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Estimates for population statistics can be seriously biased if response rates are low and the
response to a survey is selective. Methods like poststratification or propensity score weighting
are often employed in order to adjust for bias due to nonresponse.

One problem which many adjustment methods have in common is that of which of the
available auxiliary variables to use. In the case of poststratification it must be decided what
strata are defined. In the case of propensity score weighting adjustment cells must be formed
that have comparable response probabilities.

In this article we propose a selection strategy of weighting variables. The strategy
simultaneously accounts for the relation with response behaviour and the relation with the
important survey questions. The selection strategy aims at the minimisation of the absolute
bias under the assumption that the slope parameter in the linear regression estimator is
approximately preserved.

The selection strategy is applied to the Integrated Survey on Household Living Conditions
(POLS) 1998.
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1. Introduction

Nonresponse can affect the quality of estimates if nonrespondents are different from

respondents in respect of the topics of a survey. This threat may be serious if the size of the

nonresponse is large relative to the sample size. In the Netherlands response rates are often

rather low. Adjustment methods for potentially selective response, therefore, play an

important role in improving the quality of population estimates.

Adjustment methods are based on auxiliary information from population databases,

censuses and registers. This information may be available on the population level or on the

individual level. In the case of the former, the distribution of for instance age, gender, and

marital status is known for the target population of the survey. More ideally, however, the

auxiliary information is available on a personal or household level and can be linked

directly to the sample. In this article we assume the latter situation, i.e., auxiliary variables

can be linked to both respondents and nonrespondents.

Under nonresponse we may distinguish three groups of variables, namely the survey

questions of interest, the auxiliary variables that are linked from external sources, and the

response indicator. The response indicator is a 0–1-variable indicating whether a sampled
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person responded or not and stands by itself. In the survey literature a lot of research has

been devoted to the relation between the response indicator and auxiliary variables. For an

introduction see Groves, Dillman, Eltinge, and Little (2002). Furthermore, it has been

known for a long time that weighting methods using auxiliary variables that are correlated

with the important survey questions may considerably reduce the variance of estimators.

As a consequence also the relation between survey questions and auxiliary variables has

been analysed. The only relation, however, that is not and cannot be investigated directly

is the relation between the response indicator and the target variables of the survey.

In the literature various adjustment methods are given that incorporate auxiliary

variables. For a recent overview and a comparison of methods, see Kalton and Flores-

Cervantes (2003) and Rocco, Salvati, and Pratesi (2004). An estimator that is often used is

the generalised regression estimator modified to nonresponse (see Bethlehem 1988).

When using only crossings of categorical auxiliary variables this estimator reduces to

poststratification. The population is divided into a number of subpopulations, the so-called

strata, and the missing answers of the nonrespondents are predicted by the “average”

answers of the respondents in the same stratum. Another method that is often used is

propensity score weighting. This technique was introduced by Rosenbaum and Rubin

(1983) in the setting of studies of causal effects. In the nonresponse setting the propensity

score is the response probability, i.e., the probability that a person or household responds if

selected in the sample. The response probability is usually fitted by means of a logit or

probit model. The answers by the respondents are weighted by the inverse of their

estimated response probabilities.

One problem that many adjustment methods have in common is the selection of

informative auxiliary variables. In the case of poststratification it must be decided how to

choose strata. In the case of propensity score weighting, groups must be formed that have

comparable response probabilities in order to keep a low variance. Since there are three

groups of variables involved, the choice of strata or response groups is often performed in

two steps. In the first step auxiliary variables are selected that explain the response

indicator. In the second step a further selection of variables is performed in which

variables are chosen that also relate to the important target variables of the survey. Little

(1986) proposes the formation of so-called adjustment cells by modelling the response

probability, forming response groups and clustering response groups based on the

differences between the “average” answers to the survey questions (see also Rosenbaum

and Rubin 1984, Ekholm and Laaksonen 1991 and Czajka et al. 1992). Eltinge and

Yansaneh (1997) compare several criteria for the formation of adjustment cells. Geuzinge,

Van Rooijen, and Bakker (2000) propose using the product of the correlation between the

response indicator and the auxiliary variables and the correlation between a target variable

and the auxiliary variables as a measure of the relevance of auxiliary variables in a

weighting model.

Crucial in the adjustment for nonresponse are the assumptions that are made about the

nonresponse or missing data mechanism. The nonresponse mechanism is called Missing

Completely at Random (MCAR) whenever the probability of response is independent of

the survey questions. If the probability of response is independent of the survey questions

when conditioned on a set of auxiliary variables, the mechanism is called Missing at

Random (MAR). For most surveys the MCAR assumption does not hold for the auxiliary
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variables. In practice it is usually assumed that the nonresponse can be made “sufficiently”

MAR by incorporation of the available auxiliary variables in a weighting model.

In this article we use the generalised regression estimator to adjust for nonresponse and

we select auxiliary variables by minimising the maximal absolute bias under a weaker

assumption than MAR.

As a criterion we use minimisation of the maximal absolute bias of an estimator and we

employ linear weighting to recover sample means. In the analysis no population totals or

means are used. Thus the response is calibrated to the sample for the auxiliary variables

that are selected in the weighting model. Additional weights may be used to calibrate the

sample to the population in a second step. However, we did not perform this additional

step. We concentrated on the bias because we believe that nonresponse affects especially

the location of means and not their variation. We believe that variance reduction is most

effective in the calibration from sample to population.

The absolute bias falls within an interval of known form but unknown size. The

proposed criterion favours one estimator over another estimator if it corresponds to a

smaller interval.

We propose a selection strategy of weighting variables that minimises the width of the

bias interval. The strategy is a forward inclusion-backward elimination algorithm of

auxiliary variables similar to algorithms applied in regression analysis. Variables are

included or eliminated based on jackknife estimates of the mean and standard deviation of

the change in interval width. We apply the selection strategy to the 1998 Integrated Survey

on Household Living Conditions abbreviated POLS (Permanent Onderzoek Leefsituatie in

Dutch).

In Section 2 we first give some theoretical background and introduce the selection

strategy in more detail. In Section 3 we give results for POLS 1998. Finally, in Section 4

we discuss the outcomes.

2. Estimators for the Sample Mean

We want to analyse the effects of nonresponse and correct for bias due to selective

nonresponse. Since nonresponse takes place after a sample is selected, we focus on the

estimation of the sample mean. In this section we discuss estimators for the sample mean.

In Section 2.1 we introduce notation and make some basic assumptions. Next in Section 2.2

we describe the generalised regression estimator.

2.1. Notation and Basic Assumptions

In the following we distinguish stochastic variables from their realisations by using upper-

case and lower-case letters, i.e., the realisation of a stochastic variable Z is denoted by z.

We let mZ and sZ be, respectively, the expectation and standard deviation of variable Z,

and c(Z1,Z2) and g (Z1,Z2) correspond to, respectively, the covariance and correlation

between variables Z1 and Z2.

We adopt a superpopulation model, i.e., we assume that the survey yields an

independent, identically distributed sample of some unknown distribution. We want to

estimate the expectation of this unknown distribution. Due to nonresponse part of the

sample data is missing, however.
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Let the sample in a survey consist of n units labelled 1 to n. In the following we use

index i when we refer to unit i in the sample. Let Ri represent the 0-1-indicator for

response, Xi ¼ ðX1;i;X2;i; : : : ;Xm;iÞ
0 be a set of m background characteristics and Yi be

a survey question. We assume that the background characteristics are available for

both respondents ðRi ¼ 1Þ and nonrespondents ðRi ¼ 0Þ: Furthermore, the auxiliary

variables and survey questions are assumed to be complete, i.e., assumed to contain no

missing data.

We assume that the triplets ðRi;Xi; YiÞ1#i#n are independent and identically distributed.

After the survey is conducted we have realisations ðri; xi; yiÞ of ðRi;Xi; YiÞ for all

respondents. For the nonrespondents we only have the realisations ri and xi of Ri and Xi,

respectively. We denote the available data after a survey by ðRi;Xi;RiYiÞ1#i#n: We let pR
be the probability of response, i.e., P½Ri ¼ 1�:

Our interest in this article is in the estimation of the expectation of the survey question

Yi, i.e., mY, using the available data ðRi;Xi;RiYiÞ1#i#n:

The sample and response mean vectors of Xi are denoted by X and X* ; respectively.

Here, X* stands for

X* ¼

Xn

i¼1
XiRiXn

i¼1
Ri

Equivalently, we let Y and Y* represent the sample and response means of the survey

question. The sample and response covariance matrices of Xi are given by S2
X and S*2

X :

For Yi the sample and response variance are denoted by S2
Y and S*2

Y : We use CðX; YÞ as

notation for the vector of sample covariances between the auxiliary variables Xi and the

survey question Yi, while CðX;RÞ and CðY;RÞ represent the sample covariances between

the background characteristics and the response indicator and the sample covariances

between the survey question and the response indicator, respectively. Again we use an

asterisk as additional index to indicate covariances based on the response only. Finally,

we denote sample correlations by G. For example GðX; YÞ is the vector of sample

correlations between the background characteristics and the survey question.

We assume, furthermore, that the expectation of Yi given the realisation Xi ¼ xi can be

described by a linear combination of xi, i.e.,

EðYijXi ¼ xiÞ ¼ aþ b 0xi ð1Þ

where a, the intercept, and b ¼ ðb1; : : : ;bmÞ
0; the slope vector, are unknown constants.

Also, we suppose that cðYi 2 a2 b 0Xi;XiÞ ¼ 0; or in other words that the error term is

orthogonal to the background statistics.

We assume that the set of background characteristics is linearly independent, i.e.,

that there exists no constant vector l ¼ ðl1; : : :lmÞ
0 such that l 0Xi ¼ 0: If such a l

should exist, then one of the auxiliary variables is a linear combination of the

others. If the auxiliary variables Xi are linearly dependent, then it also holds that

EðYijXi ¼ xiÞ ¼ aþ ðb2 jlÞ0xi for all j [ Z: Hence, the slope parameter would not

be unique.

Finally, we assume that the set of auxiliary variables does not contain a

constant neither explicitly nor implicitly. This means there does not exist a constant
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vector k ¼ ðk1; : : : ; kmÞ
0 such that k 0Xi ¼ 1: If the auxiliary variables contain a constant

vector or sum up to one, then it follows that EðYijXi ¼ xiÞ ¼ ðaþ jÞ þ ðb2 jkÞ0xi for all

j [ Z: Again, the parameters will not be unique.

2.2. The Generalised Regression Estimator for the Sample Mean

An estimator of mY that does not make use of the available background characteristics is

the response mean Y* : When using the response mean as an estimator, the answers of the

nonrespondents are predicted by the average answer of the respondents.

We may, however, use the available background characteristics to predict the answers

of the nonrespondents. Based on the sample we can estimate a and b in (1) using ordinary

least squares

â ¼ Y 2 b̂ 0X

b̂ ¼ S2
X

� �21
CðX; YÞ

ð2Þ

However, since we do not know Y and CðX; YÞ; we must use the response-based estimators

â* ¼ Y
*

2 b̂* 0X *

b̂* ¼ S*2
X

� �21

C * ðX; YÞ

ð3Þ

Instead of using the response mean as a prediction, we may now predict the answers of the

nonrespondents using their auxiliary variables and the estimated regression parameters in

(3). This is the generalised regression estimator and it has the form

Y
*

gr ¼
1

n

Xn
i¼1

RiYi þ
Xn
i¼1

ð1 2 RiÞðâ
* þ b̂* 0XiÞ

 !

¼ RY * þ
1

n

Xn
i¼1

ð1 2 RiÞðY
* 2 b̂* 0X * þ b̂* 0XiÞ

¼ RY * þ Y * 2 b̂* 0X * þ b̂* 0X 2
1

n

Xn
i¼1

RiðY
* 2 b̂* 0X * þ b̂* 0XiÞ

¼ RY * þ Y * 2 b̂* 0X * þ b̂* 0X 2 RY * þ Rb̂* 0X * 2 Rb̂* 0X *

¼ Y * þ b̂* 0ðX 2 X * Þ

ð4Þ

Note that in (4) we use sample means of the auxiliary variables and not population means.

The auxiliary information may thus also include fieldwork characteristics of the survey,

e.g., the interviewer district or the interviewer experience.

Instead of sample means we may also use population means in (4). The use of

population means, however, serves variance reduction but it does not affect the

bias. In this article we are primarily interested in bias. We therefore calibrate to

sample means. Calibration to population means can be performed in an additional

weighting step.
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3. Bias and Assumptions About the Nonresponse Mechanism

In the literature various assumptions about the nonresponse mechanism are discussed.

These assumptions have different implications for the adjustment of nonresponse (see for

instance Little and Rubin 2002).

If the answer to a survey question is independent of the response to the survey, then

the nonresponse mechanism is called Missing-Completely-at-Random (MCAR). This is

a strong assumption which implies that response means are unbiased. If the answer to a

survey question is independent of the response to the survey conditionally on a set of

auxiliary variables, then the nonresponse mechanism is called Missing-at-Random

(MAR). The MAR assumption is weaker than MCAR and the auxiliary variables for

which the nonresponse mechanism is MAR can be used to construct unbiased

estimators. Assumptions that are weaker than MAR are called Not-Missing-at-Random

(NMAR).

However, in most cases no explicit assumption is made about the nonresponse

mechanism. By applying a particular adjustment method for a survey it is implicitly

assumed that this method yields unbiased estimators.

In the next sections we elucidate assumptions about the nonresponse mechanism and

discuss the consequences for the bias of the estimators of Section 2.

3.1. Response Propensities

Assumptions about the nonresponse mechanism are often stated with respect to the so-

called response propensities. We define a response propensity as follows:

rx;y ¼ P½Ri ¼ 1jXi ¼ x; Yi ¼ y� ð5Þ

i.e., the probability of response given the background characteristics and the answer to the

survey question. Note that the response propensity is only defined for values of x and y

with a positive (joint) probability density.

By rX;Y we denote the stochastic variable that represents the conditional probability of

response:

rX;Y ¼ P½Ri ¼ 1jXi; Yi� ð6Þ

The MCAR assumption means that rX;Y is deterministic, or in other words rX;Y is a

constant and rx;y ¼ pR; for all values of x and y. The MAR assumption implies that rX;Y is

stochastic, however, only in the background characteristics. For fixed x the response

propensities are constant in y. Under MAR we omit the index for Y, i.e., we use rX instead

of rX;Y :

The covariance cðY ;RÞ between Y and R equals

cðY ;RÞ ¼ EðYRÞ2 mYpR

¼ EðEðrX;YYjXÞÞ2 mYpR

ð7Þ

where the first expectation is over X and the second expectation is over Y conditionally

on X.
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Hence, from (7) it can be seen that the MCAR assumption leads to noncorrelated Y and

R. If the MAR assumption holds, then (7) reduces to

cðY;RÞ ¼ EðrXEðYjXÞÞ2 mYpR

¼ EðrXðEðYjXÞ2 mY ÞÞ

ð8Þ

Under the linear model defined in (1) the covariance in (8) becomes

cðY;RÞ ¼ EðrXðaþ b 0X 2 a2 b 0EXÞÞ

¼ EðrXb
0ðX 2 EXÞÞ

¼ cðb 0X;RÞ

ð9Þ

3.2. Bias of the Response Mean

It is not difficult to show that under the condition that at least one individual did respond in

the survey, i.e.,
Pn

i¼1Ri . 0; the bias of the response mean equals

BðY * Þ ¼ EðY * Þ2 mY

¼
cðY;RÞ

pR

¼ g ðY ;RÞsY

sR

pR

¼ g ðY ;RÞsY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s
ð10Þ

where in the last step we use that sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRð1 2 pRÞ

p
: From (10) it follows that the bias of

the response mean is zero if either the probability of response is one or the response to the

survey and the answer to the survey question are uncorrelated. The latter holds under the

MCAR assumption.

Let for the moment Xi be one-dimensional, i.e., m ¼ 1: For independent, identically

distributed triplets ðRi;Xi; YiÞ1#i#n with finite variances it can be proved that g ðY ;RÞ can

be bounded using g ðX;RÞ and g ðX; YÞ in the following way:

g ðX; YÞg ðX;RÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX;RÞ

p
# g ðY ;RÞ

# g ðX; YÞg ðX;RÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX;RÞ

p ð11Þ

The bounds in (11) can be proved to hold by using the fact that a covariance matrix is

nonnegative definite (see for instance Strang 1986). The bounds are also sharp. For every

value in interval (11) a joint probability distribution for ðRi;Xi; YiÞ can be formulated in

such a way that g ðY ;RÞ equals this value, while the joint probability distribution of the

observed variables, ðRi;Xi;RiYiÞ1#i#n; remains fixed. In other words we cannot distinguish

between those joint probability distributions based on the observations alone.
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Combining (10) with (11) we arrive at the following interval for the bias of the response

mean:

sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s
g ðX; YÞg ðX;RÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX;RÞ

p� �
# BðY * Þ

# sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s
g ðX; YÞg ðX;RÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX;RÞ

p� � ð12Þ

The midpoint of interval (12) is sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s
g ðX; YÞg ðX;RÞ and its width is

2sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðX;RÞ

p
ð13Þ

Hence, any auxiliary variable X defines an interval for the bias of the response mean for

survey question Y. Since (12) is true for any auxiliary variable we may take the intersection

over the intervals for various auxiliary variables. Let us, however, search for a composite

auxiliary variable that minimises the width (13).

3.3. Bias of the Generalised Regression Estimator for the Sample Mean

Let us first suppose that we know the true vector of slope parameters b defined in

Section 2.1, and that we estimate the sample mean of survey question Y using the estimator

Ygr ¼ Y * þ b 0ðX 2 X * Þ ð14Þ

The bias of (14) equals

BðYgrÞ ¼ EðY * Þ2 mY þ Eb 0ðX 2 X * Þ

¼ BðY * Þ2 b 0BðX * Þ

¼ BðY * Þ2 Bðb 0X * Þ

ð15Þ

Hence, the bias of (14) reduces to the bias of the response mean of Y minus the bias of the

slope vector times the response mean of X. Using (7) and (10) we get

BðYgrÞ ¼
cðY;RÞ

pR
2

cðb 0X;RÞ

pR

¼
cðY;RÞ

pR
2

cðb 0X; YÞcðb 0X;RÞ

s2
b 0XpR

¼ ðg ðY;RÞ2 g ðb 0X; YÞg ðb 0X;RÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s
sY

ð16Þ

In the first step of (16) we make use of representation (1) and we assume that the error term

in the linear regression is orthogonal to the background characteristics, i.e., cðY;b 0XÞ ¼

cðaþ b 0X;b 0XÞ ¼ s2
b 0X
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If we assume that the response mechanism is MAR, then from (9) we see that regression

estimator (14) is unbiased.

If we do not assume MAR, then the bias of estimator Ygr is the same as the bias of the

response mean in (10) except for a shift of size g ðb 0X; YÞg ðb 0X;RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 pRÞ=pR

p
sY :

This shift equals the midpoint of (12) if we take b 0X as (composite) auxiliary variable in

(11). However, since the interval for g ðY;RÞ in (11) is constructed while fixing the other

two covariances, we have

2sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;RÞ

p
# BðYgrÞ

# sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;RÞ

p ð17Þ

and, hence, the width of the bias interval is the same as that of the response mean and

equals

2sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;RÞ

p
ð18Þ

So, even if we know the true slope vector, (14) does not produce a bias interval that is

smaller than that of the response mean.

The bias of the response-based regression estimator Y*
gr defined in (4) equals

B Y*
gr

� �
¼ BðY * Þ þ Eðb̂* 0ðX 2 X * ÞÞ

¼ BðY * Þ2 Eðb̂* 0ðX * 2 XÞÞ

¼
cðY ;RÞ

pR
2 Eðb̂* 0ðX * 2 XÞÞ

ð19Þ

If we assume MAR, then using (9) and (10) the bias in (19) can be rewritten as

B Y*
gr

� �
¼

cðb 0X;RÞ

pR
2 Eðb̂* 0ðX * 2 XÞÞ

¼ b 0BðX * Þ2 Eðb̂* 0ðX * 2 XÞÞ

¼ 2Eðb̂* 2 bÞ0ðX * 2 XÞ

ð20Þ

Under MAR the response indicators and the answers to the survey questions are

independent conditionally on the auxiliary variables. Consequently, it can be shown that

(20) is equal to zero under the assumption that there are at least two respondents. This can

be shown to hold by conditioning on the auxiliary variables {Xi}1#i#n so that terms

concerning the {Yi}1#i#n and {Ri}1#i#n are independent and expectations can be derived

separately. Hence, estimator Y*
gr is unbiased if the response mechanism is MAR.

The bias of Y*
gr cannot easily be simplified in the general case. However, earlier it was

concluded that even if we use the true slope parameter the regression estimator leads to a
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bias interval of the same width as that of the response mean. We conjecture, therefore, that

the bias interval of the regression estimator using the response-based slope parameter

cannot be smaller in general as it makes use of less information. This conjecture forms the

basis for our selection strategy in Section 4. In the next section it is explained why a

missing data assumption is made which is weaker than MAR.

3.4. A Not-Missing-at-Random Assumption

In Section 3.3 it was shown that the bias interval of the regression estimator using the true

slope parameter b has the same width as the bias interval of the response mean. If we

assume MAR then the bias of the regression estimator is zero while the bias of the

response mean may not be zero.

In this article we do not assume MAR for three reasons. First, it is our experience

that when new auxiliary variables become available through registers the explanatory

power of models for the nonresponse mechanism and the key survey questions often

increases significantly. In Section 5 we employ a number of auxiliary variables that

have recently become available at Statistics Netherlands and we find that adding those

variables leads to different estimates and an increased explained variance. If we make

the MAR assumption then we should believe that we already have sufficient

background information to make respondents resemble nonrespondents. However, in

that case there would be no need to search for auxiliary variables that better explain the

differences between respondents and nonrespondents. We can never preclude that

auxiliary variables will become available in the future that indicate that there is still

bias left.

Secondly, even if we accept that we have sufficient background information, we still

need to find a criterion in order to construct weighting models. In practice it is not usually

possible to use the full model of auxiliary variables without letting the variance of the

estimators become very large. Hence, in setting up a weighting model one has to choose

which auxiliary variables to add to the model and which to omit. This choice is not an easy

one since one needs to account simultaneously for the relation between nonresponse and

background characteristics and between survey questions and background characteristics.

Little (1986), for instance, proposes forming adjustment cells by merging strata with

respondents that give similar answers. The width (18), however, gives an easy criterion for

constructing and comparing weighting models directly.

Finally, when adding auxiliary variables in weighting models to adjust for nonresponse,

it can often be observed that the estimates move in one direction. Each time a variable is

added the estimate shifts further away from the response mean but in the same direction.

This conforms to the idea that there is some background characteristic that separates

respondents from nonrespondents when it comes to the survey question under

investigation and that we seem to grasp better but never to its full extent.

4. A Selection Strategy

In this section we form a selection strategy based on the findings in the previous section. In

Section 4.1 we first derive a criterion for the comparison of weighting models. Next,
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in Section 4.2 we propose an algorithm in order to minimise this criterion and to build

weighting models for cases where all auxiliary variables are categorical.

4.1. The Selection Criterion

We return to the bias of the generalised regression estimator. In Section 3.3 it was shown

that the maximal absolute bias of the generalised regression estimator using the true

regression parameter b is the width of bias interval (18)

2sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 pR

pR

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X; YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;RÞ

p
ð21Þ

Let us search for the composite vector of auxiliary variables that minimises (21). Since

the first part of (21), 2sY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 pRÞ=pR

p
; is independent of the choice of auxiliary

variables, it suffices to minimise

wðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;YÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g2ðb 0X;RÞ

p
ð22Þ

The criterion given by (22) cannot be computed unless we know the true regression

parameter b and the true correlations between the composite variable b0X and the response

indicators R and between the composite variable b0X and the survey question Y.

Clearly, we know neither the regression parameter nor the correlations. We must,

therefore, rely on estimators based on the response and the sample. Let w*(X) be the

estimator for w(X) based on the response slope vector b̂* and on estimated correlations

w* ðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 G2ðb̂* 0X;RÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðG* ðb̂* 0X; YÞÞ2

q
ð23Þ

In (23) we estimate the correlation between b0X and R by the sample correlation between

b̂* 0X and the response indicator R. The correlation between b0X and Y is estimated by the

response correlation between b̂* 0X and Y.

We computed deviances between w*(X) and w(X) for a number of auxiliary variables

that we artificially treated as survey answers. For these variables we found only small

deviances.

Note that for the computation of (23) it is sufficient to estimate the covariance matrix of

Y, R and X. Hence, it is not necessary to have a gross sample file linked to administrative

data. It would suffice to have sample totals. This implies that the selection criterion can

also be applied to calibrate the response directly to population totals. In that case the

response indicator is one if a unit was sampled and did respond.

4.2. The Forward-backward Algorithm

We set up an algorithm for the case where all auxiliary variables are categorical. The

generalised regression estimator then reduces to multiway stratification (see Bethlehem

and Kersten 1985).

We first introduce some additional notation. Let the available auxiliary variables be

labelled 1 to m. The set M ¼ {1; 2; : : : ;m} represents the labels of auxiliary variables that
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are available for weighting. For any two subsets M1 # M and M2 # M we let

Dw* ðM1;M2Þ denote the difference of the widths (23) between the two models, i.e.,

Dw* ðM1;M2Þ ¼ w* ð{Xl}l[M1
Þ2 w* ð{Xl}l[M2

Þ ð24Þ

Furthermore, ŝDw * ðM1;M2Þ will represent the jackknife estimator (see Miller 1974), for the

standard deviation of (24) and j12a is the 100(1 2 a)%-quantile of the standard normal

distribution. For convenience, we omit the two models in the index of the estimator

ŝDw * ðM1;M2Þ; since it will be clear from the context what models are taken. Finally,

the “empty” model is denoted by f. Note that w* ðfÞ ¼ 1:

We propose to use the following forward-backward selection algorithm that is similar to

stepwise regression with forward inclusion and backward elimination:

. Take the auxiliary variable k for which Dw* ðf;{k}Þ
ŝDw*

is largest for all the auxiliary

variables, but only if Dw* ðf;{k}Þ
ŝDw*

. j12a: Set i ¼ 1 and let M1 ¼ {k}: If a variable is

added to the empty model go to Step 2, otherwise go to Step 4.

. Add the auxiliary variable l for which Dw* ðMi;Mi<{l}Þ
ŝDw*

is largest for all the remaining

auxiliary variables, but only if Dw* ðMi;Mi<{l}Þ
ŝDw*

. j12a; and let ~Miþ1 ¼ Mi < {l}:

Otherwise, let ~Miþ1 ¼ Mi:

. Remove auxiliary variable m [ Mi for which Dw* ð ~Miþ1\{m}; ~Miþ1Þ
ŝDw*

is smallest, but only if

Dw* ð ~Miþ1\{m}; ~Miþ1Þ
ŝDw*

, j12a; and let Miþ1 ¼ ~Miþ1\{m}: Otherwise, let Miþ1 ¼ ~Miþ1:

. If no auxiliary variable was added or removed then stop, otherwise repeat from Step 2

with i :¼ iþ 1:

The proposed selection strategy starts with a simple model with only one weighting

variable, namely the variable that minimises (23). In the following steps variables are

iteratively added and removed. Variables are only added or removed if the difference in

width (24) is larger than j12a estimated standard deviations. The significance level a may

be chosen differently for the addition and removal step.

It can be shown that the algorithm cannot retrace its own steps if there are a finite

number of available auxiliary variables. This implies that the algorithm stops after a finite

number of steps.

However, the algorithm does not necessarily converge to the optimal subset of auxiliary

variables. We found some examples where subsets other than the subsets found by the

algorithm led to smaller bias intervals. Differences were very small and the composition of

these subsets was very much the same. It is important to stress that the number of possible

subsets of auxiliary variables equals 2m. In the examples we investigated the algorithm

needed at most six iterations.

5. Results

Here we apply the proposed selection strategy to the 1998 Integrated Survey on Household

Living Conditions (Permanent Onderzoek Leef Situatie in Dutch, or POLS). It is a large

continuing survey with questions about issues like health, social participation, justice
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and recreational activities. For a detailed description of POLS we refer to Vousten and De

Heer (1998).

The survey is modular and consists of a base questionnaire and a number of

questionnaires that deal with separate topics. The base questionnaire is to be filled in by all

persons. However, each person only fills in one topical questionnaire. The base

questionnaire contains general questions and a number of basic questions that are used for

allocation of the topical questionnaires. These basic questions are also used in weighting

models for the topical questions. Here, we will focus on questions from the base

questionnaire.

The survey uses a two-stage sample, in which the clusters in the first stage are formed by

municipalities. From the clusters simple random samples without replacement are drawn

consisting of persons. The first-order inclusion probabilities differ only for age. All

persons 12 years and older have the same probability ending up in the sample. In this

article we consider all persons 12 years and older and omit only the nonresponse due to

frame errors. The sample then consists of 36,136 persons.

The 1998 POLS had a fieldwork period of two months. The first month is CAPI, and the

second month is a mixture of CAPI and CATI. After two months the size of the response

was 21,571 persons, i.e., a response rate close to 60%.

From the POLS 1998 survey we selected two survey questions, Owner of a house (yes or

no) and Owner of a PC or laptop (yes or no), and one auxiliary variable, Receiving some

form of social allowance (yes or no). We treat the last variable as if it were a survey

question, i.e., we omit the nonrespondents.

In the forward-backward algorithm the following auxiliary variables are used: (A) gender

(male or female), (B) age, (C) marital status (not married, married, divorced or widowed),

(D) ethnic group (native, Moroccan, Turkish, Surinam, Netherlands Antilles/Aruba, other

nonwestern nonnative or other western nonnative), (E) ethnic generation (native, nonnative

1st generation, nonnative 2nd generation one parent or 2nd generation two parents), (F)

having a job (yes or no), (G) province of residence, (H) region in the Netherlands (north,

east, west, or south), (I) children in the household (yes or no), (J) household type (single,

couple, couple with children, single parent or other), (K) household size (1, 2, 3, 4, or .4),

(L) degree of urbanisation (5 levels), (M) size of town (8 levels), (N) interviewer district (27

districts), (O) having a listed telephone number (yes or no), (P) average value of houses in

6-digit postal code area, (Q) percentage of nonnatives in 6-digit postal code area, and (R)

receiving a social allowance (yes or no). Furthermore, we crossed age and marital status into

a new variable (S), age x marital status, in which some of the categories are clustered. In the

following we will refer to the labels (A), (B): : :(S) for convenience. In the case of the

variable receiving a form of social allowance we did not use (R), of course.

Next we illustrate the selection strategy for the selected variables. Tables 1 to 3 describe

the selection process for these variables. The final weighting models are depicted by bold

letters. We use the jackknife method with group size 100 to estimate the standard

deviations in the selection strategy and take a ¼ 0:01 as the significance level for both

additions and removals.

In the first instance in the selection of weighting variables we also crossed auxiliary

variables, but we found in all the investigated cases that the estimates based on weighting

models including interaction effects differ at most 0.1% from the estimates based on
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weighting models that incorporate only the main effects. This important finding led to the

decision not to model interaction effects at all. Consequently, in Tables 1–3 only models

with main effects are given. It must be noted, however, that crossing auxiliary variables

does narrow the interval for the bias in general. The only variables that we did cross were

age and marital status. In Tables 1 to 3, if age x marital status (S) is selected, we consider

Table 1. Results of the selection strategy for ownership of a house. Also given are

the correlations and the value of the selection criterion

Model Y*
gr G*

b̂*
0
X;Y

Gb̂X;R w*

f (Empty) 0.633 – – 1

P 0.612 0.47 0.11 0.875

P þ J 0.605 0.52 0.13 0.849

P þ J þ Q 0.598 0.54 0.15 0.829
J þ Q 0.602 0.44 0.16 0.886

P þ J þ Q þ G 0.594 0.56 0.16 0.820
J þ Q þ G 0.599 0.45 0.17 0.881
P þ Q þ G 0.599 0.53 0.15 0.841

P þ J þ Q þ G þ S 0.593 0.57 0.16 0.810
J þ Q þ G þ S 0.598 0.47 0.17 0.869
P þ Q þ G þ S 0.594 0.56 0.16 0.816
P þ J þ G þ S 0.596 0.55 0.16 0.825
P 1 J 1 Q 1 G 1 B 0.594 0.57 0.16 0.813
P þ J þ Q þ G þ C 0.594 0.56 0.16 0.819

Table 2. Results of the selection strategy for ownership of a PC. Also given are

the correlations and the value of the selection criterion

Model Y*
gr G*

b̂*
0
X;Y

Gb̂X;R w*

f (Empty) 0.598 – – 1

S 0.585 0.50 0.06 0.866

S þ P 0.579 0.52 0.09 0.850
C þ P 0.586 0.34 0.08 0.938
B þ P 0.582 0.51 0.08 0.858

S þ P þ D 0.574 0.53 0.11 0.842
P þ D 0.585 0.22 0.14 0.966
C þ P þ D 0.583 0.34 0.10 0.934
B þ P þ D 0.577 0.52 0.10 0.850

S þ P þ D þ K 0.573 0.54 0.11 0.837
P þ D þ K 0.572 0.42 0.14 0.898
C þ P þ D þ K 0.573 0.45 0.13 0.883
B þ P þ D þ K 0.573 0.53 0.11 0.840
S þ D þ K 0.575 0.53 0.10 0.846

B þ P þ D þ K þ R 0.572 0.54 0.12 0.835
P þ D þ K þ R 0.571 0.42 0.15 0.896
B þ D þ K þ R 0.574 0.53 0.11 0.844
B þ P þ K þ R 0.577 0.53 0.10 0.844
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age (B) and marital status (C) in the removal step. So (S) may be replaced by (B) or (C) if

the increase in the criterion function is significantly small.

We will explain Table 1, the results of the selection process for ownership of a house.

The variable that produces the smallest interval is the average house value in 6-digit postal

code area (P). Introduction of this variable gives a considerable reduction of 0.125 of

w* ðXÞ: This variable is thus added to the empty weighting model. Next all remaining

variables are tested in combination with the average house value. The “best” variable is

household type (J), which gives a further reduction of 0.026 of w* ðXÞ: By itself household

type gives w* ðXÞ ¼ 0:939; which is much larger than the w* ðXÞ ¼ 0:875 of average house

value. In the following step we add a third variable to average house value and household

type. It turns out that the percentage of foreigners (Q) is the choice leading to the smallest

interval. Variable w* ðXÞ decreases from 0.849 to 0.829, and it is therefore added to the

model. Next, the weighting models with one variable removed are compared to the

three-variable model. However, both models lead to an increase of w* ðXÞ that is not

significant at a ¼ 0:01 and the variables are not removed. In the fourth and fifth iteration,

respectively, the variables province of residence (G) and age x marital status (S) are added.

In the fifth iteration the variable age £ marital status is replaced by age (B), indicating

that marital status does not significantly affect the width of the interval. Finally, in the

sixth iteration no auxiliary variables can be found that significantly decrease w* ðXÞ and

the algorithm is stopped. Hence, the weighting model for ownership of a house becomes

average house valueþ household typeþ percentage foreignþ provinceþ age

The final model for ownership of a PC or laptop is

ageþ average house valueþ ethnic groupþ household sizeþ social allowance

while for receiving some form of social allowance it is

age £ marital statusþ average house valueþ telephone

The response means of the three variables are, respectively, 63.3%, 59.8% and 10.4%. The

regression estimates corresponding to the final models are, respectively, 59.4%, 57.2% and

11.4%. The sample mean of receiving a form of social allowance equals 12.1%.

Table 3. Results of the selection strategy for receiving some form of social

allowance. Also given are the correlations and the value of the selection

criterion

Model Y*
gr G*

b̂*
0
X;Y

Gb̂X;R w*

f (Empty) 0.104 – – 1

S 0.109 0.34 20.05 0.940

S þ P 0.112 0.36 20.08 0.930
C þ P 0.109 0.22 20.08 0.973
B þ P 0.109 0.33 20.06 0.943

S þ P þ O 0.114 0.37 20.11 0.925
P þ O 0.111 0.16 20.16 0.975
C þ P þ O 0.111 0.23 20.11 0.968
B þ P þ O 0.113 0.34 20.10 0.937
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Tables 1 to 3 are good examples of series of estimates that move in one direction. The

estimated proportion of owners of a house moves in steps of 22.1%, 20.7%, 20.7% and

20.4%, a total of 23.9%. Occasionally, however, we also found estimates that moved

both up and down for some other survey questions.

It turned out that the resulting weighting model produces an estimate (11.4%) for the

proportion of persons that receive some form of social allowance that is closer to the

sample mean (12.1%) than that produced by the weighting model currently used for POLS.

This is mostly due to the fact that we had a larger set of auxiliary variables available.

Of course, it is impossible to know whether the same is true for the survey questions.

However, the differences in estimates between the current weighting model and the

models following from the selection strategy were close to 1% in some cases.

Clearly, we can only draw strong conclusions when we have some idea of the size of

the variance of the estimators. According to the jackknife estimates for the standard

deviations of the differences in the criterion function w* all additions were significant at

the 1% level. It must be remarked that it is not at all straightforward to approximate

variances under the NMAR assumption. We did approximate variances for some of the

models under the stronger MAR assumption using bootstrap methods. These simulations

revealed that most standard deviations are smaller than 0.001 (or 0.1%).

We manually applied the algorithm of Section 4.2. In the case of a large number of

auxiliary variables, this can be quite cumbersome and time-consuming. The automation of

the algorithm, however, is straightforward. The computation of the jackknife estimates may

take a couple of minutes in each iteration step as the differences between the regression

estimates of the current and proposed models need to be calculated for all subsets.

6. Discussion

The results indicate the usefulness of the proposed strategy for selecting auxiliary variables

in weighting models. The selection of auxiliary variables is efficient and economical,

because variables are only added when they significantly decrease the width of the bias

interval. Furthermore, the algorithm is reasonably fast. If it is programmed and automated,

then within 15 minutes a weighting model can be produced containing five auxiliary

variables taken out of a set of 20 auxiliary variables and a sample of 36,000 persons. The

calculation of jackknife estimates for the standard deviations of difference in criterion

function accounts for the major part of the computational complexity.

Another benefit of the strategy is that the construction of strata can be done in one step.

This strategy focuses simultaneously on the relation between auxiliary variables and

survey questions and between auxiliary variables and response behaviour. Auxiliary

variables are only interesting if both relations exist. In this article we used regression

estimation as a method to adjust for bias. However, the selection strategy may equally well

be used to form cells in propensity score weighting.

For all investigated cases we found that weighting models with interaction terms give

estimates very similar to those given by weighting models with only main terms. This

means we can substantially reduce the number of parameters in the model without

affecting the outcomes and hence incorporate more auxiliary information. Also, this

makes the addition and removal of auxiliary variables straightforward. If variables need to
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be crossed, then the algorithm becomes more complex. The restriction to main effects may

not be suitable for all surveys, and must always be checked. A promising technique in this

respect may be the classification tree method used in data mining (see Breiman, Friedman,

Olshen, and Stone 1998).

In this article we used a gross sample file that was linked to administrative data.

Furthermore, we implicitly assumed equal inclusion probabilities. We explicitly focused

on the gross sample, since the selection criterion combines both adjustment for selective

nonresponse and variance reduction. The proposed criterion, however, only needs

estimates of covariances between auxiliary variables, survey answers and the response

indicator. To compute the covariances, totals are sufficient. This implies that we can

extend the selection criterion to calibrate directly from response to population totals.

The response indicator then has a different meaning and equals one if a unit is sampled and

responds. We do not need a gross sample but only population totals. If a gross sample file

is available but inclusion probabilities are unequal, then an additional weighting step is

necessary. The simplest solution would be to use the proposed weighting model to

calibrate to population totals with the inclusion probabilities as inverse weights.

There are a number of issues that need to be resolved. First, we need to test other

estimation methods for the standard deviations in the selection strategy. Also, it is necessary

to investigate to what extent correlations between survey questions and auxiliary variables

are affected by nonresponse as well as the selection criterion that we propose.

Furthermore, it is necessary to adapt the strategy to categorical survey questions with

more than two categories. In the present form the selection strategy is not directly suited to

these questions. The width of the bias interval is a vector if the survey question has more

than two categories. If the variable is a nominal or ordinal variable, then correlations do

not make much sense and it may be better represented by a vector of dummy variables for

each category. However, if there are more categories, the intervals have different sizes in

general. Hence, we can only prefer one auxiliary variable to another if we introduce some

ordering, for instance by using the maximum or average width over the categories. This

will be the topic of further research.

Another important aspect is the assumption underlying the response mechanism. Here

we assumed the missing data are Not-Missing-at-Random. For auxiliary variables we have

evidence that this assumption is closer to the truth than the usual Missing-at-Random

(MAR) assumption. More empirical evidence is needed, however.

Finally, in the future we would also like to investigate whether estimates can be improved

by using the composite auxiliary variable that minimises the width of the interval for the

bias. In this article we used the parameter vector that follows from regression of the survey

question on the auxiliary variables. In general the optimal composition of auxiliary

variables will produce smaller intervals and thus a smaller maximal absolute bias.

7. References

Bethlehem, J.G. (1988). Reduction of Nonresponse Bias through Regression Estimation.

Journal of Official Statistics, 4, 251–260.

Bethlehem, J.G. and Kersten, H.M.P. (1985). On the Treatment of Nonresponse in Sample

Surveys. Journal of Official Statistics, 1, 287–300.

Schouten: A Selection Strategy for Weighting Variables Under a Not-Missing-at-Random Assumption 67



Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1998). Classification and

Regression Trees. Boca Raton: Chapman and Hall.

Czajka, J.L., Hirabayashi, S.M., Little, R.J.A., and Rubin, D.B. (1992). Projecting from

Advance Data Using Propensity Modelling: An Application to Income and Tax

Statistics. Journal of Business and Economic Statistics, 10, 117–131.

Ekholm, A. and Laaksonen, S. (1991). Weighting via Response Modelling in the Finnish

Household Budget Survey. Journal of Official Statistics, 7, 325–337.

Eltinge, J.L. and Yansaneh, I.S. (1997). Diagnostics for Formation of Nonresponse

Adjustment Cells, with an Application to Income Nonresponse in the U.S. Consumer

Expenditure Survey. Survey Methodology, 23, 33–40.

Everaers, P. and van der Laan, P. (2000). The Dutch Virtual Census, E-Proceedings of the

53th Session of the International Statistical Institute. Seoul, Korea.

Geuzinge, L., van Rooijen, J., and Bakker, B.F.M. (2000). The Use of Administrative

Registers to Reduce Non-response Bias in Household Surveys. Netherlands Official

Statistics, 2, 32–39.

Groves, R.M., Dillman, D.A., Eltinge, J.L., and Little, R.J.A. (eds) (2002). Survey

Nonresponse. New York: John Wiley and Sons.

Kalton, G. and Flores-Cervantes, I. (2003). Weighting Methods. Journal of Official

Statistics, 19, 81–97.

Little, R.J.A. (1986). Survey Nonresponse Adjustments for Estimates of Means.

International Statistical Review, 54, 139–157.

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York:

John Wiley and Sons.

Miller, R.G. (1974). The Jackknife – A Review. Biometrika, 61, 1–15.

Rocco, E., Salvati, N., and Pratesi, M. (2004). Participation in CATI Surveys: Traditional

Nonresponse Adjustments versus Propensity Score Matching in Reducing the

Nonresponse Bias. E-Proceedings of the European Conference on Quality and

Methodology in Official Statistics. Mainz, Germany.

Rosenbaum, P.R. and Rubin, D.B. (1984). Reducing Bias in Observational Studies Using

Subclassification on the Propensity Score. Journal of the American Statistical

Association, 79, 516–524.

Strang, G. (1986). Linear Algebra and Its Applications. San Diego: Harcourt Brace

Jovanovich.

Vousten, R. and Heer, W. de (1998). Reducing Nonresponse: The POLS Fieldwork

Design. Netherlands Official Statistics, 2, 16–19.

Received November 2004

Revised March 2006

Journal of Official Statistics68


