
Alternative Designs for Regression Estimation

Mingue Park1

Restricted random samples partially balanced on sample moments are compared with a two-
per-stratum design as designs for use with regression estimation. The shape of the average
weight for the best linear unbiased predictor as a function of the auxiliary variable is similar to
the shape of the inclusion probability for a sample partially balanced on the auxiliary variable.
In the simulation study the MSE of the regression estimator with the stratified random sample
is comparable to the regression estimator with the balanced sample when the assumed linear
model holds. When estimating the population cumulative distribution function at selected
points, two-per-stratum stratified random sampling shows better performance than partially
balanced samples.
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1. Introduction

Design and estimation in survey sampling involve the use of information about the study

population, sometimes called auxiliary information, to construct efficient procedures. If

the auxiliary variables are available at the design stage for every element in the population,

they can be used in sample selection and in estimation. Stratification based on the size of

auxiliary variables is a commonly used design when such auxiliary information is

available. Stratified random sampling is covered in standard texts such as Cochran (1977)

and Särndal et al. (1992).

Under a regression superpopulation model, the model variance of the regression

estimator for a simple random sample is smaller than that of the sample mean if the

multiple correlation coefficient is larger than the ratio of the number of auxiliary

variables to the sample size. The efficiency of the regression estimator relative to the

Horvitz-Thompson estimator in a design based approach has been addressed by, for

example, Cochran (1977) and Särndal et al. (1992). Design consistency of the

regression estimator has been discussed by Isaki and Fuller (1982) and Robinson and

Särndal (1983). Under a regression model, Fuller and Park (2002) give conditions under

which the regression estimator is the best linear model unbiased predictor (BLUP) and

is also design consistent.
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Royall (1992) gave results for a particular kind of balanced sample in which the sample

is selected so that the sample moments of the auxiliary variables are equal to the

population moments. He showed that, for a population satisfying the regression model, the

balanced sample is optimal in the sense that it minimizes the model variance of the BLUP

of the population total. Dorfman and Valliant (2000) considered the stratified balanced

sample constructed by selecting balanced samples from each stratum in a set of strata.

Using prediction theory, they concluded that an unstratified, balanced sample yields

essentially the same model variance for the BLUP as a stratified balanced sample.

Our motivation is estimation for a large-scale survey in which a large number of

analyses of a large number of variables is anticipated. In such a situation, a single model

usually fails to explain the relationship between all study variables and a set of auxiliary

variables. The set of sample weights that gives the BLUP for a particular variable need not

give the BLUP for other variables. Therefore it is desirable to construct robust strategies.

In this article, we consider several selection strategies for the regression estimator. By

deriving the approximate inclusion probabilities of samples partially balanced on auxiliary

variables, we compare the BLUP with a simple random sample to the BLUP for a partially

balanced sample. Through a simulation study, we compare stratified random sampling

with the partially balanced samples for regression estimation.

2. Balanced Samples and Restricted Random Sampling

Royall (1992) presented a theorem that identifies an optimal design for a particular model

and such that the design provides robustness against certain models. Royall assumed

E{yU} ¼ XUb; V{yU} ¼ SUU ð1Þ

where XU is an N £ pmatrix of regressors, yU is an N-dimensional column vector of study

variables, SUU is a diagonal matrix with diagonal elements sUUii; i ¼ 1; · · ·;N and N is the

population size. The matrix XU and the matrix SUU are known. The vector b is unknown.

For a given sample A of n units, let

yU ¼
yA

y �A

 !
; XU ¼

XA

X �A

 !
; SUU ¼

SAA 0

0 S �A �A

 !

where y �A; X �A and S �A �A are the quantities corresponding to nonsampled elements and yA;

XA and SAA are the quantities corresponding to sampled elements. Let Jn and JðN2nÞ

denote columns of ones of length n and ðN 2 nÞ; respectively. BLUP of the population

mean �yN ¼ N21ðJ 0nyA þ J 0ðN2nÞy �AÞ is

�yBLUP ¼ N21ðJ 0nyA þ J 0ðN2nÞX �Ab̂wlsÞ ð2Þ

where b̂wls ¼ ðX 0
AS

21
AAXAÞ

21ðX 0
AS

21
AAyAÞ: The model variance is

V {�yBLUP 2 �yN} ¼ N22 J0ðN2nÞðX �AG
21
A X 0

�A
þ S �A �AÞJðN2nÞ

h i
ð3Þ

where GA ¼ X 0
AS

21
AAXA: Under the assumption that both SUUJN and S

1
2

UUJN are in the
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column space ofXU ; the BLUP of the population mean, defined in (2), can be expressed as

�yBLUP ¼ �xNb̂wls ð4Þ

and the variance of the BLUP satisfies the inequality

V {�yBLUP 2 �yN} $ N22 n21 J 0NS
1
2
UUJN

� �2

2J0NSUUJN

( )
ð5Þ

The bound in (5) is attained if and only if the design satisfies

1

n
J 0nS

2
1
2

AAXA ¼
J0NXU

J 0NS
1
2
UUJN

ð6Þ

and in which case

�yBLUP ¼
1

N

1

n
J 0NS

1
2
UUJN

� �
J 0nS

2
1
2

AAyA

� �
ð7Þ

See, Royall (1992).

A sample which satisfies the condition (6) is called a weighted balanced sample. See

Royall and Herson (1973) and Royall (1992). When SUU is the identity matrix of

dimension N, IN ; a sample satisfying the condition, �xn ¼ �xN ; is called a (simple) balanced

sample, where �xn is the sample mean and �xN is the population mean. The condition (6) is a

condition on the weighted sample mean. To see this, let the first element of x be equal to

one and denote the vector of auxiliary variables by xi ¼ ð1; x1;iÞ: Then the condition (6) on

the first element of x is

X
i[A

s
2
1
2

ii

n
¼

NX
i[U

s
1
2
ii

Thus, the sample size n of a weighted balanced sample satisfies

n ¼
1

N i[A

X
s
2
1
2

ii

0
@

1
A

i[U

X
s

1
2
ii

0
@

1
A

and a weighted balanced sample satisfies the condition

i[A

X
s
2
1
2

ii

0
@

1
A

21

i[A

X
s
2
1
2

ii x1;i

0
@

1
A ¼ �x1;N ð8Þ

The condition (8) implies that the weighted sample mean in which weights are

proportional to s
21

2

ii is equal to the population mean of x1:

If the model is misspecifled, especially if the model for the study variable fails to

include a set of important auxiliary variables, say Z, Royall (1992) suggested the selection
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of a balanced sample which is balanced on the variable Z as well as on the original set of

auxiliary variables X so that the BLUP under the model (1) is still model unbiased under

the more general model,

E{yU} ¼ XUbþ ZUg; V{yU} ¼ SUU ð9Þ

Several authors have studied selecting a sample that has preferred properties. Goodman

and Kish (1950) suggested a controlled selection by which the probabilities of selection

for preferred samples are increased. Hájek (1964) introduced rejective sampling in which

samples that do not meet a specified condition are rejected. Herson (1976) discussed the

selection of a balanced sample in which simple random samples are drawn and any that are

not sufficiently close to being balanced are rejected.

Valliant, Dorfman, and Royall (2000, Section 3.4.4) defined a restrictive random

sampling plan using standardized measures of imbalance for a given sample A. Suppose

we seek balance on p auxiliary variables x1; · · ·; xp: Define

DjðAÞ ¼
j
ffiffiffi
n

p
ð�xj;n 2 �xj;NÞj

Sxj;N
j ¼ 1; · · ·; p

where S2xj;N ¼ ðN 2 1Þ21
P

i[Uðxij 2 �xj;NÞ
2: A sample is considered sufficiently close to

balance if, for a prescribed constant dj;

DjðAÞ # dj for all j ¼ 1; · · ·; p ð10Þ

The steps of balanced sampling are

1. Specify dj for j ¼ 1; · · ·; p:

2. Select a simple random sample without replacement.

3. Retain the sample if (10) is satisfied; otherwise replace the sample into the population

and repeat Step 2.

We will refer the sample that satisfies the condition (10) as a restricted random sample

partially balanced on x1; · · ·; xp: The choice of d is somewhat arbitrary. Royall and

Cumberland (1981) discussed reasonable choices for d:

3. Inclusion Probabilities for a Restricted Random Sample

The first order inclusion probability pi for a restricted random sample partially balanced

on auxiliary variables is the probability that the i-th element is in the sample conditional on

the sample means of auxiliary variables satisfying the specified constraints. For simplicity,

assume we have one auxiliary variable and assume that the population mean of the

auxiliary variable is equal to zero. Let d . 0 and assume the sample is rejected unless

j�xnj # d: The first order inclusion probability for element i is

pi ¼
n

N

Pr{2 n21xi 2 d , n21ðn2 1Þ�xðn21Þ , 2n21xi þ d}

Pr{2 d , �xn , d}
ð11Þ

where �xðn21Þ is the mean of n2 1 observations selected from a population of N 2 1

elements with the i-th observation deleted. If we assume approximate normality of the

auxiliary variable we can approximate the inclusion probability using the normal
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distribution function.

p̂i ¼
n

N

Fzðbi;2Þ2 Fzðbi;1Þ

Fzða2Þ2 Fzða1Þ
ð12Þ

where

a1 ¼2 s 2
xð12 f Þ

� �21
2n

1
2d

a2 ¼ s 2
xð12 f Þ

� �21
2n

1
2d

bi;1 ¼ s 2
xð12 f Þ

� �21
2ðn2 1Þ2

1
2nð2n21xi 2 dÞ

bi;2 ¼ s 2
xð12 f Þ

� �21
2ðn2 1Þ

1
2nð2n21xi þ dÞ

s 2
x is the population variance of x, Fzð·Þ is the distribution function of the standard

normal distribution. For a given d and xi; the approximate inclusion probability in (12)

approaches the sampling fraction as n!1:

A second approximation for the first order inclusion probability for a restricted random

sample can be derived by using the conditional probability suggested by Tillé (1998).

Under the approximate normality of �xn; an approximate unconditional inclusion

probability for element i in a sample with sample mean �xn is

~pi ¼
n

N

f ð�xnji [ AÞ

f ð�xnÞ
¼

n

N

s21
�x;ði Þ

s21
�x

exp 2
di

2

� �
ð13Þ

where

s 2
�x ¼V{�xnjF} ¼ ð12 f Þ

S2x;N

n

s 2
�x;ði Þ ¼V{�xnji [ A;F} ¼

ðN 2 nÞðn2 1Þ

n2ðN 2 2Þ
S2x;N 2

Nðxi 2 �xNÞ
2

ðN 2 1Þ2

� �

di ¼s22
�x;ði Þ

ðN 2 nÞðxi 2 �xNÞ

nðN 2 1Þ

� �2

S2x;N ¼ ðN 2 1Þ21
PN

j¼1ðxj 2 �xNÞ
2; f ð�xnÞ and f ð�xnji [ AÞ are normal density functions that

have means �xN and �xN þ ½nðN 2 1Þ�21ðN 2 nÞðxi 2 �xNÞ; and variances s2
�x and s2

�x;ði Þ;

respectively, andF ¼ ðx1; · · ·; xNÞ is the set of values of the auxiliary variable for the finite

population. The variance s2
�x is the design variance of the sample mean and s2

�x;ði Þ is the

conditional design variance of the sample mean conditional on the i-th element being in

the sample. If xi ¼ �xN þ c
ffiffi
r

p
for a nonzero constant c, then the di defined in (13) goes to

infinity and the corresponding approximate inclusion probability of xi approaches zero as r

increases. That is, an observation that is far away from the population mean has a small

inclusion probability.
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By analogy to (12), an approximate second order inclusion probability for elements i

and j in a restricted random sample partially balanced on x, for a given d . 0; is

p̂ij ¼
nðn2 1Þ

NðN2 1Þ

Pr{2 n21xi 2 n21xj 2 d, n21ðn2 2Þ�xðn22Þ ,2n21xi 2 n21xj þ d}

Pr{2 d, �xn , d}

¼
nðn2 1Þ

NðN2 1Þ

Fzðbij;2Þ2Fzðbij;1Þ

Fzða2Þ2Fzða1Þ

ð14Þ

where

bij;1 ¼ s 2
xð12 f Þ

� �21
2ðn2 2Þ2

1
2nð2n21xi 2 n21xj 2 dÞ

bij;2 ¼ s 2
xð12 f Þ

� �21
2ðn2 1Þ2

1
2nð2n21xi 2 n21xj þ dÞ

and s 2
x ; a1 and a2 are defined in (12).

The conditional design expectation and variance of the sample mean given that the i-th

and j-th elements are in the sample are

E{�xnjði; jÞ [ A;F} ¼ �xN þ
N 2 n

nðN 2 2Þ
{ðxi 2 �xNÞ þ ðxj 2 �xNÞ} ð15Þ

and

s 2
�x;ðijÞ ¼ V{�xnjði; jÞ [ A;F} ¼

ðn2 2ÞðN 2 nÞðN 2 1Þ

n2ðN 2 2ÞðN 2 3Þ
£ C ð16Þ

where

C ¼ S2x;N 2
1

N 2 2
ðxi 2 �xNÞ

2 þ ðxj 2 �xNÞ
2 þ

2

N 2 1
ðxi 2 �xNÞðxj 2 �xNÞ

� 	

and S2x;N is defined in (13). Then, an approximate second order inclusion probability for a

restricted random sample is

~pij ¼
nðn2 1Þ

NðN 2 1Þ

s21
�x;ðijÞ

s21
�x

exp 2
dij

2

� �
ð17Þ

where

dij ¼ s22
�x;ðijÞ

N 2 n

nðN 2 2Þ
½ðxi 2 �xNÞ þ ðxj 2 �xNÞ�

� �2

and s 2
�x and s 2

�x;ðijÞ are as defined in (13) and (16), respectively.

To investigate approximations for the first and second order inclusion probabilities

for a restricted random sample, we generated a population of size 1,050 from Nð5; 1Þ

and selected 50,000 samples of size 30 using the restricted random sampling plan

with d ¼ 0:126: The d ¼ 0:126 is chosen so that the sampling procedure rejects about

90% of samples, and provides reasonable balance. See Herson (1976) and Royall and

Cumberland (1981). 440,417 samples were rejected to obtain 50,000 samples. That is,
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the fraction of samples rejected is around 0.90. Figure 1 shows the estimated first

order inclusion probabilities and the two approximations plotted against the values of

x, where the approximations are defined in (12) and (13). The two approximations for

the first order inclusion probabilities are almost the same and both approximate

reasonably well the true inclusion probabilities. The average selection probability is

1/35, which is 0.02857. The standard error of the mean of a sample of 50,000

binomial random variables with mean 0.02857 is 0.0007451. In Figure 1, we also plot

the approximation plus and minus 1.96 standard errors. About 4.2% of the sample

probabilities fall outside the bound.

In a regression of the estimated probability on the approximation without an intercept,

weighted by the variance of the estimated probability, the regression coefficient was 1.00

and the standardized residual mean square was 0.97. This result was true for both

approximations. If an intercept is included in the regression, we obtain

p̂ ¼ 0:0018 þ 0:937A13

ð0:0010Þ ð0:034Þ

for approximation (13), denoted by A13; and

p̂ ¼ 0:0037 þ 0:871A12

ð0:0009Þ ð0:032Þ

for approximation (12), denoted by A12: In both cases the standardized residual mean

square is 0.97. Approximation (13) is superior in this example, but both approximations

perform well. Approximations tend to overestimate small inclusion probabilities.

Fig. 1. Estimated first order inclusion probabilities for restricted random samples and their approximations
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Figure 2 shows the estimated second order inclusion probabilities corresponding to

pairs of elements such that xi , xj: The second order inclusion probabilities for the pair of

elements in which both x-values are quite small or both quite large relative to the

population mean are small. For a pair of elements in which one is much smaller than the

population mean and the other is larger than the population mean, the second order

inclusion probability is relatively large. This is because the balanced sampling scheme

forces the sample mean to be close to the population mean.

Regressing the estimated second order inclusion probability on the approximations

without intercept gives an estimated regression coefficient of 1.00 for both

approximations. Like the approximations of the first order inclusion probability, both

approximations (14) and (17) tend to overestimate small second order inclusion

probabilities. Among the 5% smallest estimated inclusion probabilities, 99% are

overestimated by both approximations.

By assuming approximate multivariate normality for the mean vector of auxiliary

variables, approximations of the inclusion probabilities in (13) and (17) can be extended to

the case of multiple auxiliary variables. Let the vector of auxiliary variables for the i-th

element, xi, be available for all elements in the population. Approximations for the first and

second order inclusion probabilities for a balanced sample are

~pi ¼
n

N
jS �x�xj

1
2jS �x�x;ði Þj

2
1
2 exp 2

1

2
ðG�x�x;ði Þ 2 G�x�xÞ

� �
ð18Þ

and

~pij ¼
nðn2 1Þ

NðN 2 1Þ
jS �x�xj

1
2jS �x�x;ðijÞj

2
1
2 exp 2

1

2
ðG�x�x;ðijÞ 2 G�x�xÞ

� �
ð19Þ

Fig. 2. Estimated second order inclusion probabilities for restricted random samples
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respectively, where

G�x�x ¼ ð�xn 2 �xNÞS
21
�x�x ð�xn 2 �xNÞ

0; G�x�x;ði Þ ¼ ð�xðn21Þ 2 �xðN21ÞÞS
21
�x�x;ði Þð�xðn21Þ 2 �xðN21ÞÞ

0;

G�x�x;ðijÞ ¼ ð�xðn22Þ 2 �xðN22ÞÞS
21
�x�x;ðijÞð�xðn22Þ 2 �xðN22ÞÞ

0

�xðN21Þ ¼ ðN 2 1Þ21ðNxx�xN 2 �xiÞ; �xðN22Þ ¼ ðN 2 2Þ21ðN �xN 2 �xi 2 �xjÞ; S �x�x is the covari-

ance matrix of �xn; and S �x�x;ði Þ and S �x�x;ðijÞ are the conditional covariance matrices of the

sample mean conditional on i [ A and i, j [ A; respectively. Using the constructed

approximate inclusion probabilities of a restricted random sample partially balanced on

auxiliary variables, the design related properties of an estimator such as design

unbiasedness, design consistency and unconditional variance under the design and model

can be evaluated approximately.

4. Regression Weights and Inclusion Probabilities for Balanced Sample

In this section, we compare the weights of a regression estimator for a simple random

nonreplacement sample and the regression weights for a balanced sample. The regression

estimator is the BLUP of (2) under the model (1) and is design consistent if there exists a

vector c such that

SAAðLp 2 JnÞ ¼ XAc ð20Þ

where Lp is the vector of the inverse of inclusion probabilities. See also Fuller and Park

(2002). With a simple random nonreplacement sample of size n and a single auxiliary

variable, the regression estimator can be expressed as

�yreg ¼
i[A

X
wi;regyi ð21Þ

where

wi;reg ¼
1

n
þ ð�xN 2 �xnÞ

Xn
j¼1

ðxj 2 �xnÞ
2

" #21

ðxi 2 �xnÞ

¼
1

n
1þ ð�xN 2 �xnÞ

ðxi 2 �xnÞ

n21
Xn

j¼1
ðxj 2 �xnÞ

2

8<
:

9=
;

ð22Þ

The regression weight for an element in the sample defined in (22) can be approximated

by a function of the xi:

Theorem 1. LetFN ¼ {x1; · · ·; xN} be a sequence of finite populations, where FN is a

random sample of size N from a superpopulation with finite fourth moments. Assume a

simple random nonreplacement sample is selected from each FN : Let m and s2 be the

superpopulation mean and variance of x. Then the regression weight for xi of (22), given
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that xi is in the sample, satisfies

nwi;reg ¼1þ
ðxi 2 mÞ

s2
ð�xN 2 �xnÞ þ

1

s2
ð�xN 2 �xnÞðxi 2 �xnÞ

2
ðxi 2 mÞ

s4
ð�xN 2 �xnÞ n21

Xn
j¼1

ðxj 2 �xnÞ
2

" #
þ Op n

2
3

2

0
@

1
A

If, in addition, FN is a random sample from the normal distribution, then the

conditional expectation of the regression weight given that xi is in the sample, satisfies

E{nwi;regjxi} ¼1þ
ð12 f Þðn2 1Þ

n2
2

ð12 f Þðn2 þ 3n2 3Þ

n3s2
ðxi 2 mÞ2

þ
ð12 f Þðn2 1Þ

n3s4
ðxi 2 mÞ4 þ O n

2
3

2

0
@

1
A

ð23Þ

If the regression estimator is constructed for a simple random sample, the weight

applied to an observation in the sample is a function of the x-value and of the x-values in

the sample. Let wi;reg be the regression weight for element i with wi;reg ¼ 0 if i � A: The

conditional expected value of the regression estimator is

E{�yregjF} ¼
i[U

X
E{wi;reg}yi ð24Þ

We call E{wi;reg} the average weight.

To compare the weights for a simple random nonreplacement sample with the

regression estimator to the strategy of a balanced sample with the regression estimator, we

consider the ratio of the average weight for an observation in the estimator for the

population mean to be n21: We are comparing averages over all possible samples for a

particular procedure. For a simple random nonreplacement sample with the regression

estimator, the ratio is

Ri;SI ¼ nE{wi;reg} ð25Þ

where E{wijxi} is defined in (23). For a balanced sample with the regression estimator, the

ratio is

Ri;BAL ¼ n21Np̂i ð26Þ

where p̂i is as defined in (12). The regression weight for a balanced sample under the

model (1) with the identity covariance matrix and a single auxiliary variable is n21

because �xn ¼ �xN for a balanced sample.

Figure 3 shows the two ratios (25) and (26) plotted against x for the population used to

generate Figure 1 of Section 3. In both cases, the weights for the elements near the center

are increased and the weights corresponding to extreme x values are decreased relative to

n21: The shapes of the two relative weight functions are similar but a simple random

nonreplacement sample with the regression estimator gives a wider range in the ratios than

the strategy of a balanced sample with the regression estimator.
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5. Restricted Random Sampling and Stratified Random Sampling

In Section 2, we introduced the result due to Royall (1992) that the model variance of the

BLUP under model (1) is minimized by selecting a sample with sample mean of x equal to

the population mean of x. Balancing on additional variables as well as on the regressors of

the assumed model provides model bias-robustness against the linear effects of the

additional variables.

Stratified random sampling with strata formed on the basis of the auxiliary variable is

another method of selection that produces an approximately balanced sample. The

deviation of the selected sample mean from the population mean is not perfectly controlled

in stratified random sampling. Thus, the model variance of the regression estimator

depends on the imbalance of the stratified simple random sample. But with a stratified

simple random sample, we can obtain the exact inclusion probabilities and we can

construct a model based regression estimator that is the BLUP under the assumed model

and is design consistent (see Fuller and Park 2002). A design consistent estimator has the

property of robustness to model failure in the sense that the estimator approaches the true

population characteristic as the sample and population sizes increase.

Let the population be sorted on the auxiliary variable x and let strata h, h ¼ 1; · · ·;H; be

formed, equalizing the number of units N1 ¼ · · · ¼ NH ¼ N0 in each stratum. Assume that

simple random nonreplacement samples of size n1 ¼ · · · ¼ nH ¼ n0 are selected from

each stratum. Assume the model

E{yU} ¼ XUb; V{yU} ¼ s2IN ð27Þ

where

XU ¼ ðJN ; x1;UÞ; x1;U ¼ ðx1;1; · · ·; x1;NÞ
0; b ¼ ðb0; b1Þ

0

Fig. 3. Approximate relative average weights for a simple random nonreplacement sample with the regression

estimator and for a balanced sample with the regression estimator
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yU is the vector of y for the population, IN is the identity matrix of dimension N and JN is the

column of ones with length N.

Under model (27), the BLUP for the population mean is

�yBLUP ¼ �xN b̂ ¼ �yn þ ð�x1;N 2 �x1;nÞb̂1 ¼ �yreg ð28Þ

where

�xN ¼ N21
XN
i¼1

ð1; x1;iÞ; ð�yn; �x1;nÞ ¼ n21
Xn
i¼1

ð yi; x1;iÞ;

b̂ ¼ ðb̂0; b̂1Þ
0 ¼

Xn
i¼1

x0ixi

" #21Xn
i¼1

x 0iyi

and n ¼ n0H is the sample size. Because the model and stratified random sampling satisfy

condition (20), the regression estimator is equivalent to the BLUP. With a perfectly

balanced sample under the model (27), the BLUP is the sample mean.

Because the first element of x is equal to one, the conditional model variance of the

BLUP is

V{�yreg 2 �yN jXU} ¼ xx�xNV{b̂jXU}�x
0
N þ V{�yN jXU}2 2Cov{�xN b̂; �yN jXU}

¼ s2xx�xN
Xn
i¼1

x 0ixi

 !21

�x 0N 2
s2

N

¼ s2 1

n
2

1

N
þ

ð�x1;n 2 �x1;NÞ
2Xn

i¼1
ðx1;i 2 �x1;nÞ

2

" #
ð29Þ

The conditional model variance of the BLUP for a perfectly balanced sample is

V{�yreg 2 �yN jXU ; �xn ¼ �xN} ¼ s2 1

n
2

1

N

� 	
¼: VB ð30Þ

because �x1;n ¼ �x1;N for a balanced sample.

The model relative efficiency of the BLUP with stratified simple random sampling to

the one with a perfectly balanced sample is

V{�yreg 2 �yN jXU}

VB

¼ 1þ
ð�x1;n 2 �x1;NÞ

2

ð12 f Þ n21
Xn

i¼1
ðx1;i 2 �x1;nÞ

2
h i ¼: 1þ gn ð31Þ

where f ¼ N21n , 1 and a perfectly balanced sample has �x1;n ¼ �x1;N : Under stratified

simple random sampling, g is design consistent for zero in that

gnjFN ¼ Opðn
21Þ

Therefore, using this stratified sampling design, the strategy of a stratified

simple random sample with the regression estimator, that is the BLUP under the model,

is approximately as model efficient as the strategy of a balanced sample with the BLUP.
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To illustrate the difference between selection strategies, we consider the population that

was generated in Section 3. To select a stratified simple random sample, the population

was sorted on x and 15 equal-sized strata of size 70 were formed. We selected 50,000

stratified simple random samples of size 30 by selecting a simple random nonreplacement

sample of size 2 from each stratum. We chose this simple procedure, but one could use a

more complicated allocation and (or) stratum definition procedure based on within stratum

variance.

We also selected 50,000 samples of size 30 partially balanced on
ffiffiffi
x

p
; x and x 2 by the

restricted random sampling plan with d ¼ 0:126: The same procedure was used in

Dorfman and Valliant (2000) so that at least 10% of the best-balanced samples are

obtained. That is we selected samples which satisfied the conditionsffiffiffiffiffi
30

p
�xð0:5Þn 2 �x

ð0:5Þ
N


 �
Sð0:5Þ

������
������ , 0:126

ffiffiffiffiffi
30

p
ð�xn 2 �xNÞ

S

����
���� , 0:126

ffiffiffiffiffi
30

p
�xð2Þn 2 �x

ð2Þ
N

 �
Sð2Þ

�����
����� , 0:126

where

�xð jÞn ¼ n21
Xn
i¼1

x
j
i ; �x

ði Þ
N ¼ N21

XN
i¼1

x
j
i

and

Sð jÞ ¼ ðN 2 1Þ21
XN
i¼1

x
j
i 2 �x

ð jÞ
N


 �2" #1
2

for j ¼ 0:5; 1; 2: The fraction of samples rejected is 0.96. 1,126,087 samples were rejected

to obtain 50,000 samples. The means of the 50,000 stratified simple random samples and

50,000 restricted random samples partially balanced on
ffiffiffi
x

p
; x and x2 are 5.0000366 and

5.0003616, respectively. The simulation variance of the sample mean of x for stratified

simple random sampling is 0.00089 and the variance of the sample mean for restricted

random sampling is 0.00010.

Figure 4 shows the estimated inclusion probabilities for a restricted random sample

partially balanced on
ffiffiffi
x

p
; x and x2: The elements that have large absolute deviation,

jxi 2 �xN j; have small inclusion probabilities, as we observed in Figure 1. The range of

estimated inclusion probabilities for a restricted random sample partially balanced onffiffiffi
x

p
; x and x2 is (0.00516, 0.03172), which is much wider than that of inclusion

probabilities for a restricted random sample partially balanced on x only,

(0.02318, 0.03128). By balancing on the additional auxiliary variables
ffiffiffi
x

p
and x2;

inclusion probabilities for the elements that are far from the population mean are
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extremely small. Ten percent of estimated probabilities differ from the mean

probability of 0.02857 by more than 0.0015.

Table 1 shows the summary statistics for 50,000 g-values for stratified simple random

samples where g is defined in (31). The maximum loss of efficiency under the assumed

model due to selecting a stratified simple random sample rather than a perfectly balanced

sample is 1.4%. Because the sample selected by restricted random sampling does not satisfy

the condition �xn ¼ �xN ; the actual g for the BLUPwith the restricted random sampling is not

zero. The maximum g for the BLUP with restricted random sampling is 0.06%.

In our finite population, the possible maximum model variance for a stratified sample

defined in (29) is 0.03355 and occurs if the two observations selected are the largest

x-values in each stratum. The corresponding g is 0.035222. Thus, the maximum possible

loss is 3.5%. The BLUP for the stratified simple random samples has approximately the

same efficiency as the BLUP with a balanced sample.

One can apply restricted sampling to the stratified design. For example, rejecting

samples with an efficiency loss greater than 0.5% would result in rejection of 1.5% of the

stratified samples.

In multipurpose surveys, it is common practice to use regression to construct a single set

of weights to be used in all analyses. In such cases, the set of weights that are BLUP for a

particular variable need not give the BLUP for another variable. We study the performance

of the regression estimator under alternative designs for the estimation of points on the

cumulative distribution function of a variable y closely related to x.

Table 1. Summary statistics of g for 50,000 stratified simple random samples

Minimum .25 Quantile Median Mean .75 Quantile Maximum

g £ 100 0.000 0.008 0.036 0.083 0.108 1.400

Fig. 4. Estimated inclusion probabilities for a restricted random sample partially balanced on x,
ffiffiffi
x

p
and x2
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Let yi ¼ xi þ ei; where ei , Nð0; 0:05Þ and xi is the observation from the population of

auxiliary variable generated in Section 3. Let qj be the value satisfying

Pj ¼ Pr{y # qj} ¼ 0:01j

for j ¼ 5; 10; 25; 50; 75; 90; and 95. The regression estimator with a stratified random

sample and the regression estimator with restricted random samples are considered. For

the restricted random sample, we consider a restricted random sample partially balanced

on x only and a restricted random sample partially balanced on
ffiffiffi
x

p
; x and x2:

The regression estimator of the population parameter Pj is

P̂j;reg ¼
Xn
i¼1

1

n
þ ð�xN 2 �xnÞ

Xn
k¼1

ðxk 2 �xnÞ
2

" #21

ðxi 2 �xnÞ

8<
:

9=
;Ij;i ð32Þ

where

Ij;i ¼
1 if yi # qj

0 otherwise:

(

We consider the following three strategies:

1. Regression estimator with a stratified simple random nonreplacement sample.

(Stratified random sample)

2. Regression estimator with a restricted random sample partially balanced on x.

(Partially balanced on x)

3. Regression estimator with a restricted random sample partially balanced on
ffiffiffi
x

p
; x and

x2: (Partially balanced on
ffiffiffi
x

p
; x, x2)

Figure 5 shows the estimated relative design biases of the estimated cumulative

distribution function for the three strategies where the relative bias is

Relative Bias ¼
E{P̂jjF}2 Pj

minðPj; 12 PjÞ
ð33Þ

For all Pj; the stratified random sample has the smallest absolute bias. The restricted

random sample partially balanced on x severely underestimates the true values for P5; P10;

and P25: As we observed in Section 3, for a restricted random sample partially balanced

on x, the observations far from the mean have small inclusion probability so that

the regression estimator with a restricted random sample partially balanced on

x underestimates the small values of P.

Figure 6 shows the relative design MSE of the restricted random sample partially

balanced on x and of the restricted random sample partially balanced on
ffiffiffi
x

p
; x and x 2

relative to the MSE of the stratified random sample. With respect to MSE, the stratified

random sample has better performance than the restricted random samples for all Pj: One

reason for this phenomenon is the smaller variability of the weights for the stratified

sample relative to that for the restricted random samples partially balanced on auxiliary
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variables. That is, the ratio of the regression weight to the sampling weight within each

stratum, is relatively stable.

To compare the three strategies for a skewed finite population, we generated a finite

population of size 1,050 as a sample from the chi-squared distribution with two degrees

of freedom. Samples were selected as described in Section 5 and the same three strategies

compared. Figure 7 shows the estimated relative design biases of the estimated

cumulative distribution functions of y for the three strategies for the finite population,

where yi ¼ xi þ ei; ei , Nð0; 0:05Þ and xi is from the chi-squared distribution with two

Fig. 5. Monte Carlo relative design biases of the estimated proportion for the three strategies

Fig. 6. Monte Carlo relative design MSE of the estimated proportions for two design strategies relative to

stratified random sample
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degrees of freedom. The relative bias is defined in (33). Except for P10 and P75; the

stratified random sample has the smallest absolute bias. For P10; the stratified random

sample and the restricted random sample partially balanced on
ffiffiffi
x

p
; x and x2 have smaller

absolute bias than the restricted random sample partially balanced on x. All three strategies

are comparable for P75: Unlike other strategies, the restricted random sample partially

balanced on
ffiffiffi
x

p
; x, and x2 severely underestimates the true population values P90 and P95:

This is because, for this skewed finite population, the chance that elements with large x-

values are selected is extremely small for a restricted random sample partially balanced onffiffiffi
x

p
; x, and x2:

Figure 8 shows the design MSE of the restricted random sample partially balanced on x

and of the restricted random sample partially balanced on
ffiffiffi
x

p
; x and x 2 relative to the

stratified random sample for the skewed population. With respect to MSE, the stratified

random sample has much better performance for the skewed population, with relative

efficiencies 114% to 310%.

Means, variances, biases and MSEs of the regression estimator corresponding to

different designs, population parameters are given in the Appendix for the two finite

populations.

6. Discussion

Restricted random sampling partially balanced on auxiliary variables and stratified

random sampling as designs for the regression estimator are compared. Through

simulation, we found that the median loss in efficiency for the mean of ymade by selecting

a stratified sample instead of a perfectly balanced sample is 0.036% for a normal

population. The maximum possible loss for the mean is 3.5% and the mean loss is 0.083%

for the illustrative finite population selected from a normal population. In estimating the

population distribution function of a variable y, strongly correlated with the auxiliary

Fig. 7. Monte Carlo relative design biases of the estimated proportion for the three strategies: Skewed

population
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variable, the stratified random sample shows much better performance than the restricted

random samples partially balanced on auxiliary variables. This was true for both

symmetric and skewed finite populations.

In a large-scale survey, many variables of interest are obtained, and one set of weights

typically is used. It is difficult to construct a model that is appropriate for all possible

variables, especially for dichotomous variables. For such a situation, the stratified random

sample is more robust for the regression estimation than the restricted random sampling.

It seems that some restrictions are placed on samples in practice. That is, few

practitioners would retain a stratified sample that contained the largest elements in each

stratum. Our investigation suggests that the imposition of modest restriction on the

stratified random sample will have modest effects on the selection probabilities. For

example, to reduce the largest loss associated with a stratified sample from 3.5% to 0.5%

requires rejection of 1.5% of the stratified samples.

Appendix

Table 2. Properties of estimated proportion for the regression estimator with a stratified simple random

nonreplacement sample of size 30 for finite population generated from the normal distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0498 20.209 0.548 0.548
P10 0.0996 20.397 0.783 0.783
P25 0.2492 20.802 1.422 1.423
P50 0.5002 0.187 1.639 1.639
P75 0.7507 0.716 1.307 1.307
P90 0.9006 0.595 0.743 0.744
P95 0.9510 0.973 0.605 0.606

Fig. 8. Monte Carlo relative design MSE of the estimated proportions for two strategies relative to stratified

random sample: Skewed population
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Table 3. Properties of estimated proportion for the regression estimator with a restricted random sample of size

30 partially balanced on x for finite population generated from the normal distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0476 22.356 1.188 1.193
P10 0.0965 23.539 1.972 1.984
P25 0.2465 23.507 3.051 3.064
P50 0.5002 0.195 3.075 3.076
P75 0.7535 3.455 2.969 2.981
P90 0.9033 3.255 1.954 1.964
P95 0.9528 2.803 1.180 1.188

Table 4. Properties of estimated proportion for the regression estimator with a restricted random sample of size

30 partially balanced on
ffiffiffi
x

p
; x and x 2 for finite population generated from the normal distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0496 20.371 0.884 0.885
P10 0.1008 0.777 1.428 1.429
P25 0.2519 1.855 2.540 2.543
P50 0.5005 0.472 3.109 3.109
P75 0.7483 21.663 2.368 2.371
P90 0.8994 20.606 1.410 1.410
P95 0.9513 1.255 0.945 0.947

Table 5. Properties of estimated proportion for the regression estimator with a stratified simple random

nonreplacement sample of size 30 for finite population generated as a sample from the exponential distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0501 0.054 1.104 1.104
P10 0.0994 20.639 1.588 1.588
P25 0.2479 22.111 1.789 1.793
P50 0.4979 22.064 1.319 1.323
P75 0.7485 21.482 0.742 0.745
P90 0.8996 20.400 0.573 0.574
P95 0.9503 0.290 0.366 0.366

Table 6. Properties of estimated proportion for the regression estimator with a restricted random sample of size

30 partially balanced on x for finite population generated as a sample from the exponential distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0492 20.835 1.446 1.446
P10 0.0974 22.562 2.581 2.588
P25 0.2446 25.384 4.622 4.651
P50 0.4943 25.710 4.169 4.201
P75 0.7488 21.218 1.957 1.958
P90 0.9016 1.616 1.278 1.280
P95 0.9521 2.127 0.892 0.897
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Proof of Theorem 1. The regression weight of (22) is a function of ð�xN 2 �xnÞ ; ðxi 2 �xnÞ

and n21
Pn

j¼1ðxj 2 �xnÞ
2: These statistics can be formulated as

�xN 2 �xn ¼ ð12 f Þ �xðN2nÞ 2 �xðn21Þ 2
1

n
ðxi 2 �xðn21ÞÞ

� 	

xi 2 �xn ¼ 12
1

n

� �
ðxi 2 �xðn21ÞÞ

ð34Þ

and

n21
Xn
j¼1

ðxj 2 �xnÞ
2

" #
¼

n2 1

n2
ðxi 2 �xðn21ÞÞ

2 þ
1

n

Xn
j–i
j¼1

½xj 2 �xðn21Þ�
2

where

�xðn21Þ ¼
1

n2 1

Xn
j–i
j¼1

xj

and

�xðN2nÞ ¼
1

N 2 n
ðN �xN 2 n�xnÞ

For a superpopulation with finite fourth moments, we have

�xN 2 �xnjxi ¼ Opðn
2
1
2Þ; xi 2 �xnjxi ¼ ðxi 2 mÞ þ Opðn

2
1
2Þ;

and

n21
Xn
j¼1

ðxj 2 �xnÞ
2 xi ¼ s2 þ Opðn

2
1
2Þ

����
because E{ð�xN 2 �xnÞ

2jxi} ¼ Oðn21Þ; E{½ðxi 2 �xnÞ2 ðxi 2 mÞ�2jxi} ¼ Oðn21Þ; E{½n21Pn

j–i
j¼1ðxj 2 �xðn21ÞÞ

2 2 s2�2jxi} ¼ Oðn21Þ and n22ðn2 1Þðxi 2 �xðn21ÞÞ
2 ¼ Opðn

21Þ: By

applying the Taylor expansion to nðxi 2 �xnÞ½
Pn

j¼1ðxj 2 �xnÞ
2�21 as a function of xi 2 �xn

Table 7. Properties of estimated proportion for the regression estimator with a restricted random sample of size

30 partially balanced on
ffiffiffi
x

p
; x and x 2 for finite population generated as a sample from the exponential

distribution

Variable Mean Bias £ 103 Variance £ 103 MSE £ 103

P5 0.0499 20.097 1.258 1.258
P10 0.0998 20.197 1.987 1.987
P25 0.2527 2.671 2.657 2.664
P50 0.5058 5.769 2.372 2.405
P75 0.7487 21.307 1.700 1.702
P90 0.8922 27.803 1.083 1.144
P95 0.9436 26.432 0.525 0.567
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and n21
Pn

j¼1ðxj 2 �xnÞ
2 about (xi 2 m,s 2), we obtain

nðxi 2 �xnÞXn

j¼1
ðxj 2 �xnÞ

2
xi ¼

ðxi 2 �xnÞ

s2
2

ðxi 2 mÞ

s4

���� n21
Xn
j¼1

ðxj 2 �xnÞ
2 2 s2

" #
þ Opðn

21Þ

and

nwijxi ¼ 1þ
ðxi 2 mÞ

s2
ð�xN 2 �xnÞ þ

ð�xN 2 �xnÞðxi 2 �xnÞ

s2

2
ðxi 2 mÞ

s4
ð�xN 2 �xnÞ n21

Xn
j¼1

ðxj 2 �xnÞ
2

" #
þ Op n

2
3

2

0
@

1
A ð35Þ

Under the normality assumption, the conditional expectation of the regression weight is

E{nwijxi} ¼ 1þ E
ðxi 2 mÞ

s2
ð�xN 2 �xnÞ xij

� �
þ E

ð�xN 2 �xnÞðxi 2 �xnÞ

s2
xij

� �

2 E
ðxi 2 mÞ

s4
ð�xN 2 �xnÞ n21

Xn
j¼1

ðxj 2 �xnÞ
2

" #
xij

( )
þ O n

2
3

2

0
@

1
A

ð36Þ

because x and ðxj 2 �xnÞ
2 have finite r-th moments for all integers 0 , r , 1 by the

normality assumption on x and because wi is a continuous and differentiable function of

the means of x and ðxj 2 �xnÞ
2: See Fuller (1996, Theorem 5.4.3). The conditional

expectation of ð�xN 2 �xnÞðxi 2 �xnÞ is

E{ð�xN 2 �xnÞðxi 2 �xnÞjxi} ¼ 2
12 f

n
12

1

n

� �
½ðxi 2 mÞ2 2 s2� ð37Þ

By utilizing the moments of the normal and x2 distributions, we obtain

E ð�xN 2 �xnÞ n21
Xn
j¼1

ðxj 2 �xnÞ
2

" #
xij

( )

¼ 2
ð12 f Þðn2 1Þ

n3
½ðxi 2 mÞ3 þ ðn2 3Þðxi 2 mÞs2�

ð38Þ
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because

E{�xðn21Þðxi 2 �xðn21ÞÞ
2jxi} ¼ mðxi 2 mÞ2 2

s2

n2 1
ð2xi 2 3mÞ

E{�xðN2nÞðxi 2 �xðn21ÞÞ
2jxi} ¼ m ðxi 2 mÞ2 þ

s2

n2 1

� 	

E{xiðxi 2 �xðn21ÞÞ
2jxi} ¼ xi ðxi 2 mÞ2 þ

s2

n2 1

� 	

E �xðN2nÞ

Xn
j–i
j¼1

ðxj 2 �xðn21ÞÞ
2 xij

8><
>:

9>=
>; ¼ ðn2 2Þms2

E xi
Xn
j–i
j¼1

ðxj 2 �xðn21ÞÞ
2 xij

8><
>:

9>=
>; ¼ ðn2 2Þxis

2 and

E �xðn21Þ

Xn
j–i
j¼1

ðxj 2 �xðn21ÞÞ
2 xij

8><
>:

9>=
>; ¼ ðn2 2Þms2

The result (23) follows from (36), (37), and (38).
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