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A Population Forecast as a Database:
Implementing the Stochastic Propagation
of Error
Juha M. Alho' and Bruce D. Spencer’

Abstract: We propose implementing popu-
lation forecasts as databases. This has two
advantages. First, users can retrieve custom
forecasts to suit their particular needs.
Second, the forecasts can include prob-
abilistic prediction intervals that allow the
user to assess the uncertainty of the forecast.
A major contribution of the paper is the
derivation of propagation of error formulas

1. Introduction

Statistical agencies are caught between lim-
ited resources for publishing statistics and
pressure from data users to make more stat-
istics available. For example, a user may
require more detailed cross tabulations than
the ones available in published statistics, or
he or she may need data for unusual aggre-
gates. These demands are hard to meet
because every user has potentially different
needs. In addition, sophisticated users have
become increasingly aware that all statistics
are not equally accurate. They expect esti-
mates of the uncertainty of the statistics.
This issue of the quality of statistics arises
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that are needed to calculate the probabilistic
intervals. A computer program implement-
ing a simple version of a stochastic popu-
lation forecast is described.
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always, whether the statistics be based on
censuses, sample surveys, or administrative
records. However, the need to express
uncertainty is paramount for forecasts
because they contain the largest errors.
Meeting the need to express uncertainty is
also difficult in published statistics, because
for every n estimates there are n variances
and, more generally, n(n — 1)/2 covari-
ances of potential interest.

One emerging solution to these dilemmas
is to make available a computerized data-
base that users can tap and create custom
statistics. The database can reside in a cen-
tral computer (or network) that provides
on-line access to authorized users, or copies
of the database can be provided on diskette
(or machine readable form) for microcom-
puter use. This paper focuses on how users
can retrieve estimates of population size and
estimates of uncertainty for population
aggregates of their choice in forecasts pro-
duced by the so-called cohort-component
method. A central contribution is the deri-
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vation of the propagation of error formulas
that are used to carry out the uncertainty
analysis. Our approach (although not our
particular models) applies to other statistics
as well.

The cohort-component method of popu-
lation forecasting typically consists of pro-
jecting future numbers of annual births,
deaths, and migration by one or five-year
age-sex groups, adding them to form a new
population vector, and repeating the cal-

culations for each forecast year (Shryock :

and Siegel 1976, pp. 443-444). This pro-
cedure was introduced by P.K. Whelpton in
a sequence of papers beginning in 1928
(Whelpton 1928; Thompson and Whelpton
1933, ch. X; Whelpton 1936; Whelpton,
Eldridge, and Siegel 1947). Essentially the
same procedure is currently used in many if
not most official population forecasts,
including the functional forecasts used for
social security purposes, such as the fore-
casts of the number disabled (e.g., Wade
1987; Andrews and Beekman 1987).

Ever since Whelpton’s time the problem
of expressing uncertainty about the likely
future population growth has been solved
by preparing three or more forecast variants
that are hoped to cover the ‘“‘reasonable”
alternative future paths of development.
Typically, no probability statement is given
for the event that the high-low interval
covers the true population size. For example,
the U.S. Bureau of the Census (1984, p. 1)
considers three principal alternative
assumptions each about fertility, mortality,
and migration. The low (high) forecasts are
obtained by assuming that in each year and
for each population subgroup fertility, life
expectancy, and immigration are low (high).
Such a practice contrasts to the usual stat-
istical or stochastic approach to error,
which recognizes some degree of indepen-
dence among alternative occurrences. Fer-
tility or migration or life expectancy might
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be unexpectedly low for some subgroups for
some years but the chances are considerably
smaller that all three components of change
would be simultaneously so low in all sub-
groups for all years. A consequence of this
deterministic or nonstatistical approach is
that the probability content of the intervals
(that is, the probability that the future
population sizes fall within high-low inter-
vals) is inconsistent for forecasts for dif-
ferent points in time or for different sub-
groups. For example, Alho and Spencer
(1985, p. 313) found that the probability
content of the U.S. Bureau of the Census’
intervals for age groups surviving from the
jump-off year 1980 were somewhat less
than 0.90 initially but grew with time until
they were about 0.90 after about 5 years
and greater than that thereafter. Intervals
for births, on the other hand, were much
narrower than 0.67 level prediction inter-
vals for all 15 forecast years considered.
Combining the birth forecast with the fore-
cast of survivorship produces high-low
intervals with a highly erratic probabilistic
content.

The first attempt at giving a probabilistic
interpretation, which we are aware of, was
due to L. Tornqvist in Finland in 1949
(Hyppold, Tunkelo, and Tornqvist 1949,
pp. 68-74). This early work contained many
of the central features of a stochastic fore-
cast. Tornqvist’s lead was not followed up in
official forecasts until the 1980s when a
probabilistic interpretation was considered
by the U.S. Bureau of the Census (1984).
Although it is more complicated to take a
stochastic rather than a deterministic
approach to the assessment of error, the
stochastic approach is the only way to
achieve prediction intervals with a known,
constant probability content.

Since Tornqvist there has been an exten-
sive discussion of how to use timge-series
methods to produce interval estimates of
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particular functions of the population vec-
tor, such as total population size, or the
number of births or deaths. For a review of
this literature until 1985, see Land (1986).
More recent contributions include those of
Rogers (1986), Bozik and Bell (1987), Bell
(1988), Lee and Carter (1990), McNown
and Rogers (1990), Alho (1991) and Alho
and Spencer (1990a, 1990b).

Apart from the work of Térnqvist, analy-
ses of the uncertainty of the whole popu-
lation vector started out by considering
branching process models, such as multi-
type Galton-Watson processes, which treat
the vital rates as probabilities (e.g., Kendall
1949; Goodman 1968; Feichtinger 1970;
Pollard 1973, ch. 9; Keiding and Hoem
1976). However, it is well known that the
amount of uncertainty generated by this
type of binomial, or Poisson, variability is
much less than the level actually observed.
Pollard (1968) and Sykes (1969) appear to
have been the first to consider population
processes with random vital rates. Later,
Cohen (1977) considered a model in which
the matrices of vital rates were allowed to
follow a (possibly non-time homogeneous)
Markov chain with a finite state space.
However, none of these contributions con-
sidered the problem of statistical prediction
of the vital rates as a part of the propagation
of error. In Alho and Spencer (1985) the
probabilistic analysis of the whole popu-
lation vector including the statistical predic-
tion of the vital rates was taken up.
Although this work showed that it is feasible
to derive analytical approximations to the
distribution of future population vectors,
many difficult problems remained. An
alternative to the analytic approach is to use
simulation, see, e.g., Pflaumer (1988).

A problem in the analytic approach
involves the handling of births to future
births (when the forecast period exceeds the
lower limit of the child bearing ages). This
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will greatly complicate the propagation of
error calculations. One solution to the prob-
lem has been given by Davis (1988), who
sketched recursive formulas for the covari-
ance matrix of the future population vector
under alternative simplifying assumptions.
The most realistic set-up assumes only that
the prediction errors of the vital rates have
state-space representations (Davis 1988,
p. 24; cf., Akaike 1974). If forecasts of the
future vital rates are available in terms of
ARIMA models, then Davis’s approximate
Kalman-filter calculations may provide an
attractive way of handling the analytic
propagation of error.

Our approach for the propagation of
error is based on the consideration of the
logarithm of the population vector. This
linearizes the process of population growth
for all other ages except the births. For the
latter, a linear Taylor-series expansion will
be used. We assume that the covariance
structure of the forecast errors of the vital
rates is known, and provide approximate
formulas for the propagation of error based
on that. The approach we propose involves
the specification of the covariance matrix of
the vector of births for all forecast years.
This matrix is calculated once and stored.

‘Thereafter, all the propagation of error cal-

culations follow a uniform pattern. The user
specifies the age-group and forecast years of
interest. A computer program utilizes a col-
lection of data matrices to compute the
point forecasts and their standard devi-
ations on a logarithmic scale, and puts them
into a text file. The file can be read into any
statistical package (such as Minitab) or a
suitable spreadsheet program, for the speci-
fication of prediction intervals of desired
level of coverage, and for graphical output.
This is what we mean by “implementing the
forecast as a database.” In short, we view
the forecast as a collection of files centain-
ing the requisite data and distributional
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specifications, coupled with computer pro-
grams that are capable of producing the
user-specified prediction intervals.

In Section 2 we describe a version of the
basic linear growth model (““Leslie model”)
used to describe the evolution of the popu-
lation vector over time. The formulas
presented provide a basis for the propa-
gation of error calculations of Section 3. In
Section 4 we define and discuss the special
problems of functional forecasts. Section 5
has a description of prototype computer
programs that implement the formulas
developed. Section 6 gives empirical
examples of how probabilistic intervals dif-
fer from the high-low intervals currently
used. We conclude in Section 7 by pointing
out directions for future research.

2. Linear Growth Models
Define V(1) = (V(0, 1), . . ., V(s, 1))", where

V(j, ) = size of female population in
age j at time 1.

To be specific, we let ¢ refer to a specific date
during the year ¢, e.g., January 1, or July 1.
Age j refers to an age-group of females who
have had their jth birthday by the specific
date, but who have not had their (j + 1)st
birthday. When j = s, we take V(s, f) to be
the size of the female population in the last
age s.

Define an (s + 1) x (s + 1) matrix
R(t) = (R, j, 1), i, j=0, ... s with
R(0, 15, 1), . . ., R(0, 44, 1) the age-specific
fertility rates of year ¢, and R(1, 0, ), . . .,
R(s, s — 1, ) the age-specific survival prob-
abilities from age 0 to age 1, from age 1 to
age 2, etc., during year ¢. In addition, define
R(s, s, 1) as the average survival probability
in the last age-group. All other elements in
matrices R(¢) are zero. For some purposes
we may want s to be a fairly small number,
such as s = 85. For other purposes we may
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want s to be much larger, such as s = 110.
In the latter case we may assume that
R(s, s, t) = 0, so there is no survival in the
last age.

The linear growth model specifies that

Vit + 1) = R(OV(Q). @.1)

This model is capable of describing a
closed female population (i.e., there is no
migration). If we replace the life table sur-
vival rates by the so-called census survival
rates, then migration can also be incor-
porated. In order not to complicate the ter-
minology below, we shall assume that we
are dealing with a closed population.

We will assume that the jump-off popu-
lation V(0) is strictly positive, or V(j, 0) > 0
forj = 0, ..., s, and that the age-specific
fertility rates and survival rates are strictly
positive. Define,

v(j, 1) = log {V(j, D)},

fGs 0 = log {R(O, j, 0},

r(j, t) = 10g {R(] + lvj’ l)},
r(s, 1) = log {R(s, s, 1)}.

The linear growth model (2.1) implies
that

V(i) = R(t — 1)--- ROV(0). (2.2)

First, consider the survivors of the jump-off
population. We get the following formulas.
For1 <t <j<s— 1wehave

v(j1) = v(j —10)

=1
+ Y G —t+ k k) (23)
k=0
and for r <'s we have

log { Y. exp |:v(s — k,0)
k=0

k-1

+ Y r(s — k + n,n

n=0

+ f r(s, h)]}. = 4)

h=k

o(s, 1) =
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Consider now the births in (2.2). Note
that it takes fifteen years for those born to
be in the age 15, and one more year to have
children. Therefore, the first forecast year
for which there are “‘births to forecast
births” is + = 17. Before that, we have for
t=1,...16,

(0, 1)

= log{i

k=15

exp [v(k —t+1,0)

+i—r(k—t+l+n,n)

n=0

+ fk, t — 1)]}.

Strictly speaking, the formula for births
given here does not give the correct size of
the “age 0’ population because it does not
involve a factor for women’s survival until
birth and children’s survival from birth to
age 0, during the year of birth. This is easily
remedied if we multiply the fertility rates by
the average survival probabilities.

Surviving the first sixteen birth cohorts
we have

2.5)

‘U(j, t) = W(O,[—j)

j-1
+ > r(n,t —j+n) (2.6)
n=0
for max {0,7 — 16} <j < 1.
For the “second generation of births,” or
for the years t = 17, ..., 32, (2.2) implies
that

2(0, 1)

44
= log{ Y exp[v(k—t+ 1, 0)

hk=1-1

Y k- 4T+ k1 — 1)]

n=0

+ Y exp[v(o,z— I — &)

k=15
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k-1

+ Y rmmt—1—k+n)

n=0

+ flk,t — 1)]}.

Here the first sum over k corresponds to
births due to the survivors of the jump-off
population. The latter sum over k corre-
sponds to “births to births,” so the equation
is actually a version of the well-known
renewal equation of the births (cf., Keyfitz
1977, p. 99). Note that the terms
v(0,t — 1 — k) have been defined earlier
in terms of the jump-off population and past
survival rates. The covariance between
those survival rates and the ones appearing
explicitly in the formula above is one source
of the analytical difficulties mentioned in
Section 1. However, we shall see below that
it is possible to carry out approximate
propagation of error calculations based
essentially on the above “renewal equation”
formulation, by approximating the (small)
covariance in question by zero.

Surviving the birth cohorts born during
theyearst = 17,...,32, weapply (2.6) for
max {0, 7 — 32} <j <1t — 16.

The formulas (2.6) and (2.7) apply to later
birth cohorts, as well, so long as we note
that for 7 > 45 the sum over k from
k =1t — 1 to 44 vanishes and if we take
flk,t — 1) = —oo for k > 44.

2.7)

3. Propagation of Error

We will now introduce stochastic elements
into our model. The notation given above
will be reserved for the point forecast of
future population. The population itself is
taken to be a random vector V(7). Other
random variables will also be distinguished
by a ~. Define v(r) = (v(0,0),...,
o(s, ), (1) = (f(15,0), ..., f(44, 1),
and () = (r(0, 1), . .., r(s, 1))". Assume
for the jump-off population that ..

E[7(0)] = v(©0), Cov (%0)) = X(0)
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where v(0) is a known vector, which has
been estimated based on past data, and X(0)
is a known covariance matrix, which is
based on what is known about the esti-
mation error in v(0) (cf., Alho and Spencer
1985, p. 310). Assume further that there are
predictions f(r) of f(¢) such that

E[f()] = f(1), Cov (T(1),fw) = T(z,u),

where f(7)s are known vectors and TI'(z, u)s
are known covariance matrices for
t,u=0,1,... with elements v(i, j, 1, u).
An example of the structure of the predic-
tion error of vital rates (albeit in the pres-
ence of modeling bias) is given in Alho and
Spencer (1985, 3.17, p. 309). Finally, assume
that there are predictions r(z) of #(¢) such
that

E[#(1)] = r(1), Cov (i(2), F()) = O, u),

where r(f)s are known vectors and O(z, u)s
are known matrices. Their (7, j) elements
are denoted as 0(i, j, t, u). Factors influ-
encing the specification of the matrices
O(t, u) are discussed in Alho and Spencer
(1990b, sec. 4).

To complete the probabilistic specifi-
cation of the model we assume that the
variables ¥(0), f(7), and #(¢) are jointly nor-
mal with the jump-off population independent
of the vital rates, and survival rates inde-
pendent of the fertility rates. Note that the
assumption of normality is important for
statistical inference, but it is irrelevant for
the derivation of the formulas below, which
involves the first two moments only. The
assumption of independence simplifies our
formulas considerably. It is a plausible
assumption in practice, because the infor-
mation relevant for the forecasting of
mortality is largely independent of the infor-
mation that is relevant for the forecasting of
fertility, or of the errors in the estimation of
the jump-off population. Moreover, even
though an undercount of the denominator
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population will lead to an overestimate of a
vital rate (and, therefore, to a negative cor-
relation between the jump-off value and the
vital rate), the variation in the number of
events (births, deaths) typically is much
larger than the uncertainty concerning the .
denominator, so the correlation is quanti-
tatively insignificant.

We note that there may be circumstances
in which the forecast errors of the vital pro-
cesses may become crosscorrelated. AIDS,
for example, may have an unexpected effect
on both fertility and mortality. If such effects
become numerically important, more com-
plex formulas for the propagation of error
may be called for.

To calculate the point forecast of future
population we use directly the formulas of
Section 2, or the equivalent recursive multi-
plicative formulas. The former will be help-
ful in the derivation of the approximate
formulas for the propagation of error
below. We define

E[¥(1)] = v(1), Cov (¥(1), ¥(u)) = (1, u).

The elements of X(z, u) are denoted by
o(i, j, t, u). We approximate the distri-
bution of ¥(f) by a normal distribution for
all 7. Based on the assumed log-normality of
the jump-off population and the survival
rates, the approximation is exact for the
survivors of the jump-off population. For
others an analytical approximation is
involved. Given this set-up, we approximate
the matrices X(¢, u) forr, u = 1,2, ... We
will write X(t, 1) = X(¢) = (o(i, j, 1)) for
short, i.e., o(i, j, 1) = Cov (v(i, 1), v(J, 1)).

In a number of instances we resort to
Taylor-series approximations. Consider the
function

g(xl ***** X u) = log ( Z exp (Xi)>’
i=1

-

A linear Taylor-series representation for g
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at (ylv e e yn) iS
gL(xla Ce e xn) = g(}’u cee ’yn)
+ exp (=g(yis - . 0))

X il exp (y)(x; — »)

and we will write g =~ g,. We will use the
second moments of g, to approximate those
of g.

3.1.  Survivors of the jump-off population

We will assume that s is large, so that the
death rate in age s can be taken to be infi-
nite. Then we have for the covariance
between the prediction error of population
size in ages /i and j at time ¢, when
1 <1 <i<j<s, that

o(i,j,t) = oi—t,j—10)

—1 -1

+ Y Y00 —t 4k j— 1+ hk h.

k=0 h=0

3.1)

3.2. Cohorts born after the jump-off

We have given above formulas for the cal-
culation of the births ¥(0, 7). For the pres-
ent discussion it is useful to define B(k, 1) as
the number of children due to women in age
k. We have V(0,7 = B(15,1) + - - - +
B(44, 1), where B(k, t) = exp [v(k, t — 1)
+ f(k, t — 1)]. Using a Taylor-series expan-
sion we have for 1 <t < u < 16 the
covariances for the births

o(0, 0, ¢, u) =~ V(0, 1) V(0, u)~!

44 44

x ) X

j=15 k=15

{B(j, nB(k, u)

><|:y(j,k,t— Lu—1)

+o(j—t+ Lk—u+10)

+ Y Y0 —t+1+m,

m=0 n=0

k —u+ 1 +n,m,n):|}. 3.2)
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The variances of births are obtained by
taking 1 = wu.

We note that this formula is an approxi-
mate one, because it uses a Taylor-series
expansion. However, apart from that, it
does account exactly for all sources of
uncertainty: jump-off population, survival
to years t — 1 and u — 1, and fertility
during s — land u — 1.

The propagation of error for surviving
births and for subsequent births can be
handled in exactly the same way. However,
the formulas become progressively more
complicated. Fortunately, considerable sim-
plification is possible by noting that fertility
is the dominant source of uncertainty in the
forecast of births and surviving births.
Therefore, we shall use three approxi-
mations. The resulting final “renewal
equation” for the covariance of the births is
given as expression (Al) in the Appendix.
Here we describe verbally the principles
behind the approximations. Their exact
mathematical interpretation is given in the
Appendix.

First, consider the propagation of error
calculations for births during a year r > 17.
We shall set to zero (I) the covariance
between the survival rates of the mothers
giving birth at t and the survival rates of their
own mothers (17 or more years earlier), and
(I1) the covariance between the errors in the
Jump-off population and errors in births of the
mothers giving birth ar t. Similarly, even
though errors in fertility forecasts are
expected to be highly correlated over the
forecast years, their correlations decrease
over time. For example, suppose the cor-
relation follows an AR(1) pattern over time,
with p" the correlation between two ages n
years apart. Then, with p = 0.8 we would
only have the correlation 0.03 for n = 16.
The value p = 0.9 corresponds to 0.19.
Therefore, when considering births t6 age 0
at time ¢ we shall ignore (II1) the covariance
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between the errors in the fertility forecasts for
year t — 1 and the past births.

An implication of approximation (III) is
that current fertility is treated as if it were
uncorrelated with the current child bearing
population. Some caution is called for when
this approximation is used in practice. The
forecast errors of ARIMA models, for
example, can be highly correlated (e.g., Box
and Jenkins 1976, p. 160) suggesting the
possibility of a positive correlation. On the
other hand, if the Easterlin hypothesis (i.e.,
cohort size is inversely proportional to
cohorts fertility) holds, but is not adequately
taken into account in forecasting, then the
correlation might be negative.

Note that in applying (I)—(IIT) recursively,
we do let the errors in the jump-off popu-
lation and past birth rates influence the
covariance structure of the births. However,
once the covariance structure has been
calculated, we act as if the births were gener-
ated independently of the jump-off popu-
lation or survivorship. This has the advan-
tage that we never need to trace the history
of a cohort beyond birth in the on-line data-
base implementation of the propagation of
error calculations.

For the surviving births, or
max {0, 7 — 16} < j < i < ¢, we get

for

o(i,j, 1) = o(0,0,1 — i, 1 — j)

i—1 j—1

+ Y Y 6mont— i+ mit—j+n)

m=0 n=0

+ (i, j, ). (3.3)

Approximation (I) asserts that the residual
term g, (i, j, 1) is negligible. The covariance
between the surviving births in age i at year
¢t (max {0, — 16} < i < ) and the sur-
vivors of the jump-off population in age j at
year u (u < j) is given by

o(i, j, t, u)
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i—1 u—1
~ ) 0m, j — u + n,
=0

m=0 n

t— i+ m, }’1) + 82(i’j’ Z u)' (34)

Approximations (I) and (II) assert that
€,(i, j, t, u) is negligible. We note that the
two above formulas are valid for al// cohorts
born after the jump-off year.

3.3.  Analysis of aggregates

Consider now an aggregate of ages
from age a to age b (a < b) at time ¢
Denote its true size by F(a, b, f), and let

¥(a, b, 1) = log (V(a, b, t)). The point
forecast for the aggregate is simply
V(a, b, 1) = V(a, t) + - - - + V(b, 1).

Define v(a, b, t) = log (V(a, b, 1)). To cal-
culate the variance of V(a, b, 1) we use a
Taylor-series approximation, as before. The
result is

Var (#(a, b, 1)) ~ V(a, b, 1)7?

b b
x Y, VG oV, Dol j, 1, (3.5)
i=a j=a
where the covariance terms o(i, j, ) have
been given earlier. From the user’s point of
view, the availability of these variances and
the resulting probabilistic interpretability
are a major advantage of the stochastic
approach to the propagation of error.

4. ‘Functional Forecasts

Functional forecasts are forecasts of func-
tions of the population vector, such as the
total population size, the number of women
in child bearing ages, the number of disabled
individuals, or the size of the employed
population. The two latter examples differ
from the two former ones in that they require
additional “‘participation” or prevalence
rates, such as the fraction disabled per age-
sex group, or the employment rate by age-sex
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groups, for their calculation. In principle,
forecasts of such subpopulations could be
handled in terms of a linear growth model
by disaggregating the population not just by
age and sex, but also by labor force status or
state of disability. This would lead to a situ-
ation in which all quantities of interest could
be obtained by aggregating elements of the
enlarged population vector. The propa-
gation of error could then be handled using
the analogues of the variance formula of
Section 3.3. However, demographic vital
rates are not always available for the finely
disaggregated groups, so the only practical
possibility is often to apply appropriate
prevalence rates to the basic demographic
groups. The prevalence approach is also
simpler to implement, because it does not
require the age-specific in-flow and out-flow
rates between the states.

Assume that the population is divided
into two mutually exclusive subpopulations.
As an example we consider the “disabled”
population and its complement, the
“healthy” population (cf., Goss 1984,
pp. 9-10, 47-48). Let T1(i, ) be the forecast
of prevalence of disability in age / at time ¢,
with n(i, 1) = log (Il(i, 1)). Let the true
prevalence be TI(i, 1) = exp (7(i, 1)) with
Cov (w(i, 1), ®(J, 1)) = V(, J, 1). In general,
the forecast error of the prevalence rate may
be correlated with the forecast error of the
age-specific survival rates. However, for the
present illustration we shall assume that the
correlation is zero. This is a reasonable
assumption for ages with small prevalence

of disability.
Define  W(i, 1) = TI(i, )V(i, 1)  and
W(a, b, 1) = W(a, 1) + -+ + W(b,1).

Then, in analogy of Section 3.3., we get for
the variance of the prediction error of the
disabled population in ages from a to b, at
time ¢, that

Var (W(a, b, 1)) ~ W(a, b, 1)~?
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b h
X Z Z W(la t)W(j’ t)(C(l,j, t)

+ V(. j, 1)

We see that the covariances add under the
assumption of independence. Note that
when (i, j, 1) = 0, the above formula gives
the variance of an arbitrary linear combi-
nation of the elements of the population
vector. A problem for future research is to
consider the formulation allowing for the
covariance between the prevalence rates and
the other relevant variables.

We conclude by noting that there is
another, separate class of problems that can
be subsumed under the heading functional
forecasts. We can consider functions of
future vital rates (instead of the population
vector), such as the total fertility rate, stan-
dardized mortality rates, or life-expectancy.
The two former ones are linear functions of
the rates, so they can be easily handled. For
life-expectancy, which is a non-linear func-
tion of the vital rates, a linearizing trans-
form is called for (cf., Alho and Spencer
1990b, p. 222).

5. Computer Implementation

The calculations described in Sections 2
and 3 have been implemented in several
computer programs written in C language.
Logically, it is convenient to combine the
programs into three groups, which we call
Programs I, II, and III. A description of
program inputs and outputs follows.
Program I
Inputs:
- a file containing the female jump-off
population V(0) by single years of age;
- a file containing age-specific mortality
rates R(j + 1, j, t) for each forecast year;
if nonzero net migration is assumed, then
the mortality rates must be adjusted to
account for net migration;
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- a file containing age-specific fertility
rates R(0, j, t) for child bearing ages for
each forecast year.

Output:
— produces a file containing the female
population V() by single years of age for
each forecast year;
- produces a file containing the births
B(k, t) due to each child bearing age for
each forecast year.
Program II

Inputs:
- a file containing the standard deviations
o(i, i, 0)'” of the errors in the jump-off
population; to get the covariance matrix
X(0) an AR(l) correlation structure is
assumed with the parameter given in the
program itself;
- a file containing the standard deviations
of the annual errors in the forecast of the
rate of change in mortality; these are
assumed to be time invariant; their cor-
relation over time is assumed to follow an
AR(l) process for each age with a par-
ameter given in the program; their cor-
relation over age is also assumed to follow
an AR(1) process for each forecast year;
these will determine the covariances
0@, J, t, h);
— a file containing the standard deviations
of the annual errors in the forecast of
the rate of change in fertility; these are
assumed to be time invariant; their cor-
relation over time is assumed to follow an
AR(1) process for each age with a par-
ameter given in the program; their cor-
relation over age is also assumed to follow
an AR(1) process for each forecast year;
these will determine the covariances
Y(i, J, 1, h);
— the file containing the numbers of births
by age of mother, produced by program I.

Outputs:
- a file containing the covariances of the
births (0, 0, 7, ) for 1 < r, u < 75.
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Program III

Inputs:
- a file containing the standard deviations
o(i, i, 0)'? of the errors in the jump-off
population, as above;
- a file containing the standard deviations
of the annual errors in the forecast of the
rate of change in mortality, as above;
— the file containing the covariances of the
births produced by program II;
— the file containing the point forecast
produced by program I.

Outputs:
- the program calculates the standard
deviation of the prediction error for the
logarithm of the population size of a
given group of consecutive ages for each
of given consecutive forecast years; the
parameters are supplied from the key-
board; the logarithm of the population
size and the standard deviation are printed
into a text file (name supplied from the
keyboard) from which they can be read
into some statistical program (such as
Minitab) for the purpose of producing
probabilistic prediction intervals and
graphical displays.

6. Examples of Probabilistic Intervals

How would probabilistic prediction inter-
vals for the sizes of different age-groups be
expected to differ from the intervals derived
from the current high and low projection
variants, in practice? Briefly, in the cases we
have studied the high-low intervals for those
ages that depend on future fertility have had
a much lower probability content than the
intervals for ages that do not. Some quan-
titative estimates of the differences follow.
Alho and Spencer (1985) considered a
time-series regression model for age-specific
fertility. The model permitted the incor-
poration of expert judgement, so it gould be
used to accurately replicate official fore-
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casts. In addition, the technique allows for
modeling forecast bias. A generous allow-
ance for bias would make the model-based,
or ex ante, prediction intervals wide, whereas
forcing the modeling bias to zero results in
the usual prediction intervals. We calibrated
the level of bias so that the model would
have produced accurate prediction intervals
in the past. The adequacy of these intervals
was later confirmed by Alho (1991, figure 2).
Alho (1984, p. 104) compared the resulting
67% prediction intervals for births to the
official Finnish, Norwegian, and U.S. high-
low forecasts. Define H = official high pro-
jection, M = official middle projection,
U = upper end point of a 67% prediction
interval, and P = time-series point forecast.
The following table can be deduced. It gives
the ratios (H — M)/(U — P) for various
forecast years in percent (the value for
Finland for forecast year 1 is not available).

Table 1. Ratios (H — M)[(U — P) for
various forecast years (in percent)

Forecast year 1 5 10 15
Finland n.a. 43 84 66
Norway 21 54 81 71

United States 10 29 39 45

For example, the width of the high-low
interval for the United States for the first
forecast year was only 10% of the width of
the appropriate 67% interval. We conclude
that the official intervals would have to be
inflated considerably to make them into
67% prediction intervals. It follows that a
similar adjustment would be necessary for
the survivors of the predicted births.

We now consider survival. Alho and
Spencer (1990a, table 2, pp. 616) showed
that the forecasts made by the U.S. Office of
the Actuary, Social Security Adminis-
tration, generally underestimate the vari-
ability of cause-specific mortality. For
example, in ages 60-84 the true standard
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deviations of the prediction errors are 2-3
times as large as the ones implicitly assumed
by the Office of the Actuary. However, when
cause-specific mortality is aggregated into
age-specific mortality, the intervals of the
Office of the Actuary become wider and
hence more realistic. This is caused, para-
doxically, by the assumption (implicit in the
calculation of deterministic projections)
that the cause-specific mortality series are
perfectly correlated. Overall, the official
high-low intervals for age-specific mortality
were slightly wider than 95% intervals for
ages 40-64 but were narrower than the 95%
intervals for other ages. It follows that the
probability content of high-low intervals
for a cohort of survivors varies from one
forecast year to the next (Alho and Spencer
1990a, figure 4, p. 615; cf., Alho and Spencer
1990b, table 2, p. 313).

Combining high-low intervals that have a
probability content of less than 67% for
future births and the surviving births, and a
probability content that sometimes exceeds
95% for certain survivors of the jump-off
population, produces forecasts that are very
hard to interpret. Using the stochastic meth-
odology for producing prediction intervals
would eliminate this problem.

More details of the ex ante estimation of
forecast errors can be found in the refer-
ences cited. Keilman (1990) has recently
provided an extensive discussion of various
aspects of ex post error estimation in national
population forecasts, with emphasis on
Dutch experiences. As indicated above (see
also Alho 1991) such estimates can be used
to derive ex ante error estimates for future
forecasts.

7. Concluding Remarks

In this paper we have derived analytical
equations for the propagation of esror in
stochastic population forecasts. The major
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contribution is the approximate ‘“‘renewal
equation” for the covariance structure of
the birth sequence. The results of these
covariance calculations are stored into a file,
which, together with other data files, pro-
vides a basis for the calculation of the vari-
ance of the prediction error for population
aggregates and for functional forecasts.

This hierarchical system of calculation is
easily implemented as a database. Database
concepts have already been used to provide
public access to the decennial census data
tapes in the United States. Similar develop-
ments have occurred in many European
countries. For example, an extensive system
of regional and time-series data (ALTIKA,
ASTIKA) is accessible on-line in Finland.
We believe that databases will be the future
form of implementing population forecasts,
as well.

Our approach to the building of a data-
base was not to try to come up with a com-
pletely self-contained system, because the
likely users of stochastic forecasts would
typically already have statistical programs
that they are used to. Therefore, only those
calculations that would be tedious to imple-
ment within a statistical package were writ-
tenin C language. Our experience in writing
program II was that the specific form of the
covariance structures makes a tremendous
difference in the speed of calculation. How-
ever, one of the useful features of our data-
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base implementation is that the very time-
consuming calculations are only done once,
and they can be carried out on a faster
machine if the need arises. All our calcu-
lations were manageable on a 386-based
micro computer.

Our work demonstrates the feasibility of
the database implementation of stochastic
forecasts. However, the example we con-
sidered was a simple one, and many ques-
tions remain. First, a comparison of the
accuracy and practical feasibility of our
analytic approach and a simulation approach
would be illuminating. It may be that the
results depend on the covariance structures
assumed, as well as on the forecast horizon.
Second, the study of possible covariance
structures of the forecast errors is of interest.
When forecasts are made using formal stat-
istical methods, then the covariance struc-
ture can typically be derived as a by-product
of the estimation procedure (e.g., Box and
Jenkins 1976, pp. 159-160). However, since
expert judgement is an integral part of at
least the current official forecasts, other
approaches, such as those in Alho (1991) are
called for. Third, the implications of various
ways of handling the propagation of error in
functional forecasts is unclear. We suspect
that the independence assumption used
above is widely applicable, but the con-
ditions under which it fails need investi-
gation.

Appendix

Propagation of error for cohorts born during ¢t > 17

The residual terms g, and ¢, introduced in formulas (3.3) and (3.4) are defined by

8I (l’ ja t)

i—1 1-2—j

V(Ot—])'ZB(kt—j)z Y 0mk —t+j+14+nt—i+mn)

m=0 n=0
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J=1 1=2—i

+V(0t—z)'ZB(kt—z)Z Ok —t4+i+1+mnmt—j+ n)

k=15 n=0 m=0
and

44
&G, j, thu) = VO, 1 — i)"Y B(k,z—i)[c(k—t+i+ 1,j — u,0)

k=15
2 —
ZZ(k—t+i+l+m,j—u+n,m,n)].

The sums involving 6 above involve covariances between the survival of mothers giving
birthatt — iort — j,and the survival of their own mothers. For the purpose of computing
the covariance structure of the birth sequence we set these to zero. This is the content of
approximation (I). The remaining sum involving o is set to zero according to assumption
(IT) because it arises from a covariance between the jump-off population (ages j — ) and
births (year ¢ — i).

Consider now the covariance between births in years ¢ = 17, . . ., 32. Their uncertainty
derives primarily from four independent components: current birth rates, jump-off popu-
lation, past births, and survival rates. To abbreviate notation it is convenient to define some
operators. Let u and ¢ be fixed and define

u—2 44
KL = V(O’ u)_l Z B(ka 14), KU = V(07 u)—l Z B(k7 u)a K = I(L + KUs

k=15 k=u-1

=2 44
JL = V(O’ t)Al Z B(.]’ t), JU = V(O’ t)_l Z B(]’ Z), J = JL + JU7
N

j=1 j=1-1

H = V(Ot—l—])'ZB(ht—l—j)

h=
I, = VO, u—1-— k™' Z B(i,u — 1 — k),
i=15
so that, for example, K, x, = (0, u)™' Z¢Z35 B(k, u)x,. A first-order Taylor approximation
shows that (0, 0, ¢, u) is approximately equal to
KIyk,jyu— 1,1t — 1)+ K Jyotk —u+1,j —t +1,0)
u—2 1-2
+ K Jy Y Yok —u+1+nj—t+1+mnm

n=0 m=0

+ K, J,000,0,u — 1 -k, t —1—)

+ K, J, ZZ O, mu—1—k+nt—1—j+ m)
=0 m=0

k— -2

+KLJUZ ZG(nj—t+l+m u—1—k+n m
n=0 m=0
u—=2 j—1

+ K I, Y Yok —u+14+nmnt—1—j+m
n=0 m=0 .

+ &3, u) + &,(t, u) + &5(1, u) (A1)
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with
e = KI,Hy(tk, hyu — 1,t — 2 — j) + K JLy(i, j,u — 2 — k, t — 1),
k-1 1—3—j
e = KJ, Y H Y 6nh+j—t+p+2,u—1—k+np)
n=0 p=0
u—2 t=3—j
+KJ, Y H Y 6k —u+14+nh+j—1+p+2np)
n=0 p=0
Jj—1 u—3—k
+KJI, YL Y 6i+k—u+qg+2,mqt—1—j+m
m=0 4=0
=2 u—3—k
+KJI YL Y 6G+k—u+qg+2,j—t+1+mqm,
m=0 ¢=0
and
g = KyJHolk —u+1L,h+j—1t+4+20)

+KJILoli+k—u+2j—1t+10).

Details of the derivation are available from the authors. Approximation (III) asserts that
g, 1s negligible, approximation (II) asserts that & is negligible, and approximation (I) asserts
that g, is negligible.

Approximations (I)-(III) imply that (A1) provides an approximation to o(0, 0, ¢, u) for
all other pairs of birth years u, t > 1, if (i) we replace by zero any such sum in (Al), for
which the lower limit of summation exceeds the upper limit, (ii) the upper limit of sum-
mation is not allowed to exceed 44, i.e., take min {t — 2, 44} instead of / — 2, and
min {u — 2, 44} instead of u — 2, (iii) the lower limit of summation is not allowed to
extend below 15, i.e., take max {r — 1, 15} instead of t — 1, and max {u — 1, 15} instead
of u — 1. Since the above formula expresses the covariance c(0, 0, ¢, ¥) in terms of past
covariances (0,0, — 1 — k, u — 1 — h), we can think of the formula as a “renewal
equation” for the covariances.
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