.5
_[ v(x; + 0.5 — a; c¢*)q,(a)da
0
P—= 03 >

J v(x; + 0.5 — a; ¢*)da
0

i=1...,N

with respect to p. (The upper limit of
integration is x; + 0.5 because we refer to
women aged x at last birth day and because
the age distribution for women is considered
uniform at each single-year age interval.)

Since this may be a mathematically intrac-
table problem, it is necessary to follow a
slightly different route. R

The two functions ¢,(f) = ¢(t;0) and y(x;
c*) can be used to compute model pro-
portions of deceased children in agreement
with (3). Denoting the resulting model pro-
portions of deceased children by H, (p*, o),
it follows from (10) that

H, = pH (@ 0),i=1...N.

Minimizing
N ~ ~
Z [Hx,- - pHx,—(”’*a 9)]2
i=1

with respect to p gives

b = ; [Hxini(”*’ 9)]/ ; [Hx;(u*a 9)]2
Q)

whereby the estimated mortality function is

40 = pg,(1) = pq(t; 9.

Here it is evident that the estimated mortality
function §(¢) depends on the estimated, or
guessed, p*, on the assumption that the age
pattern of fertility is reasonably approxi-
mated by y(x; c*), and on the validity of the
a priori estimated mortality function ¢,(f) =
g(t; B). Moreover, it should be noted that
the main idea behind (11) is that the chosen
model proportions of deceased children
should be very similar to the observed ones
so that ¢,(¢) only has to undergo a slight
adjustment to yield an estimate of the
mortality function underlying the observed
proportions of deceased children.

The flexibility of the method is that it is
possible to make the assumption that the
fertility schedule is approximated by a
parametric representation given by g(x; x),
Y(x; ), y(x; ¢), o, or by another convenient
parametric fertility model. In particular, it
may be possible to select a parametric
representation of fertility with approximately
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Table 2. Proportions of deceased children
corresponding to Swedish male mortality
1901-10 and West model life table 16 (both
sexes) and y(x; ¢) model fertility with mean
29.7

Age of Sweden, 1901-10 West 16
women =

H_(29.7) H . (29.7)
19 0.1026 0.0997
20 0.1055 0.1023
21 0.1078 0.1043
22 0.1104 0.1065

p = ZPy [HH, (2972, [H (9. =
0.04402/0.04263 = 1.033 4(i) = 1.033 4(i; 9)
with @ = (—1.1282, 0.1002)

the same R, and p that are estimated, or
guessed, for the hypothetical fertility
schedule underlying the H, . In other words,
the model proportions of deceased children
appearing in (11) can be tailored to reflect
available knowledge concerning current
fertility of women. With respect to the
a priori choice of the mortality function
q,(t) = q(t; 0), it is clear that g(z; 6) can be
fitted to a child mortality experience which
is believed to be a good approximation to
that underlying the observed proportions of
deceased children. Furthermore, as noted,
one is not limited to only making use of D,
i = 1, 2, and 3, but can take advantage of
reports H_ for any convenient range of
single-year ages of mothers.

7. Numerical Illustrations

7.1. A hypothetical example

As a first, but hypothetical, illustration,
Table 2 gives proportions of deceased
children H,, x =19, 20, 21, and 22,
generated from (3) by y with p = 29.7 years
and s(z; 0) fitted to Swedish male mortality
during 1901-10 which yields @ = —1.11955
and b = 0.11472 (Hartmann 1980, p. 55).
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Table 3. Actual and estimated survival prob-
abilities using the new method

Age of Actual Estimated
children q@i) 4(@i)

1 0.0963 0.0979

2 0.1110 0.1110

3 0.1206 0.1193

This is the mortality function we wish to
capture by means of the new method. The
first problem is to find a set of model
proportions of deceased children which are
similar to H,. Since the H,(29.7) in Table 1
are quite close to H,, we use these in (11) for
estimation of p. We choose the ages 19, 20,
21, and 22 for estimation of p. This gives
p = 1.033 (see Table 2). The mortality
function underlying the model proportions
of deceased children in Table 1 is ¢,(¢) =
g(t, 8) with @ = —1.1282 and b = 0.1002.
Hence, the estimated mortality function
underlying the H, is 4(z) = 1.033 q,(¢). It
will be seen that the estimates of g(1), ¢(2),
and ¢(3) are quite accurate (Table 3).

7.2.  An application to child survival data
from Western Samoa 1976

The data in the present illustration come
from the 1976 Western Samoa population
census; the population is small and the con-
clusions drawn from the estimates are some-
what limited. In illustrating the method with
these data, the focus is on applicational
aspects rather than on the reliability of
the derived estimates. Table 4 gives the
reported numbers of ever born and surviving
children.

A close investigation of fertility in Western
Samoa (Western Samoa 1979) suggested an
estimate of p = 29.6 (Yap State 1988). The
model proportions (Table 4) were derived
by means of y(x; 0.6081) (¢ = 18429.6)
and ¢,(x) = g(x; —1.6420, 0.1106). This
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Table 4. Observed proportions of deceased children by single-year ages of women reported
in the 1976 Western Samoa population census, and model proportions of deceased children

Age Women Children  Surviving Observed proportion  Model proportion
ever born children of deceased children  of deceased children
20 1,380 471 451 0.0425 0.0381
21 1,116 697 667 0.0430 0.0394
22 1,172 1,092 1,049 0.0394 0.0397
23 985 1,223 1,177 0.0376 0.0407
24 939 1,419 1,355 0.0451 0.0416
20-24 5,592 4,902 4,699 0.0414 0.0401
25 770 1,554 1,495 0.0380 0.0433
26 839 1,964 1,864 0.0509 0.0446
27 831 2,273 2,154 0.0524 0.0456
28 826 2,486 2,371 0.0463 0.0464
29 723 2,538 2,410 0.0504 0.0475
25-29 3,989 10,815 10,294 0.0482 0.0457

Special tabulation produced by the Government of Fiji Electronic Data Processing
Services. See also Western Samoa (1979). Although the proportions deceased children are
given with four decimal places, only the two first digits should be seen as significant because

of the smallness of the population.

mortality function was motivated by the
results of a sample survey (Western Samoa
1979). In consequence, the model proportions
of deceased children were computed to
reflect current circumstances of child mor-
tality and fertility. It will also be seen that
the model proportions of deceased children
are close to the observed ones (Table 4).
Because of the relatively small number of
women (Table 4), we use all the single-year
reports between ages 20 and 29 for esti-
mation of p. When these values are inserted
in (11), we get p = 1.0442.

This means that the estimated child mor-
tality function is

G(x) = 1.0442q(x; —1.6420, 0.1106).

The resulting g(x) for x = 1,..., 5 are
given in Table 5.

In passing, notice that we also could have
used the data given by five-year age groups.
For example, using the age group 20-24, we
get p = D,/D, = 0.0414/0.0401 = 1.0324.

For the age group 25-29, we get p =
D,/D, = 1.0547.

This illustrates that, in a population
larger than this, the method may enable one
to see if different age groups of women
report substantially different “levels” of
child mortality. The present example would
suggest that Samoan mothers aged 20-24
reported nearly the same level of childhood
mortality as those aged 25-29.

The example also illustrates that if one is
able to specify the underlying fertility
function from other sources than R, and R,,
this can be used in the estimation process. It
is important to note that the estimation
process builds on a specification of a stan-
dard mortality function that is close to the

Table 5. Estimated child mortality function
for Western Samoa 1976

gy 42 43 4@ 405
0.0377 0.0437 0.0476 0.0506" 0.0530
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observed one so that the estimated p is close
to one. In effect, it is necessary to make only
a slight adjustment to the model mortality
function ¢, to arrive at an estimate of the
underlying mortality function.

8. Discussion

Since the traditional methods of child
survivorship  estimation impose fixed
choices of age patterns of child mortality
and fertility, and are designed to work only
with the five-year statistics D;, there is
obviously a need to develop a flexible
technique which allows the researcher to use
his or her own choices of mortality and
fertility in the estimation procedure, and to
select a reasonable range of single-year
reports upon which to base the estimation.

Assuming that child survival is reliably
reported and that the population of women
is so large that there is no visible random
variation in the A, it is possible to estimate
the underlying mortality function from a
few single-year age reports H,, e.g., H,,
H,,, and H,,. The assumption of stationary
mortality and fertility is then relaxed to the
extent of assuming that fertility has remained
constant for a few generations of women
and that their children have had the same
mortality. In passing, it will be remembered
that f and ¢ in (3) are assumed continuous
and this implies that, in practice, the popu-
lation of reporting women should be large
(so that random variation in the propor-
tions of deceased children is minor). When
the population of women is small, so that
there is clearly visible random variation in
the H., it may be necessary to base the
estimation of p in (11) on (graduated) child
survival from a larger number of female
generations, e.g., women aged 19, 20, . . .,
25. Hence, when working with small popu-
lations (or with survey data) it is necessary
to make the (unrealistic) assumption of con-
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stant mortality and fertility during a period
of 10 years or so before the census. It is,
among other things, for this reason that it is
particularly difficult to work with child sur-
vivorship data from small populations. For
a recent application of the new method to a
small Micronesian population, see Yap
State (1988).

Notwithstanding the assumption of
stationary mortality and fertility, it is
evident that the new approach can incorpor-
ate mortality transitions in the mortality
and fertility functions to be used in (3).
Hence, the approach given in this paper also
facilitates the construction of model pro-
portions of deceased children which reflect
given choices of changing mortality and
fertility. Because the present paper princi-
pally is intended as a methodological note
which brings out the main features of a
parametric approach to estimating child
mortality from child survivorship data, we
abstain from discussing this issue in detail.
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