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In a rotating panel survey, individuals are interviewed in some waves of the survey but are not
interviewed in others. We consider the treatment of missing income data in the labor force
survey of the Municipality of Florence in Italy, a survey with a rotating panel design where
recipiency and amount of income are missing for waves where individuals are not
interviewed, and amount of income is missing for waves where individuals are interviewed
but refuse to answer the income amount question. It is thus a question of a multivariate
missing data problem with two missing-data mechanisms, one by design and one by refusal,
and varying sets of covariates for imputation depending on the wave of the survey. Existing
methods for multivariate imputation such as sequential regression multiple imputation
(SRMI) can be applied, but assume that the missing income values are missing at random
(MAR). This assumption is reasonable when missing data arise from the rotating panel design,
but less reasonable when the missing data arise from refusal to answer the income question,
since in this case missingness of income is generally thought to be related to the value of
income itself, after conditioning on available covariates. In this article we describe a
sensitivity analysis to assess the impact of departures from MAR for refusals, based on SRMI
for a pattern-mixture model. The sensitivity analysis avoids the well-known problems of
underidentification of parameters of missing not at random models, is easy to carry out using
existing sequential multiple imputation software, and takes into account the different
mechanisms that lead to missing data.
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1. Introduction

Missing data on income questions is an important concern in labor force surveys, given the

inability or unwillingness of some individuals to report income information. An important

early example methodologically is the hot deck imputation method of the Income

Supplement of the U.S. Current Population Survey (CPS) (Ono and Miller 1969; U.S.

Bureau of the Census 2002). The CPS Hot Deck creates adjustment cells based on

recorded information for respondents and nonrespondents, and then imputes income

amounts from a randomly chosen respondent in the same cell as the nonrespondent. This

method assumes that the income variables are missing at random (MAR) (see e.g., Little

and Rubin 2002), in the sense that missingness depends only on observed characteristics,

and not on the missing values of the income variables themselves.
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The MAR assumption in the context of income nonresponse has been questioned by

many analysts, who argue that nonresponse is more likely among individuals with low or

high incomes than among individuals with incomes in the middle of the income

distribution. In particular, Lillard et al. (1986) fitted a missing not at random (MNAR)

model for income that attempts to correct for selection bias, based on models initially

developed by Heckman (1976) and others. They concluded that the incomes of

nonrespondents imputed by the CPS Hot Deck were being severely underestimated.

However, these methods have been criticized on the grounds of their sensitivity to

structural assumptions (Rubin 1983; Little 1985), and empirical work based on a match of

the CPS to IRS data showed no evidence against the MAR assumption (David et al. 1986).

Despite this study, the potential bias from assuming that missing incomes are MAR

remains a concern, particularly in situations where there is limited covariate information to

characterize differences between respondents and nonrespondents.

The treatment of MNAR missing data is a difficult problem, given the absence of

empirical data to characterize differences between respondents and nonrespondents that

are not captured by observed covariates. From a likelihood-based perspective, a model is

needed for the joint distribution of the survey variables Y and the matrix M, which

indicates which values are observed and which are missing. Most early work on MNAR

models was based on selection models, which factor this joint distribution into the

marginal distribution of Y (the “complete-data model”) and the conditional distribution of

M given Y (the “model for the missing-data mechanism”). Applications of this approach to

income data include Greenlees et al. (1988) and Lillard et al. (1986). More recently, there

has also been interest in pattern-mixture models, which factor the joint distribution into

the marginal distribution of M (the distribution of each missing-data pattern) and the

conditional distribution of Y given M (the model for Y within each pattern). (For

discussions of the relative merits of these approaches see Little and Rubin 2002,

Chapter 15; Little 1993; Kenward and Carpenter 2008; Little 2008.) Both approaches

share severe problems of underidentification of parameters, essentially because the

data provide no direct information about differences in Y between respondents and

nonrespondents that are not accounted for by observed data. Thus, it has been argued

(e.g., Rubin 1977; Little 1994; Scharfstein et al. 1999) that the most scientific approach is

to assess sensitivity to non-MAR missing data, by considering the effect of a range of

plausible differences between respondents and nonrespondents after adjusting for the

available covariates. The analysis of MNAR income nonresponse in this article adopts this

approach, based on a pattern-mixture model for the data.

Published sensitivity analyses based on MNAR models have been largely limited to the

relatively simple problem where missing values are confined to a single variable. In this

article we propose a sensitivity analysis to MNAR nonresponse in the setting of missing

income information in a labor force survey conducted by the Municipality of Florence.

This problem has a number of interesting complicating features. Specifically, there are

missing data due to income nonresponse, which is potentially not MAR; the missing data

pattern is multivariate, because quarterly income measures are recorded repeatedly over

time, and the survey has a rotating panel design, which means that individuals are

interviewed for some waves of the survey and not interviewed for others. The rotating

panel design induces a designed missing data aspect, both for income recipiency and
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income, which is essentially MAR (but not quite, since some individuals who are not

interviewed in a wave might refuse if they were interviewed). Income recipiency and

amount need to be considered for each quarter, since earned income is zero when

individuals do not have a job (see Table 1). For both types of missing data, the amount of

observed income information from other waves varies markedly from one individual to

another, and this aspect should be appropriately reflected in the MNAR analysis.

We describe here an analysis that addresses these features. It is based on multiple

imputation (MI) (Rubin 1987), an important approach for handling item nonresponse,

particularly in public use data files. Initially, we multiply impute missing quarterly income

values and missing values on occupational status and covariates using MAR sequential

regression methods (Van Buuren and Oudshoorn 1999; Raghunathan et al. 2001), also

known as chained equation methods. These allow us to condition on covariate

information, including income data from other quarters if available. (For another

application of sequential MI of income in a cross-sectional survey see Schenker et al.

2006.) We then describe two sensitivity analyses to deal with potential non-MAR missing

income data. In contrast to approaches based on selection models, these methods are

relatively simple to implement and provide useful information about the potential impact

of deviations from MAR in the missing income items.

2. The Labor Force Survey

Our methods are motivated by missing data in the Labor Force Survey of the Municipality

of Florence in Italy, an important source of information on the employment rate and income

for employed people in the Florentine area. The survey collects data in four waves every

year (April, July, October, and January) to produce quarterly estimates, which are then

combined to yield annual estimates. A random sample of individuals is drawn from the

municipal register of Florence, stratified by sex, age-class, and zone of residence. The

survey has a rotating panel design, where each subject enters in the sample for two

consecutive waves, exits for two and then reenters for two waves, with a 50% overlap after

three and twelve months and a 25% overlap after nine and 15 months. To determine this

timing, each subject is randomly assigned into one of eight “panel groups”, in each of which

sample strata are equally represented. Sampled individuals who cannot be contacted are

Table 1. Status of the variables Z (occupational status) and Y (monthly income) in the four quarters, for each

panel group: observed (Obs) or missing (Mis)

April 2002 July 2002 October 2002 January 2003

Panel group Z Y Z Y Z Y Z Y

Group 1 Obs Obs/Mis Mis Mis Mis Mis Mis Mis
Group 2 Mis Mis Obs Obs/Mis Mis Mis Mis Mis
Group 3 Mis Mis Mis Mis Obs Obs/Mis Mis Mis
Group 4 Mis Mis Mis Mis Mis Mis Obs Obs/Mis
Group 5 Obs Obs/Mis Mis Mis Mis Mis Obs Obs/Mis
Group 6 Obs Obs/Mis Obs Obs/Mis Mis Mis Mis Mis
Group 7 Mis Mis Obs Obs/Mis Obs Obs/Mis Mis Mis
Group 8 Mis Mis Mis Mis Obs Obs/Mis Obs Obs/Mis
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replaced by substitutes from the same stratum. In each of the four survey waves considered

here (April, July, October 2002, and January 2003) around 1,200 people were interviewed

in Florence. Depending on the “panel group” assignment, each subject was surveyed one

or two times. The total number of distinct respondents in the four waves is 3,209.

The questionnaire begins with a question directed toward defining the individual’s

occupational status. An individual is considered as employed if he/she declares

himself/herself as such or if he/she has worked during the preceding week; this definition

includes both dependent and self-employed positions. The questionnaire proceeds with

questions regarding the type of job and income for employed people, while for those not

employed the survey asks questions about the job search.

In this article we focus on missing values for the questions about occupational status and

earned income for employed people. (Missing data rates for other questions are less than

3%, and hence a minor issue.) Two distinct mechanisms lead to missing data on these

variables. The first arises because occupational status and earned income are not recorded

for waves where an individual is not interviewed, because of the rotating panel design.

That is, if the individual data from different waves are combined into a single longitudinal

file, variables are missing for the waves where an individual is not interviewed. We treat

the unobserved data arising from the rotation of the panel as “designed missing data,”

since they meet the definition of missing data in Little and Rubin (2002) as unobserved

values that are meaningful in the analysis. Also, imputation of these data using values from

observed waves is useful since it increases the efficiency of the estimates.

The second missing-data mechanism is refusal to answer the income question in waves

where an individual is interviewed. The question defining the occupational status is always

observed in these waves, but some employed individuals refuse to answer the question

“What is your monthly net income?” The questionnaire is structured so that “income”

refers only to earned income from the current job; other sources of income are excluded.

Accordingly, if a person is not asked the income question because he or she is not

employed, then the corresponding income value is considered to be zero, not missing. For

approaches to modeling financial variables with a proportion of zeros, see Buntin and

Zaslavsky (2004). An important feature of our proposed analysis is that it treats these two

mechanisms of missing data differently, confining MNAR methods to the refusal

component.

Table 1 summarizes the status, observed or missing, for the occupational status (Z) and

the monthly income (Y) in each of the quarters and for each panel group.

Table 2 reports the number of employed people and the corresponding percentages of

missing values to the income question, for each panel group. The rates of missing values to

the question on the monthly income are comparable with those of other surveys about

income, assets, expenditures, and financial variables (Heeringa et al. 2002). Note that the

zeros in Table 2 derive from the rotation of the panel: if the respondents were interviewed

at these times, their occupational status would be recorded, some would report their

income, and others would refuse to provide their income, as in other waves.

Let Zhij ¼ 0; 1 ðh ¼ 1; : : : ;H; i ¼ 1; : : : ; nh; j ¼ 1; : : : ; JÞ be the indicator of the

occupational status for Subject i in Stratum h and Wave j, and let Yhij be the corresponding

monthly net income from a job in Euros. If a subject is not employed (Zhij ¼ 0), then the

income is zero (Yhij ¼ 0). Let Xhij denote the matrix containing personal characteristics for
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Subject i in Stratum h and Wave j. These characteristics include information fixed during

all the survey waves, such as sex, age-class, educational level and civil status, and

information which may change depending on the occupational status in a given wave, like

the type of job (employee or self-employee). Finally, let wh be the sampling weight for

individuals in Stratum h. The stratification is defined by three of the X variables: sex,

age-class, and zone of residence.

Define the missingness indicator Mhij such that Mhij ¼ 0 if occupational status and

income are observed; Mhij ¼ 1 if occupational status and income are both missing, as

when the subject belongs in a panel group that is not interviewed in Wave j; and Mhij ¼ 2

if occupational status is observed but income is missing, as when an individual is

interviewed but refuses to answer the income question. For simplicity of notation we treat

all the characteristics Xhij as fully observed, although a few covariate values of these

variables are missing in each wave. These values are imputed using the MAR sequential

MI procedure described below. The weights wh are all observed.

Quarterly estimates of the monthly earned income are currently based on available

information, dropping cases for which income is not observed. The estimated mean in

Wave j, accounting for the stratification weights, is:

^�Y: :j ¼

XH

h¼1

Xnh

i¼1
YhijZhijwh

XH

h¼1

Xnh

i¼1
Zhijwh

ð1Þ

The associated estimate of the standard error is obtained using the SAS Proc

Surveymeans software, which uses a Taylor series expansion method.

Besides the quarterly estimates, an estimate of the monthly income aggregated over the

whole year 2002 is also of interest. This estimate could be computed by averaging the
^�Y: :j

over the J waves; however in this estimate some subjects contribute to only one wave

mean, other subjects to two wave means. Alternatively, we can estimate the average

monthly income during 2002 using one value for each subject in each stratum, represented

Table 2. Number of employed people (N) and percentage of missing values (% missing) for the monthly income

Y. The zeros in the table derive from the rotation of the survey scheme

Panel
group

April 2002 July 2002 October 2002 January 2003

N % missing N % missing N % missing N % missing

Group 1 286 31.47 0 0 0 0 0 0
Group 2 0 0 195 37.95 0 0 0 0
Group 3 0 0 0 0 174 36.21 0 0
Group 4 0 0 0 0 0 0 272 39.34
Group 5 118 31.36 0 0 0 0 119 26.05
Group 6 244 24.59 245 31.43 0 0 0 0
Group 7 0 0 239 38.49 239 36.82 0 0
Group 8 0 0 0 0 263 36.50 264 31.44
Total 648 28.86 679 35.79 676 36.54 655 33.74
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by the mean of observed monthly income estimates

^�Yhi: ¼

X4

j¼1
YhijZhij

X4

j¼1
Zhij

;
X4

j¼1

Zhij . 0;

and then derive the overall monthly estimate as:

^�Y ¼

XH

h¼1

Xnh

i¼1

^�Yhi:wh
XH

h¼1

Xnh

i¼1
wh

ð2Þ

The results from these analyses of available data are displayed in Table 3.

From these results we note that the monthly income estimates increase in the last two

quarters of the year, especially in the third. The lowest value is for the second quarter,

observed in the month of July. The monthly income estimate referring to the whole year

(
^�Y) is higher than the first two quarterly estimates, lower than the remaining two.

This approach makes the strong assumption that the missing values for each month are

missing completely at random (MCAR) – that is, are unrelated to the missing income

values or the observed covariates. This assumption is justified for missingness attributable

to the rotating panel design, but is a strong assumption for missingness of income because

of refusal to answer the income question. It is generally preferable to develop consistent

estimates under the weaker MAR assumption, which allows the conditional distribution

of the missing data indicators to depend on the observed data (Little and Rubin 2002).

The MAR assumption in our setting is:

Pr ðMhi:jYhi:; Zhi:;Xhi:;cÞ ¼ Pr ðMhi:jYobs;hi:; Zobs;hi:;Xhi:;cÞ ð3Þ

where Mhi. represents the vector of missing data indicators for Subject i in Stratum h

over the survey waves, Yhi., Zhi., Xhi. represent the vectors of values of income, income

recipiency and covariates over all survey waves, and Yobs,hi. and Zobs,hi. are the observed

components of Yhi., Zhi.; we define the corresponding missing components as Ymis,hi.,

Zmis,hi.. We now describe an MI analysis that imputes the missing values under the

MAR assumption.

3. Multiple Imputation Under MAR

In this section we multiply-impute the missing values of occupational status and monthly

income, Zmis,hi. and Ymis,hi., and the missing covariates under the assumption that all the

values are MAR. In MI, m complete datasets are produced, with missing values replaced

Table 3. Number of employed people (N), monthly income estimates and standard errors for the monthly income

(in Euros) with the complete-case analysis

Estimates
^�Y: :1

^�Y: :2
^�Y: :3

^�Y: :4
^�Y

N 461 436 429 434 1,327
Mean estimate 1,195.2 1,186.8 1,309.0 1,234.3 1,221.2
Standard error 31.3 26.6 33.3 26.8 22.7
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by draws from their posterior predictive distribution under an imputation model. In order

to address the multivariate nature of the missing and observed data and condition fully on

the observed information, we applied the sequential regression multivariate approach to

MI (Raghunathan et al. 2001; Van Buuren and Oudshoorn 1999). This approach avoids the

specification of a full joint multivariate model for the variables, which can be difficult

when these variables are numerous and have different distributional forms. Under the

MAR assumption, it is not necessary to distinguish whether an income value Yhij is missing

because Subject i of Stratum h was not interviewed in Wave j, or because the subject was

interviewed but refused to answer.

Under the MAR hypothesis, the sequential regression MI for variables Z and Y proceeds

as follows. A regression model is chosen for each variable with missing values: here a logit

regression for the dummy variable measuring the occupational status and a linear

regression for the logarithm of the income. Diffuse prior distributions are assumed for the

parameters of the regressions. At the first step a regression of Zobs,hij on the covariates Xhi.

is fitted and the missing values Zmis,hij are imputed from the corresponding posterior

predictive distribution; next, a regression of log(Yobs,hij) on the Xhi. and the completed Zhij
is fitted and also the Ymis,hij are imputed when Zhij ¼ 1, while the income is set to zero

when Zhij ¼ 0. In the same way the missing values of the Xhi. variables are imputed based

on their regression on Zhi. and Yhi.. Then the procedure begins to cycle with each regression

fitted again using as predictors the covariates and all the previously imputed values, until

stable imputations for all the variables are obtained. A Gibbs sampler algorithm is

necessary, since the missing data pattern is not monotone (Raghunathan et al. 2001).

The distributions for the log income amounts are all assumed normal, and the prior

distributions of the parameters are noninformative gðbj;sjjÞ ¼ s
21=2
jj . To ensure

approximate normality for the continuous income variables, we also considered

Box-Cox family transformations (Box and Cox 1964). The power transformation

estimated by the method of maximum likelihood was near to zero (log transformation) for

each of the four income variables. Thus, we chose this transformation though the

transformed variables show a kurtosis higher than that for the normal distribution.

A refinement would replace the normal by a longer-tailed distribution like the multivariate

t, but the focus here is on the MNAR sensitivity analysis discussed below.

Repeating this process m times, m completed datasets are produced. Then, the

subsequent steps are: conduct separate analyses on the m complete datasets with

traditional techniques to obtain, for example, the estimates of a parameter u; combine

these estimates û1; : : : ; ûm together with their associated variances Û1; : : : ; Ûm through

MI combining rules (Rubin 1987). In particular, the MI estimate of u is: û ¼
Pm

k¼1ûk=m,

with variance V̂ ¼ �Uþ ð1þ m21ÞB, where �U ¼
Pm

k¼1Ûk=m is the within-imputation

variance and B ¼
Pm

k¼1ðûk 2 ûÞ2=ðm2 1Þ is the between-imputation variance.

The sequential regression approach to MI is flexible and makes good use of the

available information, but has some limitations. The conditional distributions of the

variables with missing values may be incoherent, in the sense that they cannot be derived

by a single joint multivariate distribution (Little and Rubin 2002). Theoretically it is

possible that the Gibbs sampler for these imputation models does not converge

stochastically to a draw from the joint distribution. However, the method appears to work

well in practice (Van Buuren et al. 2006; Heeringa et al. 2002).
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4. Results Under the MAR Model

We chose to impute m ¼ 25 datasets with the software package IVEware (Raghunathan

et al. 2002). Smaller values ofm suffice when the rate of missing values is very low (Rubin

1987), but here a higher value is required since the rotating panel design leads to a high

rate of missingness (see Table 4). The number m ¼ 25 yielded a stable estimate of the

between-imputation component of the MI variance.

The MAR imputation scheme (3) requires choosing a set of covariates X to condition in

the imputation model. To keep the imputation model as general as possible, besides the

occupational status and income in the different waves, we conditioned here on the personal

characteristics fixed during all the survey waves, namely sex, age-class, number of

household members, zone of residence in the Municipality of Florence, educational level,

civil status. Also, we conditioned on some characteristics available for the quarters when

the subject is interviewed and employed – that is, the type of job (employee or self-

employee), the number of household members perceiving income, and the involvement in

a second job. Note that since these characteristics are not available for some quarters, due

to the rotating scheme, we needed to impute them under our MAR model. Finally, we

included the survey weights as covariates in the imputation model. We imputed using the

option MINRSQD of IVEware, specifying a minimum marginal R-squared for a step-wise

regression equal to 0.005. Checking the details of the imputation procedure we found that

the chosen covariates were included as predictors in the sequential regressions.

The imputations of occupational status are highly influenced by the observed covariate

information. For example, if a subject was interviewed in two waves and declared

himself/herself as (not) employed in both, then his/her occupational status is imputed as

(not) employed in the remaining two waves with a 95% probability (mean value across the

25MIs). When the occupational status changes in the two observed waves, the imputations

are more changeable. Otherwise, when there is only one observed value, the same

occupational status is imputed in the remaining three waves for approximatively 85% of

the cases. The average number of employed people across the 25 imputed datasets and the

corresponding percentages of missing income values are shown in Table 4. Of course,

when the occupational status is missing because of the rotation of the panel, the

corresponding income is always missing. Considering all the panel groups, the percentage

of income values to be imputed in each wave is very high, around 75%.

Concerning the imputation of the income, we compared the relationship between the

pairs of observed income values with that between one observed and one imputed value

(due to refusal to answer) for individuals interviewed in two waves (data referring to

panel groups from 5 to 8, see Table 1). A scatterplot of these couples of values is shown

on the left in Figure 1; for ease of comparison, only observed and imputed values below

5,000 Euros are included. We note that the positive correlation between the observed

income values is well preserved by the imputations; results are quite similar in all the

imputed datasets.

To check the fit of the imputation models for the income variables, we display bivariate

scatterplots that plot the residuals against the predicted values for the observed income

values in each wave (Abayomi et al. 2008; Su et al. 2009). Figure 1 reports on the right the

scatterplot referring to the monthly income in April 2002 in the log scale: as we can see, no
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Table 4. Number of employed people (N) and percentage of missing values (% missing) for the monthly income across the 25 MAR multiple imputations

April 2002 July 2002 October 2002 January 2003

Panel group N % missing N % missing N % missing N % missing

Group 1 286 31.47 302 100 304 100 298 100
Group 2 187 100 195 37.95 194 100 191 100
Group 3 162 100 166 100 174 36.21 168 100
Group 4 265 100 274 100 279 100 272 39.34
Group 5 118 31.36 126 100 126 100 119 26.05
Group 6 244 24.59 245 31.43 248 100 239 100
Group 7 228 100 239 38.49 239 36.82 229 100
Group 8 258 100 273 100 263 36.50 264 31.44

Total 1,748 73.63 1,820 76.04 1,827 76.52 1,780 75.61
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patterns are present and almost all the points fall within the 95% error bounds,

demonstrating the appropriateness of the imputation model.

Finally, as an additional diagnostic tool, we compared the empirical densities of some of

the 25MAR imputed income distributions with those of the corresponding observed values

(Figure 2). This visual examination may identify potential problems when imputing in a

multivariate setting (Abayomi et al. 2008). For each of the four income distributions we

never observed dramatic differences between the empirical density before and after the

MAR imputations. The observed differences depend on the covariate information in the

MAR imputation model.

We can recompute the estimates of interest, Quantities (1) and (2), and an additional

annual income estimate, using data imputed using this method. Considering individuals

employed in every wave of year 2002 (Zhij ¼ 1 for j ¼ 1; : : : ; 4) and referring each

quarterly estimate to the preceding three months, define the personal estimate of the annual

income in year 2002 as Ŷhi 2002 ¼
P4

j¼1

^�Yhij*3. Then, the overall annual income estimate is:

Ŷ2002 ¼

XH

h¼1

Xnh

i¼1
Ŷhi 2002wh

XH

h¼1

Xnh

i¼1
wh

ð4Þ

Using Rubin’s rules, we combined the monthly and annual estimates computed in the 25

multiply imputed datasets. For the two estimates referring to the whole year 2002,
^�Y and
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Ŷ2002, we also computed the median, 20th and 80th percentiles of the distribution. To

calculate these estimates’ variances in each dataset we used the bootstrap resampling

technique, drawing 200 samples by random sampling with replacement, separately in each

sampling stratum.

We also computed the fraction of missing information, which measures how the

missing data contribute to inferential uncertainty about u, the estimate of interest. The

fraction of missing information can be computed as l̂¼ r þ 2=ðvþ 3Þ=ðr þ 1Þ where

r ¼ ð1þ m21ÞB=Ū and v ¼ ðm2 1Þ½1þ ð �U=ð1þ m21ÞBÞ�2 (Schafer 1997), and where U

and B are respectively the within and between variances across the m imputations.

The results for the quarterly and annual income estimates under the MAR model are

shown in Table 5. The differences in the distribution of income between the waves are

reduced under the MAR sequential imputations, compared with the MCAR results

(Table 3). However, the estimates referring to the last two quarters of year 2002 are still

higher, though the number of employed people does not increase. The fraction of missing

information is also different between the quarters.

These differences depend on some really high observed values in the first and third

waves, which contributed to increase the between variance of the multiple imputed

estimates in July. However, the fraction of missing information is lower than the fraction

of missing values (Table 4) for all the other quarters, reflecting the information

incorporated into the imputations via the sequential regression model. Moreover, if we

measure the relative efficiency of the MI estimates using m ¼ 25 with using an infinity

number of imputations, that is the quantity 1þ =ð1þl̂=mÞ (Rubin 1987), we obtain an

efficiency between the 97–98% for all the estimates. Therefore, the choice m ¼ 25 seems

a reasonable one in the current setting.

The results for the two annual estimates,
^�Y and Ŷ2002, are shown in Table 6. As we can

see, the monthly income estimate for the whole year 2002 is slightly lower under the MAR

method (1,198.1 Euros) than under the MCAR method (1,221.2 Euros, see Table 3). For

both methods the estimated median is lower than the estimated mean, reflecting a positive

skew in the income distribution.

5. Sensitivity Analysis for Deviations from MAR

We now describe modifications of the MAR analysis of the previous section to examine

sensitivity to MNAR missing-data mechanisms. The MNAR mechanism is modeled via

the joint distribution of Yhij, Zhij and Mhij given the observed variables, including

Table 5. Number of employed people (N), monthly income estimates and standard errors (in Euros) and fraction

of missing information (% missing info) across the 25 MAR multiple imputations

Estimates
^�Y: :1

^�Y: :2
^�Y: :3

^�Y: :4

MI N 1,748 1,820 1,827 1,780
MI mean estimate 1,210.09 1,188.21 1,280.90 1,249.83
MI standard error 25.48 28.56 27.67 25.99
MI % missing info 62.46 80.38 53.59 66.14
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covariates Xhi and observed income information in other waves, which we write

generically as Cobs,hi.. We first factorize this distribution as:

f ½Yhij; Zhij;MhijjCobs; hij� ¼ f ½Yhij; ZhijjMhij;Cobs; hij� £ f ½MhijjCobs; hij�

which is a pattern-mixture factorization of the joint distribution (Little 1993). We assume:

f ½Yhij; ZhijjMhij ¼ 1;Cobs; hij� ¼ f ½Yhij; ZhijjMhij – 1;Cobs; hij� ð5Þ

which expresses the fact that the distribution of Yhij, Zhij is the same for individuals who are

or are not interviewed because of the rotation group design. Further, for the missing

income values due to refusal we assume that:

f ½YhijjZhij ¼ 1;Mhij ¼ 2;Cobs; hij� – f ½YhijjZhij ¼ 1;Mhij ¼ 0;Cobs; hij�

This is MNAR because the distribution of Yhij given Zhij and Cobs; hij is different for

refusers and responders. Note that this distribution conditions on Zhij since that variable is

observed for cases with Mhij ¼ 0 or 2. Specifically, we model the difference by assuming

E½logðYhijÞjZhij¼1;Mhij¼2;Cobs;hij�¼E½logðYhijÞjZhij¼1;Mhij¼0;Cobs;hij�þkshj ð6Þ

where shj is the residual standard deviation of the distribution of log(Yhij) for respondents

given Zhij¼1 and Cobs, hij, and k is a positive predetermined multiplier. The effect is to

increase the mean of the distribution for refusers relative to that for respondents by a value

kshj that depends on the choice of k and the predictive power of Cobs, hij, as reflected in the

residual standard deviation shj. Note that the shift in the distribution for nonrespondents is

applied after fitting the MAR model, and is not part of the imputation algorithm. This is

because we do not want the increment to be amplified by the iterations of the imputation

scheme, a point discussed in Van Buuren et al. (1999).

To illustrate this MNAR model, consider panel group 5, where an individual is part of

the rotating panel in Waves 1 and 4, but not in Waves 2 and 3 (see Table 1). This results in

four possible patterns for Mhij, namely 0110, 2110, 0112, 2112. People belonging to

pattern 0110 reported their income when interviewed, while people in pattern 2110 refused

Table 6. Number of employed people (N), annual income estimates and

standard errors (in Euros) and fraction of missing information (% missing

info) across the 25 MAR multiple imputations

Estimates
^�Y Ŷ2002

MI N 2,420 1,086
MI mean estimate 1,198.12 15,532.00
MI standard error 17.30 234.49
MI % missing info 68.62 59.53
MI median estimate 1,091.18 14,405.16
MI median standard error 16.55 257.64
MI 20th percentile estimate 783.04 10,755.72
MI 20th percentile standard error 12.51 243.83
MI 80th percentile estimate 1,535.71 19,585.32
MI 80th percentile standard error 27.24 384.12

Journal of Official Statistics222



to answer (indicator equal to 2) at the first but not at the fourth wave, and so on. Missing

values of income in Waves 2 and 3 are imputed using the corresponding distributions for

individuals in the sample (for respondents and refusers, since individuals not interviewed

might refuse if interviewed). For the refusals in Waves 1 or 4, we apply the offset for non-

MAR missing data. The size of the offset for refusals in the first wave is larger for pattern

2112 than for pattern 2110, since the latter allows the missing income at Wave 1 to

condition on the observed income value at Wave 4, thereby reducing the value of shj.

This model is implemented as follows:

(A) The MAR multiple imputations are created as before;

(B) A value of k is chosen (0.8, 1.2 or 1.6, which we consider to reflect small, medium,

and large deviations from MAR). The offsets are then applied to the imputations for

refusals;

(C) For each of the m sets of multiple imputations, the imputations for the refusals are

treated as known, and the sequential multiple imputation method is applied to reimpute

the missing values of Y and Z for months not in the rotation group. This allows these

imputations to condition on the offsetted values of the refusals, reflecting the fact that

individuals not in the rotation group may also refuse.

We label this imputation model MNAR1. We also present results under an alternative

assumption (denotedMNAR2),wheremissingvalues for caseswith at least one incomevalue

reported can be regarded as MAR. The offset is thus restricted to cases with no observed

income values. Considering again a subject belonging to panel group 5, the MNAR2 model

applies an offset to the imputed values for the first and fourth waves in pattern 2112, when

both the income values are refusals, but does not apply an offset to the imputed values for

patterns 2110 or 0112, when one of the income values is observed. TheMNAR2 mechanism

is clearly closer toMAR thanmodelMNAR1.We think ofMNAR1 andMNAR2 as bounding

a range of plausible combinations of these models, for any given choice of k.

6. Results Under the MNAR Models

To evaluate the impact of the MNAR increments on the income distributions referring to

the four quarters we plotted again the empirical densities of some of the 25 imputed

income distributions, comparing them with those of the corresponding observed values.

In Figure 3 the empirical densities of the observed income distributions in the first

quarter (April) and the corresponding ones obtained after the MNAR1 imputations are

represented.

From the visual representations of the empirical densities we can appreciate the impact

of the proposed imputation models on the income distribution in April. As expected,

higher k values cause a more pronounced shift for the corresponding density. The same

plots referring to the remaining three quarters and to the MNAR2 imputations, not shown

here, are very similar to those in Figure 3, with the increments under the MNAR2 model

causing a lower shift for the distributions.

We then computed the estimates of interest for the MNAR imputed income variables.

The quarterly income estimates under the MNAR1 and MNAR2 models are shown in

Table 7. The MNAR offsets result in larger estimates than those under MAR, especially
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for larger values of k. As expected, the MNAR1 assumption leads to larger increases than

the MNAR2 assumption, especially for k ¼ 1:2 and k ¼ 1:6. As under the MCAR and

MAR hypothesis, the monthly income estimates in the first and second quarters are lower

than those in the remaining two quarters, both under MNAR1 and MNAR2 and for each

value of k.

When it comes to the percentage increase of these estimates as compared to the estimates

obtained under theMAR assumption, when k ¼ 0:8 the percentage increase of the quarterly

income estimates is around the 10% and the 7% under the MNAR1 and MNAR2

mechanisms respectively. For k ¼ 1:2 and k ¼ 1:6 we observe a more pronounced impact

of the MNAR1 mechanism, especially for the monthly income estimate in the third quarter.
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Fig. 3. Empirical densities of the observed income values (dotted lines) and of imputed income values (solid

lines) in the first quarter under the MNAR1 model

Table 7. Number of employed people (N), monthly income estimates and standard errors (in Euros) and fraction

of missing information (% missing info) across the 25 MNAR multiple imputations

Model Estimates
^�Y: :1

^�Y: :2
^�Y: :3

^�Y: :4

MNAR1, k ¼ 0:8 MI N 1,754 1,791 1,814 1,774
MI mean estimate 1,316.9 1,306.8 1,421.5 1,369.5
MI standard error 23.9 20.4 24.2 24.0
MI % missing info 44.6 47.3 28.1 51.2

MNAR1, k ¼ 1:2 MI N 1,755 1,796 1,819 1,770
MI mean estimate 1,390.0 1,383.1 1,518.7 1,452.4
MI standard error 25.7 25.6 31.2 23.7
MI % missing info 41.4 59.0 48.0 35.4

MNAR1, k ¼ 1:6 MI N 1,756 1,780 1,812 1,777
MI mean estimate 1,475.9 1,465.1 1,605.0 1,526.8
MI standard error 31.3 28.0 32.6 30.7
MI % missing info 50.3 57.2 44.3 52.4

MNAR2, k ¼ 0:8 MI N 1,751 1,791 1,813 1,771
MI mean estimate 1,290.2 1,263.3 1,375.7 1,342.0
MI standard error 24.5 19.9 24.3 21.0
MI % missing info 51.1 51.0 33.1 38.5

MNAR2, k ¼ 1:2 MI N 1,749 1,787 1,814 1,776
MI mean estimate 1,343.3 1,320.2 1,439.4 1,399.5
MI standard error 25.4 20.1 27.1 26.9
MI % missing info 47.1 41.9 38.1 56.3

MNAR2, k ¼ 1:6 MI N 1,738 1,784 1,811 1,784
MI mean estimate 1,416.8 1,366.0 1,509.2 1,468.4
MI standard error 27.9 21.5 27.2 26.0
MI % missing info 45.2 39.5 27.9 41.1
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Note that this greater increase depends on some high income values observed in the first and

third quarters, already noted for the MAR model; these values cause a bigger residual

standard deviation for the corresponding log-normal regression model. Moreover, in the

third quarter we also observe a slightly higher percentage of nonresponses (see Table 4)

which are incremented under the MNAR models.

The estimates referring to the whole year 2002 under the two MNAR hypotheses are

shown in Table 8. The increases for the annual estimate
^�Y are similar to those for the

quarterly estimates (10% and 8% respectively under MNAR1 and MNAR2), while those

for Ŷ2002 are slightly lower (8% and 5.4% respectively). The percentage increases are

slightly lower in terms of median values, as it is for the estimates of the 20th percentiles.

The monthly estimate referring to all the year 2002,
^�Y, is always higher than the first and

second quarter estimates, and lower than the third and fourth quarter estimates, as in the

MAR analysis. The MNAR annual income estimates Ŷ2002 are all between 15,000 and

Table 8. Number of employed people (N), annual income estimates and standard errors (in Euros) and fraction

of missing information (% missing info) across the 25 MNAR1 and MNAR2 multiple imputations

MNAR1 MNAR2

k value Estimates
^�Y Ŷ2002

^�Y Ŷ2002

k ¼ 0:8 MI N 2,129 1,405 2,129 1,410
MI mean estimate 1,322.3 16,762.0 1,285.0 16,381.0
MI standard error 13.9 216.3 14.6 216.2
MI % missing info 32.1 47.4 42.2 49.0
MI median estimate 1,198.3 15,319.0 1,163.2 14,923.7
MI median standard error 16.5 236.0 14.8 250.8
MI 20th percentile 854.8 11,259.4 836.3 11,002.8
MI 20th percentile standard error 13.7 194.4 12.6 177.2
MI 80th percentile 1,705.4 21,467.5 1,650.8 20,827.2
MI 80th percentile standard error 29.0 386.5 25.9 399.5

k ¼ 1:2 MI N 2,137 1,403 2,119 1,414
MI mean estimate 1,398.3 17,837.0 1,350.2 16,921
MI standard error 17.3 252.6 16.5 247
MI % missing info 47.4 52.1 45.2 52.9
MI median estimate 1,258.9 16,145.8 1,211.7 15,245.6
MI median standard error 17.3 266.7 17.7 248.8
MI 20th percentile 886.5 11,774.9 859.2 11,087.3
MI 20th percentile standard error 14.8 203.1 12.3 204.7
MI 80th percentile 1,817.5 22,863.4 1,747.5 21,725.4
MI 80th percentile standard error 32.1 480.3 30.4 425.9

k ¼ 1:6 MI N 2,119 1,414 2,114 1,418
MI mean estimate 1,484.1 18,772.0 1,420.5 17,590.5
MI standard error 20.4 257.6 16.6 257.6
MI % missing info 55.3 46.7 29.9 47.1
MI median estimate 1,322.6 16,917.4 1,258.3 15,764.3
MI median standard error 18.7 279.4 19.2 264.1
MI 20th percentile 924.5 12,122.9 880.8 11,241.4
MI 20th percentile standard error 14.4 225.0 12.5 186.7
MI 80th percentile 1,941.0 24,241.4 1,850.4 22,730.9
MI 80th percentile standard error 35.2 511.6 32.5 510.7
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19,000 Euros. This range is consistent with data coming from independent sources. In

particular, the estimate of annual net income from job (the same estimate we are

considering) resulting from a survey on tax records in the Municipality of Florence in 2002

is equal to 16,070 Euros for employees and 24,400 for the self-employeed. Considering

that the employees represent approximately 72% of the population under study (mean

value across the quarters and multiple imputations), the annual net income estimated using

the tax record data is equal to 18,404 Euros. This value is coherent with the estimates and

standard errors we obtain for Ŷ2002 under the MNAR1 model with k ¼ 1:2 and k ¼ 1:6, and

for model MNAR2 with k ¼ 1:6.

Our results are also consistent with the estimates resulting from a national survey

conducted by the Italian National Institute of Statistics (ISTAT) – the Survey on Income

and Living Conditions 2004 – which links to tax reports in the case of nonresponse. This

survey estimated an annual mean net income from employment in 2003 in the region of

Florence, Tuscany, of 15,727 Euros, with the corresponding median estimate equal to

13,284 Euros. However, the confidence intervals for the mean and median estimates

referring to the Municipality of Florence, though rather wide since based on around 200

units, suggest that the Florentine area is richer than the Tuscany region as a whole, as

reflected in our estimates.

These external references suggest that the value k ¼ 1:6 can be considered as a

maximum for our proposed MNAR models. Broadly speaking, we can say that the MNAR

deviations from the MAR estimates are moderate, especially under the MNAR1 model.

7. Conclusion

We have described the use of SRMI to impute missing income amounts in a rotating panel

survey, where values of income recipiency and amount are missing for quarters when the

individual is not interviewed, and amounts are also missing because of refusal or inability

to answer the amount question. Compared with other approaches, this analysis conditions

imputations on available information, and hence is particularly attractive when

information on income is available for some waves. However, this approach makes the

MAR assumption. Thus, we have also described a sensitivity analysis for deviations from

MAR, based on offsets applied to the imputations from the MAR model, defined as a

fraction k of the residual standard deviation from the log-normal regression model on

observed income values and covariates. The sensitivity analysis suggested that income

amounts are moderately sensitive in this application, for a range of plausible values of k.

The MNAR model is based on a pattern-mixture factorization, and it extends existing

MNAR models in a number of useful ways. First, it distinguishes between the two types of

missing data in this application, one of which is essentially MCAR (the rotation

group design) and one of which may not be MAR (refusal). This approach operationalizes

the recommendation in Little (1995) to tailor the model for nonresponse according to the

reason that a value is missing. It also limits the scope of the sensitivity analysis to

the missing values likely to deviate from MAR, thus avoiding an overstatement of the

additional uncertainty from nonresponse. The idea of modeling MNAR by adding offsets

to the mean of the respondent distribution has the advantage of being easy to implement,

involving simpler adjustments to the MAR imputations, and the deviations from MAR are
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readily understood. Rubin (1977) expressed the need for simple sensitivity analyses for

deviations from MAR as follows:

“In special cases, it may be possible to estimate the effect of nonrespondents under

accepted models. More often, the investigator has to make subjective judgments about

the effect of nonrespondents. Given this situation, it seems reasonable to try to

formulate these subjective notions so that they can be easily stated, communicated, and

compared.”

The advantage of pattern-mixture models in terms of simplicity is noted in Kenward and

Carpenter (2008). In contrast, deviations from MAR in selection models require more

complex computations and are harder to explain to practitioners, since the predictive

distribution of the missing values is being modeled indirectly (Little and Rubin 2002,

Chapter 15; Kenward and Carpenter 2008). We suggest that specifying an offset is more

realistic than attempting to estimate selection bias using structural assumptions, since in

practice the evidence in the data to estimate deviations from MAR is very limited.

Another novel aspect of our analysis is to choose the offset as a fraction of the residual

standard deviation from the regression of the missing variable on observed covariates.

This approach takes into account relationships with known covariates, which is

particularly important in our application given the potential to use income amounts from

other quarters as covariates: clearly these values carry considerable information for the

value being imputed. With income modeled on the log scale, the offset can be interpreted

approximately as a percentage change on the raw scale, which is easy to interpret.

In the application we perturbed the values by making them larger, on the assumption

that missingness is positively related to the actual income value. Other deviations from

MAR can also be considered in our proposed sensitivity model, if they are thought

appropriate. For example, an alternative sensitivity analysis that has the effect of changing

the income distribution in both tails might be specified by increasing the standard

deviation of the predictive distribution of log income, under the assumption that income

values for nonrespondents are more dispersed that those predicted under the MAR model.
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